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This paper studies uniqueness of weak solutions to an electrohydrodynamics model in R¥(d =
2,3). When d = 2, we prove a uniqueness without any condition on the velocity. For d = 3, we

prove a weak-strong uniqueness result with a condition on the vorticity in the homogeneous Besov
space.

1. Introduction

We consider the following model of electrokinetic fluid in R¥ x (0, o0) [1, 2]:

du+u-Vu+Vr—Au=AdpVe, (1.1)
div u =0, (1.2)
om+u-Vun=V-(Vn-nVe), (1.3)
op+u-Vp=V-(Vp+pVe), (1.4)
Ap=n-p, (1.5)

(u,n,p)(x,0) = (1o, m0,p0) (x), x€R? (d=2,3). (1.6)

The unknowns u, o, ¢, n, and p denote the velocity, pressure, electric potential, anion
concentration, and cation concentration, respectively.
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Equations (1.3)—(1.5) are known as the electrochemical equations [3] or semiconductor
equations [4, 5], and electro-rheological systems [2, 6] when formally setting u = 0. (1.1) and
(1.2) are Navier-Stokes equations with the Lorentz force A¢V¢.

The uniqueness of weak solutions to the Navier-Stokes equations is still open. In 1962,
Serrin [7] gave the first uniqueness condition:

ueU(o,T;LS<R3)> with§+§:1, 3<s<oo. (1.7)

Kozono and Taniuchi [8] proved the following uniqueness criterion:
uel? (o, T; BMO(IR{3>>. (1.8)

Here BMO denotes the functions of bounded mean oscillation. Ogawa and Taniuchi [9] ob-
tained the uniqueness criterion:

Vue LLogL(o, T;BY <R3>> (1.9)

with

0
00,00

LLogL(O,T;Bgom> = {f, J‘OT A1l 5 log<e + ||f||ng>dt < oo}. (1.10)

Here it should be noted that Kozono et al. [10] proved that u is smooth if
vue L'(0,T; B, . (R%)). (1.11)

Here BY, , is the homogeneous Besov space.

Kurokiba and Ogawa [4] considered the semiconductor equations (1.3)-(1.5) when
u = 0 and proved that the existence and uniqueness of weak solutions with L? initial data
(no,po) whenp = (d/2)(d>3)and 1 <p <2 (d=2).

Note that the system (1.1)-(1.5) holds its form under the scaling (u, o, ¢, n,p) —
(uy, 7y, P, ma, pa) = (Au, A2, ¢, A\%n, A2p) (A*t, Ax). Under this scaling, the space L"(0,T; L?)
is invariant for u when 2/7 + d/s = 1 and the space L"(0,T; L?) is invariant for (n, p) when
2/r +d/s = 2. Furthermore, L% for uy and L%? for (ng,po) are invariant spaces under this
scaling. Fan and Gao [11], Ryham [12], and Schmuck [13] proved the existence, uniqueness,
and regularity of global weak solutions to system (1.1)—(1.6) in a bounded domain €. When
Q = R4, Jerome [14] established the first existence result in Kato’s semigroup framework.
Zhao et al. [15] obtained global well-posedness for small initial data in Besov spaces with
negative index.

The aim of this paper is to generalize the results of [4, 9]. We will prove the following
results.
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Theorem 1.1. Let (ng, po) € L'(R?) N Llog L(R?), ng, po > 0in R?, [ngdx = [podx, Vo € L?,
and uy € L2. Then there exists a unique weak solution (u,n, p, ¢) to the problem (1.1)—(1.6) satisfying

(n,p) € L*(0,T; L' nLlog L) N L?(0,T; L*) N L*3(0, T, W'*/3), n,p>0in R?>x (0,T)
(0, 0ip) € L¥3(0, T; W~14/3),
V¢ € L=(0,T; L*) nL*(0,T; H') nL*(0,T; L*),
ueL*(0,T;L?)nL>(0,T; H') n L*(0,T; L*),
o € LY3(0,T;H™Y) forany T > 0.
(1.12)

Remark 1.2. We can assume ng—po € #! (Hardy space) and A¢y = ng—po gives Vo € L2(R?).

Theorem 1.3 (d = 3). Let (ng,po) € L*? ng,po > 0in R, [nodx = [podx, and uy € L.
Suppose that (1.9) holds true, then there exists a unique weak solution (u,n,p, ) to the problem
(1.1)—(1.6) satisfying

(n®/4,p¥*) € L*(0,T; L*) nL?(0,T; H'), n,p>0inR3x (0,T),
(n,p) € L*(0,T;L¥?) nL%2(0,T; L52) n L>3(0, T; W'*/3) n L*(0, T; L?),
(8, dp) € L¥3(0, T; W13/2),

Ve € L*(0,T; W3/2) n L32(0, T, W'P/2),

V$ € L*(0,T; L%) nL52(0,T; L"),
uel*(0,T;L>)nL*(0,T;H'),  dm e L?(0,T; W?/2)

(1.13)

forany T > 0.

Letn;,j=0,41,42,43, ..., be the Littlewood-Paley dyadic decomposition of unity that
satisfies 77 € C° (B2 \ B1/2),1j(¢) = 7(277¢), and Z;’Z_w 7j(&) = 1 except ¢ = 0. To fill the origin,
we put a smooth cut off ¢ € S(R3) with ¢ (¢) € C{(B1) such that

¢+§7(§) =1 (1.14)

The homogeneous Besov space Bi‘;’q ={feS:|fl B, < oo} is introduced by the norm

1/q
1 > ) (1.15)
Lr
forseR,1<p,q< .

It is easy to prove the existence of weak solutions [14] and thus we omit the details
here; we only need to derive the estimates (1.12) and (1.13) and prove the uniqueness.

2°n; * f

1y, = <i |
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2. Proof of Theorem 1.1

First, by the maximum principle, it is easy to prove that
n,p>0 in R x (0, 00). (2.1)

Testing (1.3) by 1 + logn and testing (1.4) by 1 + logp, respectively, using (1.2),
summing up the resulting equality, we obtain

T T
jnlogn+plogpdx+4f J‘|V\/ﬁ|2 + |V\/ﬁ|2dxdt+f J‘|A¢|2dxdt
0 0

(2.2)
= I np log ny + po log podx.
Substracting (1.4) from (1.3), we see that
o(n-p)+u-Vin-p)=V-(V(n-p) - (n+p)Ve). (2.3)
Testing the above equation by —¢, using (1.5) and (2.1), we see that
1d 2 2 2
57 |[Vo|"dx—|u-VAP-pdx+ | |Ap| dx+ | (n+p)|VP| dx =0. (2.4)
Whence
1d 2 2 2
T |[Vo| dx+ | uApVpdx + | |Ap| dx+ | (n+p)|V| dx=0. (2.5)
Testing (1.1) by u, using (1.2), we find that
1d( , 2
S | ¢ dx+ | |Vu|"dx = | uApVedx. (2.6)
Summing up (2.5) and (2.6), we get
1d 2 2 2 2 2 _
ik +|Ve| dx+ | [Vul” + |Ad|" + (n+p)| V| dx =0, (2.7)

whence

T
%J 24 |V¢|2dx+J‘ I|Vu|2+ |Ag)* + (n+p)| V| dx dt < %Iu§+ |Vgo|*dx.  (28)
0
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Integrating (1.3) and (1.4), we have

ndx = |nydx =|pydx = dx. (2.9)
Jre fruae= e [y

Using the Gagliardo-Nirenberg inequality,

l[ulls < Cllull ol Vel 2, (2.10)
we deduce that
||u”L4(0,T;L4) <C (2.11)
||v¢”L4(0,T;L4) <G (212)
It P || 207,02y < € (2.13)

Since Vn =2V/n-+/n,Vy/n € L*(0,T; L?),/n € L*(0,T; L*), we easily infer that
Vn e [4/3 (0, T; L4/3), (2.14)
by the Holder inequality. Similarly, we have
Vp e L43 (o, T; L4/3>. (2.15)
It is easy to show that
(@m,0p) € LY*(0,T;W47), due L*(0,T;H™). (2.16)

Now we are in a position to prove the uniqueness. Let (u;, 713, n;, pi, i) (i = 1,2) be two weak
solutions to the problem (1.1)-(1.6). Also let us denote

U:=1u — Uy, Jr 1= Jr — Iy, n:=mn —Mny, pi=pi—p2 ¢ =1 — Py
(2.17)
We define N and P satisfying the following equations:
~AN + N =n in R% x (0,0), (2.18)

~AP+ P =p in R x (0, 0). (2.19)
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It is easy to verify that

om+ V- (umn+un)=An-V-(nVp1 +nVe), (2.20)
op+ V- (wmp+upy) =Ap+ V- (pV1 +p2V), (2.21)

o(n-p)+ V- (um(n-p)+u(ma—p2)) =A(n-p) - V- ((n+p)Vd1+ (n2+p2) V).
(2.22)

Testing (2.20) by N, we derive

%% INZ +|VN]dx + f |[VN|* + |AN| dx
(2.23)
= I”V‘i’l VN +mVPVN + uynVN +un,VN dx =t L1 + [ + I + I4.

Using (2.10), (2.18) and (2.19), each term I; (i = 1,2,3,4) can be bounded as follows:

I < AN || VPl IV N s + NN || V|| IV N 2

< CIAN| || V1 || LNVNIZIANIGL + Cl Ve || L IN

1
< IANIE: + CIIV LIV NI + ClIVi [ L IN,
L < [l || V[l IV

< a2 | V|7 + lImall 2 IVN 2,
< Cllmall2 [Vl 2| A 2 + Clinall 2 I VN2 | AN

1 1
< 519115 + I ANIE: + Climalif (V97 + IVNIE:),
(2.24)
I < 52| AN 52 [ VN .

< Cllurll | ANl IV N2 AN 22
1
< 15 IANIE + Cllaull IV NI,

Iy

IN

[[722| 2 ]l |V N |
2 2
< limall 2 llullzs + [ln2ll 21V N7

< Cllnal|pz llull 2 Vel 2 + Clinall 2 IV N 2 [ ANl 2

1 1
< T lIValli: + T IANIE: + Clinallf: (i + 1N )-
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Substituting these estimates into (2.23), we obtain

1d 2 2 1 2 2
Zdth +|VN| dx+2J|VN| +|ANP dx
<C(Ivgill3s + Mmallfs + laarlifs + 1) (INIZ: + VNI + Jual + [| 9172

1 2 1 2
+ 1Al + gl Vullze.
Similarly for the p-equation, we get

1d 2 2 1 2 2
3 | P19 g [ 1901+ |apl ax
< (vl + lpale + sl + ) (Ul + 1917 + e + [117-)

1 2 1
+ E”Ad)”LZ + EHV””iZ-

Testing (2.22) by —¢, using (1.5), we deduce that

%% f |Vo|* dx + f |Ag|? dx
= —J‘(n +p)VPi1 VP + (np + pz)(Vd))z +u APV P +u(ny —p2) Vo dx
=i+ + 3+ s

(2.25)

(2.26)

(2.27)

Using (2.10), (2.18), and (2.19), each term J; (i = 1,2,3,4) can be bounded as follows:

N ln+pll Vel IVl s

< C(IAN + AP + NIl + IP) |Vl VB2 | A 1122
1 1
< 15l ANIE + 5 IAPIE + CINIE + CIIP
1 2 4 2
+ 1512l + ClUVA LIVl

]2 SO/
Js < Nwallps [ A || 2 [ V| 1o
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< Cllunlps | A1, |9 l12* A1,
1
< = [1Ag |15 + Cllm 11| V4117,

Ja < Ml ||z = pal| 2 V| o

<l + pall ol + fla + poll | V117

< Cllnz + po| el 21 Vullzz + Clina + pal| 2 |V |- [ A 2

1 1 2 2 2
< gl Vulliz + g ABIIZ: + Clinz + pa 7 (Iul: + V917 )-

(2.28)
Substituting these estimates into (2.27), we have
1d 2 1 2
s A
2dtj|v¢| dx+2f| oI dx
4 4 2 2 2 2 2
<C(IVeuls + Marlifs + llma + pall7 + 1) (lhal: + V@I + INIE: + I1PI:)
1 2 1 2 1 2
+ IANIE: + S IAPIE + | Vul..
(2.29)
It is easy to find that u satisfies
Ou+uy - Vu+u-Vu, +Vor — Au= AdVdr + AgaV . (2.30)
Testing this equation by u, using (1.2), we have
1
5% uzdx+f|Vu|2dx = J‘A¢V¢1u+ APV -u—u-Vuy -udx = €+ €, + 5.
(2.31)

Using (2.10), each term ¢; (i = 1,2,3) can be bounded as follows:

G < (A [V Pl s luell s

< Cll Al IV [l alluall 221 Vell 23
1 1 .
< sglA011E + 351Vl + VLl

& < (| Aga| 2 1V D s laell s
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< Cllaga | [ VI [ AGI 2 Nlly V2l 22
1 2 1 2 2
< 8 + g IVulli: + Cllagal|Z (lulli: + [ 99]17).
Zggfu-Vu~u1dx

< leallpall Vel 2 floea [ o

1/2)19,,13/2
< Cllull 21V ul[ 2" e[l o

1
—SIIVuIILz + Clluaa [l -
(2.32)
Substituting these estimates into (2.31), we have
1
5% Juz dx + f |Vul* dx
(2.33)

1
< SNagllT+ (1Tl + 1 agallzs + el ) (el + [ 917 )-

Combining (2.25), (2.26), (2.29), and (2.33), using (2.8), (2.11), (2.12), (2.13), and the
Gronwall inequality, we conclude that

N=P=0, u=0, V¢ =0, (2.34)
and thus

n=p=0. (2.35)

This completes the proof.

3. Proof of Theorem 1.3

By the same calculations as that in [11], we can prove (1.13) and thus we omit the details
here.

Now we are in a position to prove the uniqueness. We still use the same notations as
that in Section 2, and similarly we get (2.23). But each term I; (i = 1,2,3,4) can be bounded
as follows:

L < IANI IV N s [V | s + N el V[l 51V N2

< CIANII: VN2 IAN2 | Vi s + CUV N, 3.1)

1 5/2
< gIIANIL + C[| V1[I /5 IVNIIE: + CIVNIE,
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by the Gagliardo-Nirenberg inequality,

IV NIl < CIVNP|ANTS,

L <ol 2|V o IVNl 5
< Cllnall 2 || A | LIIVNA AN (32)
< Cl[na|l 2ll-AN + N + AP - P|| || VN1 | AN][}42

1 1
< EIIANIIiz + EIIAPIIiz + CIIN|7: + CIIPIZ: + Clinall VN2

by the Gagliardo-Nirenberg inequality,

IVNII7: < CIVNI AN 2,

(3.3)

Iz = IuanNdx = —IulANVNdx.

Now we decompose u; into three parts in the phase variable:

M
up= LM kUL D AU DA Rl
j<M j=—M >M (3.4)
=ub +ul" +ull.
Thus
I =- f u{ANVN dx + )" f oul" - 9;NVN dx — Ju?ANVN dx

i (3.5)

=: 131 + 132 + 133.

Recalling the Bernstein inequality,

Iy *ll o < C2YPV D x|, 1<p<q<oo, (3.6)
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the low-frequency part is estimated as

Iy < |VN| | AN |2 |[uf

I3

< CIANIG: > 272 |lnj* ]l .
j<—M

1/2 1/2 (3 7)
< C||AN||iz< > 2f> < > ln *ullliz> '
j<-M j=—

< C2M2|| AN, ||us |12

< C2"M2|| AN3.

The second term can be bounded as follows:

I < Z”ail\r”LZ”VZ\T”LZ”ai”T”Lcm
i

< CIVNI|3: Ve -
(3.8)

M
<CIVNIZ 3 [lmj* V| ..
j=—M

< CM||VNI[Z. )V llgo, -

On the other hand, the last term is simply bounded by the Hausdorff-Young inequality
as

I35 < [[AN]|2[[VN]|}2

< IANIEIVN X [[{ ) 200+ my+ mpa) oy x (<8) |
>M

< CIANI VNI 327 [y * (-2) 2 |
2 (3.9)

<ClIAN||2IVNIl2 D27 [V lgo,
j>M

< C27M|| AN VN ol Va1,

< C2M|VN|LI Vg +C2M|AN|Z..
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Choosing M properly large so that C2M/2 <1/36 and C27M||Vuy ||y <1, we reach

1
I3 < SIANIE: + CIVNIE: [ Vurllgy  (1+1og(e+ [ Vulys ),
Iy < sl IV N

(3.10)

1/2 1/2
< ClIVullzln2ll I VNI AN

1 2 1 2 4 2
< gl ANIL: + g5l Vullza + Clinll VNI
Substituting the above estimates into (2.23), we obtain

1d 2 2 1 2 2
2dtJ‘N +|VN] dx+2f|v1\r| +|ANPdx

<1917 + 1+ Imalif2) (INIE: + IPIE + 1V NIE.) )
3.11

+ CIVNI 1 Vaurllgg,, (1 +log (e + | Vautllgy. ) )

Lapie o L ol
+ I APIE + I Vul..

Similarly for the p-equation, we have

1d

1a 2 2 2
5 | P2+1VP dx+f|VP| +|APP dx

<C(IvgiI752 + 1+ [Ipally ) (INIE: + IPIE + IV PIE. ) |
(3.12

+ CIVPI NIVl (1 +1log (e + | Vaullgy )

(NI G
+ I AN + I Vull.

As in Section 2, we still have (2.31). But each term ¢; (i = 1,2,3) can be bounded as
follows:

O < |Vl s AP 2 el rons

<ClIVill s ANz + AP 2 + [Nz + 1Pl ) el 27 Vall 2

1 1 (3.13)
< I AN|Z + — [|AP|2, + C|IN|2, + C||P|%,
18 18
1 5/2
+ | Vullg: +Cl| Vb |17 ullF2,
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by the Gagliardo-Nirenberg inequality,

el o < Cllull22 Va2,
& < ||Aga|| [Vl ellull o

< Cllagal 1 API L ull 221 T ull 22

< Cl|Agal 2 (IANTlp2 + [|AP] 2 + NIz + [|Pllg) [ull 2Vl 22 (3.14)

1 2 1 2 2 2
< EIIANlle + EIIAPIILz + C[IN|l72 + Cl|P|]}2
1 2 40
+ E”V””LZ + C”A‘i’ZHLZH””LZr
by the Gagliardo-Nirenberg inequality
35 < Cllall 2| V] 2. (3.15)
By the similar calculations as that of I3, ¢3 can be bounded as follows:

1
€3<—

< gl Vulli: + CllulifaVaurlly, , (1 +log (e + [ Vaall ) )- (3.16)

Substituting the above estimates into (2.31), we have

fuz dx + %J|Vu|2 dx

NI =
SIS

1
< GIANIL + GIAPIL + CINIZ + CIIPIE

O =

(3.17)
+ (IVu172 + [l Adally: ) el

+ Cllull 3211V llgg,, (1+10g (e + IVanllgg,, ) ).

Combining (3.11), (3.12), and (3.17), using (1.13) and the Gronwall inequality, we
arrive at

N=P=0, u=0, (3.18)

as thus
n=p=0, V¢ =0. (3.19)

This completes the proof.
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