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We introduce the notion of t-derivation of a BCI-algebra and investigate related properties.
Moreover, we study t-derivations in a p-semisimple BCI-algebra and establish some results on
t-derivations in a p-semisimple BCI-algebra.

1. Introduction

The notion of BCK-algebra was proposed by Imai and Iséki in 1966 [1]. In the same year,
Iséki introduced the notion of a BCI-algebra [2], which is a generalization of a BCK-algebra.
A series of interesting notions concerning BCI-algebras were introduced and studied, several
papers have been written on various aspects of these algebras [3–5]. Recently, in the year 2004
[6], Jun and Xin have applied the notion of derivation in BCI-algebras which is defined in a
way similar to the notion of derivation in rings and near-rings theory which was introduced
by Posner in 1957 [7]. In fact, the notion of derivation in ring theory is quite old and plays a
significant role in analysis, algebraic geometry and algebra.

After the work of Jun and Xin (2004) [6], many research articles have appeared on
the derivations of BCI-algebras in different aspects as follows: in 2005 [8], Zhan and Liu
have given the notion of f-derivation of BCI-algebras and studied p-semisimple BCI-algebras
by using the idea of regular f-derivation in BCI-algebras. In 2006 [9], Abujabal and Al-
Shehri have extended the results of BCI-algebras. Further, in the next year 2007 [10], they
defined and studied the notion of left derivation of BCI-algebras and investigated some
properties of left derivation in p-semisimple BCI-algebras. In 2009 [11], Öztürk and Çeven
have defined the notion of derivation and generalized derivation determined by a derivation
for a complicated subtraction algebra and discussed some related properties. Also, in 2009
[12], Öztürk et al. have introduced the notion of generalized derivation in BCI-algebras and
established some results. Further, they have given the idea of torsion free BCI-algebra and
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explored some properties. In 2010 [13], Al-Shehri has applied the notion of left-right (resp.,
right-left) derivation in BCI-algebra to B-algebra and obtained some of its properties. In 2011
[14], Ilbira et al. have studied the notion of left-right (resp., right-left) symmetric biderivation
in BCI-algebras.

Motivated by a lot of work done on derivations of BCI-algebras and on derivations
of other related abstract algebraic structures, in this paper we introduce the notion
of t-derivations on BCI-algebras and obtain some of its related properties. Further, we
characterize the notion of p-semisimple BCI-algebra X by using the notion of t-derivation
and show that if dt and d′

t are t-derivations on X, then dt ◦ d′
t is also a t-derivation and

dt ◦ d′
t = d′

t ◦ dt. Finally, we prove that dt ∗ d′
t = d′

t ∗ dt, where dt and d′
t are t-derivations

on a p-semisimple BCI-algebra.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

Definition 2.1 (see [2]). Let X be a set with a binary operation “∗” and a constant 0. Then
(X, ∗, 0) is called a BCI algebra if the following axioms are satisfied for all x, y, z ∈ X:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) x ∗ y = 0 and y ∗ x = 0 ⇒ x = y.

Define a binary relation ≤ on X by letting x ∗ y = 0 if and only if x ≤ y. Then (X,≤) is
a partially ordered set. A BCI-algebra X satisfying 0 ≤ x for all x ∈ X, is called BCK-algebra
(see [1]).

In any BCI-algebra X for all x, y ∈ X, the following properties hold.

(1) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(2) x ∗ 0 = x.

(3) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
(4) x ∗ 0 = 0 implies x = 0.

(5) x ≤ y ⇔ x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x. A BCI-algebra X is said to be associative if
for all x, y, z ∈ X, the following holds:

(6) (x∗y)∗z = x∗(y∗z) [4]. LetX be a BCI-algebra, we denoteX+ = {x ∈ X | 0 ≤ x}, the
BCK-part of X and by G(X) = {x ∈ X | 0 ∗ x = x} , the BCI-G part of X. If X+ = {0},
then X is called a p-semisimple BCI-algebra. In a p-semisimple BCI-algebra X, the
following properties hold.

(7) x ∗ (x ∗ y) = y.

(8) x ∗ (0 ∗ y) = y ∗ (0 ∗ x).
(9) x ∗ y = 0 implies x = y.

(10) (x ∗ z) ∗ (y ∗ z) = x ∗ y.
(11) x ∗ a = x ∗ b implies a = b that is left cancelable.

(12) a ∗ x = b ∗ x implies a = b that is right cancelable.
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Definition 2.2 (see [6]). A subset S of a BCI-algebra X is called subalgebra of X if x ∗ y ∈ S
whenever x, y ∈ S.

For a BCI-algebra X, we denote x ∧ y = y ∗ (y ∗ x) for all x, y ∈ X [6]. For more details
we refer to [3, 5, 6].

3. t-Derivations in a BCI-Algebra/p-Semisimple BCI-Algebra

The following definitions introduce the notion of t-derivation for a BCI-algebra.

Definition 3.1. Let X be a-BCI-algebra. Then for any t ∈ X, we define a self map dt : X → X
by dt(x) = x ∗ t for all x ∈ X.

Definition 3.2. Let X be a BCI-algebra. Then for any t ∈ X, a self map dt : X → X is called a
left-right t-derivation or (l, r)-t-derivation of X if it satisfies the identity dt(x ∗ y) = (dt(x) ∗
y) ∧ (x ∗ dt(y)) for all x, y ∈ X.

Similarly, we get the following.

Definition 3.3. Let X be a BCI-algebra. Then for any t ∈ X, a self map dt : X → X is called
a right-left t-derivation or (r, l)-t-derivation of X if it satisfies the identity dt(x ∗ y) = (x ∗
dt(y)) ∧ (dt(x) ∗ y) for all x, y ∈ X.

Moreover, if dt is both a (l, r)- and a (r, l)-t-derivation on X, we say that dt is a t-
derivation on X.

Example 3.4. Let X = {0, 1, 2} be a BCI-algebra with the following Cayley table:

∗ 0 1 2

0 0 0 2
1 1 0 2
2 2 2 0

(3.1)

For any t ∈ X, define a self map dt : X → X by dt(x) = x ∗ t for all x ∈ X. Then it is easily
checked that dt is a t-derivation of X.

Proposition 3.5. Let dt be a self map of an associative BCI-algebra X. Then dt is a (l, r)-t-derivation
of X.

Proof. Let X be an associative BCI-algebra, then we have

dt

(
x ∗ y) =

(
x ∗ y) ∗ t

=
{
x ∗ (y ∗ t)} ∗ 0 by Property (6) and (2)

=
{
x ∗ (y ∗ t)} ∗ [{x ∗ (y ∗ t)} ∗ {x ∗ (y ∗ t)}] by Property (iii)

=
{
x ∗ (y ∗ t)} ∗ [{x ∗ (y ∗ t)} ∗ {(x ∗ y) ∗ t}] by Property (6)
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=
{
x ∗ (y ∗ t)} ∗ [{x ∗ (y ∗ t)} ∗ {(x ∗ t) ∗ y}] by Property (1)

=
(
(x ∗ t) ∗ y) ∧ (

x ∗ (y ∗ t))

=
(
dt(x) ∗ y

) ∧ (
x ∗ dt

(
y
))
.

(3.2)

Proposition 3.6. Let dt be a self map of an associative BCI-algebra X. Then, dt is a (r, l)-t-derivation
of X.

Proof. Let X be an associative BCI-algebra, then we have

dt

(
x ∗ y) =

(
x ∗ y) ∗ t

=
{
(x ∗ t) ∗ y} ∗ 0 by Property (1) and (2)

=
{
(x ∗ t) ∗ y} ∗ [{(x ∗ t) ∗ y} ∗ {(x ∗ t) ∗ y}] (as x ∗ x = 0)

=
{
(x ∗ t) ∗ y} ∗ [{(x ∗ t) ∗ y} ∗ {(x ∗ y) ∗ t}] by Property (1)

=
{
(x ∗ t) ∗ y} ∗ [{(x ∗ t) ∗ y} ∗ {x ∗ (y ∗ t)}] by Property (6)

=
(
x ∗ (y ∗ t)) ∧ (

(x ∗ t) ∗ y) (
as y ∗ (y ∗ x) = x ∧ y

)

=
(
x ∗ dt

(
y
)) ∧ (

dt(x) ∗ y
)
.

(3.3)

Combining Propositions 3.5 and 3.6, we get the following Theorem.

Theorem 3.7. Let dt be a self map of an associative BCI-algebra X. Then, dt is a t-derivation of X.

Definition 3.8. A self map dt of a BCI-algebra X is said to be t-regular if dt(0) = 0.

Example 3.9. Let X = {0, a, b} be a BCI-algebra with the following Cayley table:

∗ 0 a b

0 0 0 b
a a 0 b
b b b 0

(3.4)

(i) For any t ∈ X, define a self map dt : X → X by

dt(x) = x ∗ t =
{
b if x = 0, a
0 if x = b.

(3.5)

Then it is easily checked that dt is (l, r) and (r, l)-t-derivations of X, which is not t-regular.



Abstract and Applied Analysis 5

(ii) For any t ∈ X, define a self map d′
t : X → X by

d′
t(x) = x ∗ t =

{
0 if x = 0, a
b if x = b.

(3.6)

Then it is easily checked that d′
t is (l, r) and (r, l)-t-derivations of X, which is t-regular.

Proposition 3.10. Let dt be a self map of a BCI-algebra X. Then

(i) If dt is a (l, r)-t-derivation of X, then dt(x) = dt(x) ∧ x for all x ∈ X.

(ii) If dt is a (r, l)-t-derivation of X, then dt(x) = x ∧ dt(x) for all x ∈ X if and only if dt is
t-regular.

Proof of (i). Let dt be a (l, r)-t-derivation of X, then

dt(x) = dt(x ∗ 0)
= (dt(x) ∗ 0) ∧ (x ∗ dt(0))

= dt(x) ∧ {x ∗ dt(0)}
= {x ∗ dt(0)} ∗ [{x ∗ dt(0)} ∗ dt(x)]

= {x ∗ dt(0)} ∗ [{x ∗ dt(x)} ∗ dt(0)]

≤ x ∗ {x ∗ dt(x)} by Property (3)

= dt(x) ∧ x.

(3.7)

But dt(x) ∧ x ≤ dt(x) is trivial so (i) holds.

Proof of (ii). Let dt be a (r, l)-t-derivation of X. If dt(x) = x ∧ dt(x) then

dt(0) = 0 ∧ dt(0)

= dt(0) ∗ {dt(0) ∗ 0}
= dt(0) ∗ dt(0)

= 0

(3.8)

thereby implying dt is t-regular. Conversely, suppose that dt is t-regular, that is dt(0) = 0, then
we have

dt(x) = dt(x ∗ 0)
= (x ∗ dt(0)) ∧ (dt(x) ∗ 0)
= (x ∗ 0) ∧ dt(x)

= x ∧ dt(x).

(3.9)

This completes the proof.
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Theorem 3.11. Let dt be a (l, r)-t-derivation of a p-semisimple BCI-algebra X. Then the following
hold:

(i) dt(0) = dt(x) ∗ x for all x ∈ X.

(ii) dt is one-one.

(iii) If dt is t-regular, then it is an identity map.

(iv) if there is an element x ∈ X such that dt(x) = x, then dt is identity map.

(v) if x ≤ y, then dt(x) ≤ dt(y) for all x, y ∈ X.

Proof of (i). Let dt be a (l, r)-t-derivation of a p-semisimple BCI-algebra X. Then for all x ∈ X,
we have x ∗ x = 0 and so

dt(0) = dt(x ∗ x)
= (dt(x) ∗ x) ∧ (x ∗ dt(x))

= {x ∗ dt(x)} ∗ [{x ∗ dt(x)} ∗ {dt(x) ∗ x}]
= dt(x) ∗ x by property (7).

(3.10)

Proof of (ii). Let dt(x) = dt(y) =⇒ x ∗ t = y ∗ t, then by property (12), we have x = y and so dt

is one-one.

Proof of (iii). Let dt be t-regular and x ∈ X. Then, 0 = dt(0) so by the above part (i), we have
0 = dt(x) ∗ x and hence by property (9), we obtain dt(x) = x for all x ∈ X. Therefore, dt is the
identity map.

Proof of (iv). It is trivial and follows from the above part (iii).

Proof of (v). Let x ≤ y implying x ∗ y = 0. Now,

dt(x) ∗ dt

(
y
)
= (x ∗ t) ∗ (y ∗ t)

= x ∗ y by property (10)

= 0.

(3.11)

Therefore, dt(x) ≤ dt(y). This completes the proof.

Definition 3.12. Let dt be a t-derivation of a BCI-algebra X. Then, dt is said to be an isotone
t-derivation if x ≤ y =⇒ dt(x) ≤ dt(y) for all x, y ∈ X.

Example 3.13. In Example 3.9(ii), d′
t is an isotone t-derivation, while in Example 3.9(i), dt is

not an isotone t-derivation.

Proposition 3.14. Let X be a BCI-algebra and dt be a t-derivation on X. Then for all x, y ∈ X, the
following hold:

(i) If dt(x ∧ y) = dt(x) ∧ dt(y), then dt is an isotone t-derivation.

(ii) If dt(x ∗ y) = dt(x) ∗ dt(y), then dt is an isotone t-derivation.
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Proof of (i). Let dt(x ∧ y) = dt(x) ∧ dt(y). If x ≤ y =⇒ x ∧ y = x for all x, y ∈ X. Therefore, we
have

dt(x) = dt

(
x ∧ y

)

= dt(x) ∧ dt

(
y
)

≤ dt

(
y
)
.

(3.12)

Henceforth dt(x) ≤ dt(y) which implies that dt is an isotone t-derivation.

Proof of (ii). Let dt(x ∗ y) = dt(x) ∗ dt(y). If x ≤ y =⇒ x ∗ y = 0 for all x, y ∈ X. Therefore, we
have

dt(x) = dt(x ∗ 0)
= dt

{
x ∗ (x ∗ y)}

= dt(x) ∗ dt

(
x ∗ y)

= dt(x) ∗
{
dt(x) ∗ dt

(
y
)}

≤ dt

(
y
)

by property (ii).

(3.13)

Thus, dt(x) ≤ dt(y). This completes the proof.

Theorem 3.15. Let dt be a t-regular (r, l)-t-derivation of a BCI-algebra X. Then, the following hold:

(i) dt(x) ≤ x for all x ∈ X.

(ii) dt(x) ∗ y ≤ x ∗ dt(y) for all x, y ∈ X.

(iii) dt(x ∗ y) = dt(x) ∗ y ≤ dt(x) ∗ dt(y) for all x, y ∈ X.

(iv) ker(dt) := {x ∈ X : dt(x) = 0} is a subalgebra of X.

Proof of (i). For any x ∈ X, we have dt(x) = dt(x∗0) = (x∗dt(0))∧(dt(x)∗0) = (x∗0)∧(dt(x)∗
0) = x ∧ dt(x) ≤ x.

Proof of (ii). Since dt(x) ≤ x for all x ∈ X, then dt(x) ∗y ≤ x ∗y ≤ x ∗dt(y) and hence the proof
follows.

Proof of (iii). For any x, y ∈ X, we have

dt

(
x ∗ y) =

(
x ∗ dt

(
y
)) ∧ (

dt(x) ∗ y
)

=
{
dt(x) ∗ y

} ∗ [{dt(x) ∗ y
} ∗ {x ∗ dt

(
y
)}]

=
{
dt(x) ∗ y

} ∗ 0
= dt(x) ∗ y ≤ dt(x) ∗ dt

(
y
)
.

(3.14)
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Proof of (iv). Let x, y ∈ ker(dt) =⇒ dt(x) = 0 = dt(y). From (iii), we have dt(x ∗ y) ≤ dt(x) ∗
dt(y) = 0 ∗ 0 = 0 implying dt(x ∗ y) ≤ 0 and so dt(x ∗ y) = 0. Therefore, x ∗ y ∈ ker(dt).
Consequently ker(dt) is a subalgebra of X. This completes the proof.

Definition 3.16. Let X be a BCI-algebra and let dt, d′
t be two self maps of X. Then we define

dt ◦ d′
t : X → X by (dt ◦ d′

t)(x) = dt(d′
t(x)) for all x ∈ X.

Example 3.17. Let X = {0, a, b} be a BCI algebra which is given in Example 3.4. Let dt and d′
t

be two self maps on X as defined in Example 3.9(i) and Example 3.9(ii), respectively.
Now, define a self map dt ◦ d′

t : X → X by

(
dt ◦ d′

t

)
(x) =

{
0 if x = a, b

b if x = 0.
(3.15)

Then, it is easily checked that (dt ◦ d′
t)(x) = dt(d′

t(x)) for all x ∈ X.

Proposition 3.18. Let X be a p-semisimple BCI-algebra X and let dt, d′
t be (l, r)-t-derivations of X.

Then, dt ◦ d′
t is also a (l, r)-t-derivation of X.

Proof. Let X be a p-semisimple BCI-algebra. dt and d′
t are (l, r)-t-derivations of X. Then for all

x, y ∈ X, we get

(
dt ◦ d′

t

)(
x ∗ y) = dt

(
d′
t

(
x ∗ y))

= dt

[(
d′
t(x) ∗ y

) ∧ (
x ∗ d′

t

(
y
))]

= dt

[(
x ∗ d′

t

(
y
)) ∗ {(x ∗ d′

t

(
y
)) ∗ (d′

t(x) ∗ y
)}]

= dt

(
d′
t(x) ∗ y

)
by property (7)

=
{
x ∗ dt

(
d′
t

(
y
))} ∗ [{x ∗ dt

(
d′
t

(
y
))} ∗ {dt

(
d′
t(x) ∗ y

)}]

=
{
dt

(
d′
t(x) ∗ y

)} ∧ {
x ∗ dt

(
d′
t

(
y
))}

=
((
dt ◦ d′

t

)
(x) ∗ y) ∧ (

x ∗ (dt ◦ d′
t

)(
y
))
.

(3.16)

Therefore, (dt ◦ d′
t) is a (l, r)-t-derivation of X.

Similarly, we can prove the following.

Proposition 3.19. Let X be a p-semisimple BCI-algebra and let dt, d′
t be (r, l)-t-derivations of X.

Then dt ◦ d′
t is also a (r, l)-t-derivation of X.

Combining Propositions 3.18 and 3.19, we get the following.

Theorem 3.20. LetX be a p-semisimple BCI-algebra and let dt, d′
t be t-derivations ofX. Then, dt ◦d′

t

is also a t-derivation of X.

Now, we prove the following theorem.

Theorem 3.21. LetX be a p-semisimple BCI-algebra and let dt, d′
t be t-derivations ofX. Then dt◦d′

t =
d′
t ◦ dt.
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Proof. Let X be a p-semisimple BCI-algebra. dt and d′
t, t-derivations of X. Suppose d′

t is a
(l, r)-t-derivation, then for all x, y ∈ X, we have

(
dt ◦ d′

t

)(
x ∗ y) = dt

(
d′
t

(
x ∗ y))

= dt

[(
d′
t(x) ∗ y

) ∧ (
x ∗ d′

t

(
y
))]

= dt

[(
x ∗ d′

t

(
y
)) ∗ {(x ∗ d′

t

(
y
)) ∗ (d′

t(x) ∗ y
)}]

= dt

(
d′
t(x) ∗ y

)
by property (7).

(3.17)

As dt is a (r, l)-t-derivation, then

=
(
d′
t(x) ∗ dt

(
y
)) ∧ (

dt

(
d′
t(x)

) ∗ y)

= d′
t(x) ∗ dt

(
y
)
.

(3.18)

Again, if dt is a (r, l)-t-derivation, then we have

(
d′
t ◦ dt

)(
x ∗ y) = d′

t

[
dt

(
x ∗ y)]

= d′
t

[(
x ∗ dt

(
y
)) ∧ (

dt(x) ∗ y
) ]

= d′
t

[
x ∗ dt

(
y
)]

by property (7)

(3.19)

But d′
t is a (l, r)-t-derivation, then

=
(
d′
t(x) ∗ dt

(
y
)) ∧ (

x ∗ d′
t

(
dt

(
y
)))

= d′
t(x) ∗ dt

(
y
)
.

(3.20)

Therefore from (3.18) and (3.20), we obtain

(
dt ◦ d′

t

)(
x ∗ y) =

(
d′
t ◦ dt

)(
x ∗ y). (3.21)

By putting y = 0, we get

(
dt ◦ d′

t

)
(x) =

(
d′
t ◦ dt

)
(x) ∀x ∈ X. (3.22)

Hence, dt ◦ d′
t = d′

t ◦ dt. This completes the proof.

Definition 3.22. Let X be a BCI-algebra and let dt, d′
t be two self maps of X. Then we define

dt ∗ d′
t : X → X by (dt ∗ d′

t)(x) = dt(x) ∗ d′
t(x) for all x ∈ X.
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Example 3.23. Let X = {0, a, b} be a BCI algebra which is given in Example 3.4. Let dt and d′
t

be two self maps on X as defined in Example 3.9(i) and Example 3.9(ii), respectively.
Now, define a self map dt ∗ d′

t : X → X by

(
dt ∗ d′

t

)
(x) =

{
0 if x = a, b

b if x = 0.
(3.23)

Then, it is easily checked that (dt ∗ d′
t)(x) = dt(x) ∗ d′

t(x) for all x ∈ X.

Theorem 3.24. LetX be a p-semisimple BCI-algebra and let dt, d′
t be t-derivations ofX. Then dt∗d′

t =
d′
t ∗ dt.

Proof. Let X be a p-semisimple BCI-algebra. dt and d′
t, t-derivations of X.

Since d′
t is a (r, l)-t-derivation of X, then for all x, y ∈ X, we have

(
dt ◦ d′

t

)(
x ∗ y) = dt

[
d′
t

(
x ∗ y)]

= dt

[(
x ∗ d′

t

(
y
)) ∧ (

d′
t(x) ∗ y

)]

= dt

[
x ∗ d′

t

(
y
)]

by property (7).

(3.24)

But dt is a (l, r)-t-derivation, so

=
(
dt(x) ∗ d′

t

(
y
)) ∧ (

x ∗ dt

(
d′
t

(
y
)))

= dt(x) ∗ d′
t

(
y
)
.

(3.25)

Again, if d′
t is a (l, r)-t-derivation of X, then for all x, y ∈ X, we have

(
dt ◦ d′

t

)(
x ∗ y) = dt

[
d′
t

(
x ∗ y)]

= dt

[(
d′
t(x) ∗ y

) ∧ (
x ∗ d′

t

(
y
))]

= dt

[(
x ∗ d′

t

(
y
)) ∗ {(x ∗ d′

t

(
y
)) ∗ (d′

t(x) ∗ y
)}]

= dt

(
d′
t(x) ∗ y

)
by property (7).

(3.26)

As dt is a (r, l)-t-derivation, then

=
(
d′
t(x) ∗ dt

(
y
)) ∧ (

dt

(
d′
t(x)

) ∗ y)

= d′
t(x) ∗ dt

(
y
)
.

(3.27)
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Henceforth from (3.25) and (3.27), we conclude

dt(x) ∗ d′
t

(
y
)
= d′

t(x) ∗ dt

(
y
)

(3.28)

By putting y = x, we get

dt(x) ∗ d′
t(x) = d′

t(x) ∗ dt(x)
(
dt ∗ d′

t

)
(x) =

(
d′
t ∗ dt

)
(x) ∀x ∈ X.

(3.29)

Hence, dt ∗ d′
t = d′

t ∗ dt. This completes the proof.

4. Conclusion

Derivation is a very interesting and important area of research in the theory of algebraic
structures in mathematics. The theory of derivations of algebraic structures is a direct
descendant of the development of classical Galois theory (namely, Suzuki [15] and Van der
Put and Singer [16, 17]) and the theory of invariants. An extensive and deep theory has been
developed for derivations in algebraic structures viz. BCI-algebras,C∗-algebras, commutative
Banach algebras and Galois theory of linear differential equations (see, e.g., Jun and Xin [6],
Ara and Mathieu [18], Bonsall and Duncan [19], Murphy [20] and Villena [21]where further
references can be found). It plays a significant role in functional analysis; algebraic geometry;
algebra and linear differential equations.

In the present paper, we have considered the notion of t-derivations in BCI-algebras
and investigated the useful properties of the t-derivations in BCI-algebras. Finally, we
investigated the notion of t-derivations in a p-semisimple BCI-algebra and established some
results on t-derivations in a p-semisimple BCI-algebra. In our opinion, these definitions and
main results can be similarly extended to some other algebraic systems such as subtraction
algebras [11], B-algebras [13], MV-algebras [22], d-algebras, Q-algebras and so forth. In
future we can study the notion of t-derivations on various algebraic structures which may
have a lot of applications in different branches of theoretical physics, engineering and
computer science. It is our hope that this work would serve as a foundation for the further
study in the theory of derivations of BCK/BCI-algebras.

In our future study of t-derivations in BCI-algebras, may be the following topics
should be considered:

(1) to find the generalized t-derivations of BCI-algebras,

(2) to find more results in t-derivations of BCI-algebras and its applications,

(3) to find the t-derivations of B-algebras, Q-algebras, subtraction algebras, d-algebra
and so forth.
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