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This paper presents some constrainedC0 finite element approximationmethods for the biharmonic
problem, which include the C0 symmetric interior penalty method, the C0 nonsymmetric interior
penalty method, and the C0 nonsymmetric superpenalty method. In the finite element spaces, the
C1 continuity across the interelement boundaries is obtained weakly by the constrained condition.
For the C0 symmetric interior penalty method, the optimal error estimates in the broken H2 norm
and in the L2 norm are derived. However, for the C0 nonsymmetric interior penalty method,
the error estimate in the broken H2 norm is optimal and the error estimate in the L2 norm is
suboptimal because of the lack of adjoint consistency. To obtain the optimal L2 error estimate, the
C0 nonsymmetric superpenalty method is introduced and the optimal L2 error estimate is derived.

1. Introduction

The discontinuous Galerkin methods (DGMs) have become a popular method to deal with
the partial differential equations, especially for nonlinear hyperbolic problem, which exists
the discontinuous solution evenwhen the data is well smooth, and the convection-dominated
diffusion problem, and the advection-diffusion problem. For the second-order elliptic
problem, according to the different numerical fluxes, there exist different discontinuous
Galerkin methods, such as the interior penalty method (IP), the nonsymmetric interior
penalty method (NIPG), and local discontinuous Galerkin method (LDG). A unified analysis
of discontinuous Galerkinmethods for the second-order elliptic problem is studied byArnold
et al. in [1].

The DGM for the fourth-order elliptic problem can be traced back to 1970s. Baker in
[2] used the IP method to study the biharmonic problem and obtained the optimal error
estimates. Moreover, for IP method, the C0 and C1 continuity can be achieved weakly by
the interior penalty. Recently, using IP method and NIPG method, Süli and Mozolevski in
[3–5] studied the hp-version DGM for the biharmonic problem, where the error estimates
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are optimal with respect to the mesh size h and are suboptimal with respect to the degree
of the piecewise polynomial approximation p. However, we observe that the bilinear forms
and the norms corresponding to the IP method in [3–5] are much complicated. A method to
simplify the bilinear forms and the norms is using C0 interior penalty method. C0 interior
penalty method for the biharmonic problem was introduced by Babuška and Zlámal in [6],
where they used the nonconforming element and considered the inconsistent formulation
and obtained the suboptimal error estimate. Motivated by the Engel and his collaborators’
work [7], Brenner and Sung in [8] studied the C0 interior penalty method for fourth-order
problem on polygonal domains. They used the C0 finite element solution to approximate C1

solution by a postprocessing procedure, and the C1 continuity can be achieved weakly by the
penalty on the jump of the normal derivatives on the interelement boundaries.

In this paper, thanks to Rivière et al.’s idea in [9], we will study some constrained
C0 finite element approximation methods for the biharmonic problem. The C1 continuity
can be weakly achieved by a constrained condition that integrating the jump of the normal
derivatives over the inter-element boundaries vanish. Under this constrained condition, we
discuss three C0 finite element methods which include the C0 symmetric interior penalty
method based on the symmetric bilinear form, the C0 nonsymmetric interior penalty method,
and C0 nonsymmetric superpenalty method based on the nonsymmetric bilinear forms. First,
we study the C0 symmetric interior penalty method and obtain the optimal error estimates
in the broken H2 norm and in L2 norm. However, for the C0 nonsymmetric interior penalty
method, the L2 norm is suboptimal because of the lack of adjoint consistency. Finally, in order
to improve the order of the L2 error estimate, we give the C0 nonsymmetric superpenalty
method and show the optimal L2 error estimates.

2. C0 Finite Element Approximation

Let Ω ⊂ R
2 be a bounded and convex domain with boundary ∂Ω. Consider the following

biharmonic problem:

Δ2u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(2.1)

where n denotes the unit external normal vector to ∂Ω. We assume that f is sufficiently
smooth such that the problem (2.1) admits a unique solution u ∈ H4(Ω) ∩H2

0(Ω).
Let Th be a family of nondegenerate triangular partition of Ω into triangles. The

corresponding ordered triangles are denoted by K1, K2, . . . , KN . Let hi = diam (Ki), i =
1, . . . ,N, and h = max{h1, h2, . . . , hN}. The nondegenerate requirement is that there exists
ρ > 0 such thatKi contains a ball of radius ρhi in its interior. Conventionally, the boundary of
Ki is denoted by ∂Ki. We denote

eij = ∂Ki ∩ ∂Kj, ei = ∂Ki ∩ ∂Ω, heij = diam
(
eij
)
, hei = diam(ei). (2.2)

Assume that the partition Th is quasiuniform; that is, there exists a positive constant ν
such that

h � νhi, i = 1, . . . ,N. (2.3)
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Let EI and EB be the set of interior edges and boundary edges of Th, respectively. Let E =
EI ∪ EB. Denote by vi the restriction of v to Ki. Let e = eij ∈ EI with i > j. Then we denote the
jump [v] and the average {v} of v on e by

[v]|e = vi
∣
∣
∣
e
−vj
∣
∣
∣
e
, {v}|e =

1
2

(
vi
∣
∣
∣
e
+vj
∣
∣
∣
e

)
. (2.4)

If e = ei ∈ EB, we denote [v] and {v} of v on e by

[v]|e = {v}|e = vi
∣
∣
∣
e
. (2.5)

Define V by

V =
{
v ∈ H1

0(Ω), v|K ∈ Hs(K), ∀K ∈ Th

}
, s � 3 (2.6)

with broken Hs norm

‖|v|‖s =
(
∑

K∈Th

‖v‖2s,K

)1/2

, ∀v ∈ V, (2.7)

where || · ||s,K is the standard Sobolev norm inHs(K). Define the broken H2 norm by

‖v‖h =

(
∑

K∈Th

|v|22,K

)1/2

, ∀v ∈ V, (2.8)

where | · |2,K is the seminorm in H2(K).
For every K ∈ Th and any v ∈ V , we apply the integration by parts formula to obtain

∫

K

(
Δ2u
)
vdx = −

∫

K

∇(Δu) · ∇vdx +
∫

∂K

∂Δu

∂n
vds

=
∫

K

ΔuΔvdx −
∫

∂K

Δu
∂v

∂n
ds +
∫

∂K

∂Δu

∂n
vds.

(2.9)

Summing all K ∈ Th, we have

∑

K∈Th

∫

K

ΔuΔvdx −
∑

e∈EI

∫

e

{Δu}
[
∂v

∂n

]
+ [Δu]

{
∂v

∂n

}
ds +

∑

e∈EI

∫

e

[
∂Δu

∂n

]
{v}

+
{
∂Δu

∂n

}
[v]ds −

∫

∂Ω
Δu

∂v

∂n
ds =

∫

Ω
fvdx.

(2.10)
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Since u ∈ H4(Ω) ∩H2
0(Ω) and v ∈ V , then [Δu] = [∂Δu/∂n] = [v] = 0 on e ∈ EI . Thus, the

previous identity can be simplified as follows:

∑

K∈Th

∫

K

ΔuΔvdx −
∑

e∈EI

∫

e

{Δu}
[
∂v

∂n

]
ds −
∫

∂Ω
Δu

∂v

∂n
ds =

∫

Ω
fvdx. (2.11)

Now, we introduce the following two bilinear forms:

aS(u, v) =
∑

K∈Th

∫

K

ΔuΔvdx −
∑

e∈E

∫

e

{Δu}
[
∂v

∂n

]
ds −
∑

e∈E

∫

e

{Δv}
[
∂u

∂n

]
ds

+
∑

e∈E

β

he

∫

e

[
∂u

∂n

][
∂v

∂n

]
ds,

aNS(u, v) =
∑

K∈Th

∫

K

ΔuΔvdx −
∑

e∈E

∫

e

{Δu}
[
∂v

∂n

]
ds +
∑

e∈E

∫

e

{Δv}
[
∂u

∂n

]
ds

+
∑

e∈E

1
he

∫

e

[
∂u

∂n

][
∂v

∂n

]
ds.

(2.12)

It is clear that aS(·, ·) is a symmetric bilinear form and aNS(·, ·) is a nonsymmetric bilinear
form. In terms of (2.11) and

∑

e∈EI

∫

e

{Δv}
[
∂u

∂n

]
ds +
∫

∂Ω
Δv

∂u

∂n
ds = 0, (2.13)

the solution u to problem (2.1) satisfies the following variational problems:

aS(u, v) =
(
f, v
)
, ∀v ∈ V, (SP)

aNS(u, v) =
(
f, v
)
, ∀v ∈ V. (NSP)

Let Pr(K) denote the space of the polynomials on K of degree at most r. Define the
following constrained C0 finite element space:

Vh =
{
vh ∈ H1

0(Ω), vh|K ∈ Pr(K), r � 4, ∀K ∈ Th,

∫

e

[
∂vh

∂n

]
ds = 0, ∀e ∈ E

}
, (2.14)

from which we note that the C1 continuity of vh ∈ Vh can be weakly achieved by the
constrained condition

∫
e[∂vh/∂n]ds = 0 for all e ∈ E. Next, we define the degrees of freedom

for this finite element space. To this end, for any K ∈ Th, denote by pi (i = 1, 2, 3) the three
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vertices of K. Recall that the degrees of freedom of Lagrange element on K are v(p), for all
p ∈ C′ with (cf. [10])

C′ :=

⎧
⎨

⎩
p =

3∑

j=1

λjpj ;
3∑

j=1

λj = 1, λj ∈
{
0,

1
r
, . . . ,

r − 1
r

, 1
}
, 1 � j � 3

⎫
⎬

⎭
. (2.15)

Then we modify the degrees of freedom of Lagrange element to suit the constraint of normal
derivatives over the edges in Vh. Specifically speaking, the degrees of freedom of Vh are given
by

v
(
p
)
, ∀p ∈ C with C := C′ \

{
1
r

(
p1 + p2 + p3

)
+
r − 3
r

pi, i = 1, 2, 3
}
,

∫

e

∂v

∂n
ds for each edge e of K.

(2.16)

Based on the symmetric bilinear form aS(·, ·), the C0 symmetric interior penalty finite
element approximation of (2.1) is

find uS
h ∈ Vh such that,

aS

(
uS
h, vh

)
=
(
f, vh

)
, ∀vh ∈ Vh.

(2.17)

Based on the nonsymmetric bilinear form aNS(·, ·), theC0 nonsymmetric interior penalty finite
element approximation of (2.1) is

find uNS
h ∈ Vh such that,

aNS

(
uNS
h , vh

)
=
(
f, vh

)
, ∀vh ∈ Vh.

(2.18)

Moreover, the following orthogonal equations hold:

aS

(
uS
h − u, vh

)
= 0, ∀vh ∈ Vh, (2.19)

aNS

(
uNS
h − u, vh

)
= 0, ∀vh ∈ Vh. (2.20)

In order to introduce a global interpolation operator, we first define φi
h
∈ Pr(Ki) for

φ ∈ Hs(Ki) and Ki ∈ Th according to the degrees of freedom of Vh by

φi
h

(
p
)
= φ
(
p
)
, if p ∈ C \ ∂Ω, φi

h

(
p
)
= 0, if p ∈ C ∩ ∂Ω,

∫

e

∂φi
h

∂n
ds =

∫

e

∂φ

∂n
ds, if edge e ⊂ ∂Ki \ ∂Ω,

∫

e

∂φi
h

∂n
ds = 0, if edge e ⊂ ∂Ki ∩ ∂Ω.

(2.21)
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Due to standard scaling argument and Sobolev embedding theorem (cf. [10]), we have that
for every Ki ∈ Th, e ∈ ∂Ki, φ ∈ Hs(Ki) with s � 2, i = 1, . . . ,N,

∥
∥
∥φ − φi

h

∥
∥
∥
q,Ki

� chμ−q∥∥φ
∥
∥
s,Ki

, 0 � q � μ,

∥
∥
∥φ − φi

h

∥
∥
∥
m,e

� ch
μ−1/2−m
e

∥
∥φ
∥
∥
s,Ki

, m = 0, 1, 2,

∥
∥
∥
∥
∥

[
∂
(
φ − φi

h

)

∂n

]∥∥
∥
∥
∥
0,e

� ch
μ−3/2
e

∥
∥φ
∥
∥
s,Ki

,

(2.22)

where μ = min{s, r + 1} and c > 0 is independent of h. We also suppose that the following
inverse inequalities hold:

∥∥∥φi
h

∥∥∥
0,e

� ch−1/2
e

∥∥∥φi
h

∥∥∥
0,Ki

,
∥∥∥φi

h

∥∥∥
1,e

� ch−1/2
e

∥∥∥φi
h

∥∥∥
1,Ki

,
∥∥∥φi

h

∥∥∥
1,Ki

� ch−1
∥∥∥φi

h

∥∥∥
0,Ki

,

(2.23)

where c > 0 is independent of h. Then for every φ ∈ V , we define the global interpolation
operator Ph : V → Vh by Phφ|Ki = φi

h
. Moreover, from (2.22) there holds

∥∥φ − Phφ
∥∥
h � chμ−2∥∥∣∣φ

∣∣∥∥
s, (2.24)

where c > 0 is independent of h.
The following lemma is useful to establish the existence and uniqueness of the finite

element approximation solution.

Lemma 2.1. There exists some constant κ0 > 0 independent of h such that

κ0‖vh‖2h �
∑

K∈Th

‖Δvh‖20,K +
∑

e∈E

1
he

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e
, ∀vh ∈ Vh. (2.25)

Proof. Introduce aH2
0 conforming finite element spaceZh thanks to Guzmán and Neilan [11].

The advantage of Zh is that the degrees of freedom depend only on the values of functions
and their first derivatives. Denote by Lh the interpolation operator from Vh to Zh. Then there
holds

∑

K∈Th

|vh − Lhvh|22,K � C1

∑

e∈E

1
he

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e
, ∀vh ∈ Vh, (2.26)
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where C1 > 0 is independent of h. Thus, we have

‖vh‖2h �
∑

K∈Th

|vh − Lhvh|22,K +
∑

K∈Th

|Lhvh|22,K � C1

∑

e∈E

1
he

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
+ C2

∑

K∈Th

‖Δ(Lhvh)‖20,K

� C1

∑

e∈E

1
he

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
+ C2

∑

K∈Th

‖Δ(Lhvh − vh)‖20,K + C2

∑

K∈Th

‖Δvh‖20,K

� C1

∑

e∈E

1
he

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
+ C2

∑

K∈Th

|Lhvh − vh|22,K + C2

∑

K∈Th

‖Δvh‖20,K

� C1(1 + C2)
∑

e∈E

1
he

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
+ C2

∑

K∈Th

‖Δvh‖20,K,

(2.27)

which completes the proof of (2.25) with κ0 = 1/max{C1(1 + C2), C2}.

3. C0 Symmetric Interior Penalty Method

In this section, we will show the optimal error estimates in the brokenH2 norm and in the L2

norm between the solution u to problem (2.1) and the solution uS
h to the problem (2.17). First,

concerning the symmetric aS(·, ·), we have the following coercive property in Vh.

Lemma 3.1. For sufficiently large β, there exists some constant κ1 > 0 such that

aS(vh, vh) � κ1‖vh‖2h, ∀vh ∈ Vh. (3.1)

Proof. According to the definition of aS(·, ·), we have

aS(vh, vh) =
∑

K∈Th

∫

K

|Δvh|2dx − 2
∑

e∈E

∫

e

{Δvh}
[
∂vh

∂n

]
ds +
∑

e∈E

β

he

∫

e

∣∣∣∣

[
∂vh

∂n

]∣∣∣∣

2

ds. (3.2)

Using the Hölder’s inequality and the Young’s inequality, we have

∑

e∈E

∫

e

{Δvh}
[
∂vh

∂n

]
ds �

(
∑

e∈E
he‖{Δvh}‖20,e

)1/2(∑

e∈E
h−1
e

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)1/2

� c

(
∑

K∈Th

‖Δvh‖20,K

)1/2(∑

e∈E
h−1
e

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)1/2

� ε
∑

K∈Th

‖Δvh‖20,K + cε−1
∑

e∈E
h−1
e

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e
,

(3.3)
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where c > 0 is independent of h and ε > 0 is a sufficiently small constant. Thus

aS(vh, vh) �
∑

K∈Th

‖Δvh‖20,K − 2ε
∑

K∈Th

‖Δvh‖20,K − cε−1
∑

e∈E
h−1
e

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e

+
∑

e∈E

β

he

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
ds.

(3.4)

Taking ε = 1/4, then, for sufficiently large β such that β > 4c, using (2.25)we have

aS(vh, vh) � 1
2

∑

K∈Th

‖Δvh‖20,K +
(
β − 4c

)∑

e∈E
h−1
e

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e
� κ1‖vh‖2h, (3.5)

with κ1 = min{1/2, β − 4c}κ0.

A direct result of Lemma 3.1 is that the discretized problem (2.17) admits a unique
solution uS

h
∈ Vh for sufficiently large β.

Lemma 3.2. For all φ ∈ V , there holds

aS

(
φ − Phφ, vh

)
� chμ−2‖vh‖h

∥∥∣∣φ
∣∣∥∥

s, ∀vh ∈ Vh, (3.6)

where μ = min{s, r + 1} and c > 0 is independent of h.

Proof. For all φ ∈ V and vh ∈ Vh, we have

aS

(
φ − Phφ, vh

)
=
∑

K∈Th

∫

K

Δ
(
φ − Phφ

)
Δvhdx −

∑

e∈E

∫

e

{
Δ
(
φ − Phφ

)}
[
∂vh

∂n

]
ds

−
∑

e∈E

∫

e

{Δvh}
[
∂
(
φ − Phφ

)

∂n

]

ds +
∑

e∈E

β

he

∫

e

[
∂
(
φ − Phφ

)

∂n

][
∂vh

∂n

]
ds

�
∥∥φ − Phφ

∥∥
h‖vh‖h +

(
∑

e∈E

∥∥{Δ
(
φ − Phφ

)}∥∥2
0,e

)1/2(∑

e∈E

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)1/2

+

(
∑

e∈E
he‖{Δvh}‖20,e

)1/2
⎛

⎝
∑

e∈E
h−1
e

∥∥∥∥∥

[
∂
(
φ − Phφ

)

∂n

]∥∥∥∥∥

2

0,e

⎞

⎠

1/2

+ c

⎛

⎝
∑

e∈E
h−2
e

∥∥∥∥∥

[
∂
(
φ − Phφ

)

∂n

]∥∥∥∥∥

2

0,e

⎞

⎠

1/2(
∑

e∈E

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)1/2

,

(3.7)
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where c > 0 is independent of h. Note that
∫
e[(∂vh)/∂n]ds = 0 for e ∈ E. Thus, for some

constant Ce depending on e there holds

∫

e

∣
∣
∣
∣

[
∂vh

∂n

]∣∣
∣
∣

2

ds =
∫

e

[
∂vh

∂n

][
∂vh

∂n
− Ce

]
ds �

(∫

e

∣
∣
∣
∣

[
∂vh

∂n

]∣∣
∣
∣

2

ds

)1/2(∫

e

∣
∣
∣
∣

[
∂vh

∂n
− Ce

]∣∣
∣
∣

2

ds

)1/2

.

(3.8)

That is

∫

e

∣
∣
∣
∣

[
∂vh

∂n

]∣∣
∣
∣

2

ds �
∫

e

∣
∣
∣
∣

[
∂vh

∂n
− Ce

]∣∣
∣
∣

2

ds. (3.9)

From [9], we have

∥∥∥∥

[
∂vh

∂n
− Ce

]∥∥∥∥
0,e

� ch1/2|vh|2,K, (3.10)

where c > 0 is independent of h. Thus

(
∑

e∈E

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)1/2

� ch1/2‖vh‖h. (3.11)

Substituting (3.11) into (3.7) and using (2.22)-(2.23) give

aS

(
φ − Phφ, vh

)
�
∥∥φ − Phφ

∥∥
h‖vh‖h + ch1/2

(
∑

e∈E

∥∥{Δ
(
φ − Phφ

)}∥∥2
0,e

)1/2

‖vh‖h

+ c

⎛

⎝
∑

e∈E
h−1
e

∥∥∥∥∥

[
∂
(
φ − Phφ

)

∂n

]∥∥∥∥∥

2

0,e

⎞

⎠

1/2

‖vh‖h

+ ch1/2

⎛

⎝
∑

e∈E
h−2
e

∥∥∥∥∥

[
∂
(
φ − Phφ

)

∂n

]∥∥∥∥∥

2

0,e

⎞

⎠

1/2

‖vh‖h � chμ−2∥∥∣∣φ
∣∣∥∥

s‖vh‖h.

(3.12)

Theorem 3.3. Suppose that u ∈ V and uS
h
∈ Vh are the solutions to problems (SP) and (2.17),

respectively; then the following optimal brokenH2 error estimate holds:

∥∥∥u − uS
h

∥∥∥
h

� chμ−2‖|u|‖s, (3.13)

where μ = min{s, r + 1} and c > 0 is independent of h.
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Proof. According to Lemma 3.1, we have

κ1

∥
∥
∥Phu − uS

h

∥
∥
∥
2

h
� aS

(
Phu − uS

h, Phu − uS
h

)
= aS

(
Phu − u, Phu − uS

h

)
+ aS

(
u − uS

h, Phu − uS
h

)

= aS

(
Phu − u, Phu − uS

h

)

� chμ−2‖|u|‖s
∥
∥
∥Phu − uS

h

∥
∥
∥
h
,

(3.14)

where we use the orthogonal equation (2.19) and Lemma 3.2. The previous estimate implies

∥
∥
∥Phu − uS

h

∥
∥
∥
h

� chμ−2‖|u|‖s. (3.15)

Finally, the triangular inequality and (2.24) yield

∥∥∥u − uS
h

∥∥∥
h

� ‖u − Phu‖h +
∥∥∥Phu − uS

h

∥∥∥
h

� chμ−2‖|u|‖s. (3.16)

Next, we will show the optimal L2 error estimate in terms of the duality technique.
Suppose g ∈ L2(Ω) and consider the following biharmonic problem:

Δ2w = g, in Ω,

w =
∂w

∂n
= 0, on ∂Ω.

(3.17)

Suppose that problem (3.17) admits a unique solution w ∈ H2
0(Ω) ∩H4(Ω) such that

‖w‖4 � c
∥∥g
∥∥, (3.18)

where || · ||4 denotes the H4 norm in Ω and || · || denotes the L2 norm in Ω and c > 0 is
independent of h.

Denote by Πh the C1 continuous interpolate operator from V to H2
0(Ω) ∩ Vh, and Πh

satisfies the approximation property (2.22). Then for the solution w ∈ H4(Ω) ∩ H2
0(Ω) to

problem (3.17), there hold

‖w −Πhw‖2 � ch2‖w‖4 � ch2∥∥g
∥∥,

‖w −Πhw‖2,e � ch3/2
e ‖w‖4 � ch3/2

e

∥∥g
∥∥, ∀e ∈ E,

(3.19)

where c > 0 is independent of h.
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Theorem 3.4. Suppose that u ∈ V and uS
h ∈ Vh are the solutions to problems (SP) and (2.17),

respectively; then the following optimal L2 error estimate holds:

∥
∥
∥u − uS

h

∥
∥
∥ � chμ‖|u|‖s, (3.20)

where μ = min{s, r + 1} and c > 0 is independent of h.

Proof. Setting g = u − uS
h
in (3.17), multiplying (3.17) by u − uS

h
, and integrating over Ω, we

have

∥
∥
∥u − uS

h

∥
∥
∥
2
=
∫

Ω

(
Δ2w
)(

u − uS
h

)
dx = aS

(
w,u − uS

h

)
= aS

(
w −Πhw, u − uS

h

)

= aS

(
w −Πhw, Phu − uS

h

)
+ aS(w −Πhw, u − Phu),

(3.21)

where we use the orthogonal equation (2.19). We estimate two terms in the right-hand side
of (3.21) as follows:

aS

(
w −Πhw, Phu − uS

h

)

=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
Phu − uS

h

)
dx −

∑

e∈E

∫

e

{Δ(w −Πhw)}
[
∂
(
Phu − uS

h

)

∂n

]

ds

−
∑

e∈E

∫

e

{
Δ
(
Phu − uS

h

)}[∂(w −Πhw)
∂n

]
ds +
∑

e∈E

β

he

∫

e

[
∂(w −Πhw)

∂n

][
∂
(
Phu − uS

h

)

∂n

]

ds

=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
Phu − uS

h

)
dx −

∑

e∈E

∫

e

{Δ(w −Πhw)}
[
∂
(
Phu − uS

h

)

∂n

]

ds

� ‖w −Πhw‖2
∥∥∥Phu − uS

h

∥∥∥
h
+

(
∑

e∈E
‖w −Πhw‖22,e

)1/2(∑

e∈E

∥∥∥Phu − uS
h

∥∥∥
2

1,e

)1/2

� ch2
∥∥∥Phu − uS

h

∥∥∥
h

∥∥∥u − uS
h

∥∥∥ � chμ‖|u|‖s
∥∥∥u − uS

h

∥∥∥,

(3.22)

where we use the estimate (3.15). In terms of the inequalities (2.22)-(2.23), we have

aS(w −Πhw, u − Phu)

=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ(u − Phu)dx −
∑

e∈E

∫

e

{Δ(w −Πhw)}
[
∂(u − Phu)

∂n

]
ds

−
∑

e∈E

∫

e

{Δ(u − Phu)}
[
∂(w −Πhw)

∂n

]
ds +
∑

e∈E

β

he

∫

e

[
∂(w −Πhw)

∂n

][
∂(u − Phu)

∂n

]
ds
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=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ(u − Phu)dx −
∑

e∈E

∫

e

{Δ(w −Πhw)}
[
∂(u − Phu)

∂n

]
ds

� ‖w − Phw‖2‖u − Phu‖h +
(
∑

e∈E
‖w −Πhw‖22,e

)1/2(∑

e∈E

∥∥
∥
∥

[
∂(u − Phu)

∂n

]∥∥
∥
∥

2

0,e

)1/2

� chμ‖|u|‖s
∥
∥
∥u − uS

h

∥
∥
∥.

(3.23)

Substituting the estimates (3.22)-(3.23) into (3.21) yields

∥
∥
∥u − uS

h

∥
∥
∥ � chμ‖|u|‖s. (3.24)

4. C0 Nonsymmetric Interior Penalty Method

In this section, we will show the error estimates in the broken H2 norm and in L2 norm
between the solution u to problem (2.1) and the solution uNS

h to the problem (2.18). The
optimal broken H2 error estimate is derived. However, the L2 error estimate is suboptimal
because of the lack of adjoint consistency. According to Lemma 2.1, we have

aNS(vh, vh) � κ0‖vh‖2h, ∀vh ∈ Vh. (4.1)

Moreover, for the nonsymmetric bilinear form aNS(·, ·), proceeding as in the proof of
Lemma 3.2, we have the following lemma.

Lemma 4.1. For all φ ∈ V , there holds

aNS
(
φ − Phφ, vh

)
� chμ−2‖vh‖h

∥∥∣∣φ
∣∣∥∥

s, ∀vh ∈ Vh, (4.2)

where μ = min{s, r + 1} and c > 0 is independent of h.

Theorem 4.2. Suppose that u ∈ V and uNS
h

∈ Vh are the solutions to problems (NSP) and (2.18),
respectively; then there holds

∥∥∥u − uNS
h

∥∥∥
h

� chμ−2‖|u|‖s, (4.3)

where μ = min{s, r + 1} and c > 0 is independent of h.
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Proof. According to (2.20), (4.1), and Lemma 4.1, we have

κ0

∥
∥
∥Phu − uNS

h

∥
∥
∥
2

h
� aNS

(
Phu − uNS

h , Phu − uNS
h

)

= aNS

(
Phu − u, Phu − uNS

h

)
+ aNS

(
u − uNS

h , Phu − uNS
h

)

= aNS

(
Phu − u, Phu − uNS

h

)
� chμ−2‖|u|‖s

∥
∥
∥Phu − uNS

h

∥
∥
∥
h
,

(4.4)

where c > 0 is independent of h. That is

∥
∥
∥Phu − uNS

h

∥
∥
∥
h

� chμ−2‖|u|‖s. (4.5)

Using the triangular inequality yields

∥∥∥u − uNS
h

∥∥∥
h

� ‖u − Phu‖h +
∥∥∥Phu − uNS

h

∥∥∥
h

� chμ−2‖|u|‖s. (4.6)

Theorem 4.3. Suppose that u ∈ V and uNS
h

∈ Vh are the solutions to problems (NSP) and (2.18),
respectively; then there holds

∥∥∥u − uNS
h

∥∥∥ � chμ−1‖|u|‖s, (4.7)

where μ = min{s, r + 1} and c > 0 is independent of h.

Proof. Setting g = u − uNS
h

in (3.17), multiplying (3.17) by u − uNS
h
, and integrating over Ω, we

have

∥∥∥u − uNS
h

∥∥∥
2
=
∫

Ω

(
Δ2w
)(

u − uNS
h

)
dx = aNS

(
w,u − uNS

h

)

= aNS

(
w −Πhw, u − uNS

h

)
+ 2
∑

e∈E

∫

e

{ΔΠhw}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds

− 2
∑

e∈E

∫

e

{
Δ
(
u − uNS

h

)}[∂Πhw

∂n

]
ds

= aNS

(
w −Πhw, u − uNS

h

)
+ 2
∑

e∈E

∫

e

{ΔΠhw}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds
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=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
u − uNS

h

)
dx

+ 3
∑

e∈E

∫

e

{Δ(Πhw −w)}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds + 2

∑

e∈E

∫

e

{Δw}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds

= I1 + I2 + I3,

(4.8)

where we use Πhw ∈ H2
0(Ω). We estimate I1 as follows:

I1 =
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
u − uNS

h

)
dx �

∥
∥
∥u − uNS

h

∥
∥
∥
h
‖w −Πhw‖2

� chμ‖|u|‖s
∥∥∥u − uNS

h

∥∥∥.

(4.9)

We estimate I2 as follows:

I2 = 3
∑

e∈E

∫

e

{Δ(Πhw −w)}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds

= 3
∑

e∈E

∫

e

{Δ(Πhw −w)}
[
∂(u − Phu)

∂n

]
ds + 3

∑

e∈E

∫

e

{Δ(Πhw −w)}

⎡

⎢
⎣
∂
(
Phu − uNS

h

)

∂n

⎤

⎥
⎦ds

� c

(
∑

e∈E
‖w −Πhw‖22,e

)1/2(∑

e∈E

∥∥∥∥

[
∂(u − Phu)

∂n

]∥∥∥∥

2

0,e

)1/2

+

(
∑

e∈E
‖w −Πhw‖22,e

)1/2
⎛

⎜
⎝
∑

e∈E

∥∥∥∥∥∥∥

⎡

⎢
⎣
∂
(
Phu − uNS

h

)

∂n

⎤

⎥
⎦

∥∥∥∥∥
∥∥

2

0,e

⎞

⎟
⎠

1/2

� ch3/2
(
hμ−3/2‖|u|‖s + ch1/2

∥∥∥Phu − uNS
h

∥∥∥
h

)∥∥∥u − uNS
h

∥∥∥ � chμ‖|u|‖s
∥∥∥u − uNS

h

∥∥∥.

(4.10)

We estimate I3 as follows:

I3 = 2
∑

e∈E

∫

e

{Δw}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds = 2

∑

e∈E

∫

e

{Δw − Ce}

⎡

⎢
⎣
∂
(
u − uNS

h

)

∂n

⎤

⎥
⎦ds

= 2
∑

e∈E

∫

e

{Δw − Ce}
[
∂(u − Phu)

∂n

]
ds + 2

∑

e∈E

∫

e

{Δw − Ce}

⎡

⎢
⎣
∂
(
Phu − uNS

h

)

∂n

⎤

⎥
⎦ds
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� c

(
∑

e∈E
‖Δw − Ce‖20,e

)1/2(∑

e∈E
‖u − Phu‖21,e

)1/2

+

(
∑

e∈E
‖Δw − Ce‖20,e

)1/2
⎛

⎜
⎝
∑

e∈E

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣
∂
(
Phu − uNS

h

)

∂n

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥

2

0,e

⎞

⎟
⎠

1/2

� c

(
∑

e∈E
‖Δw − Ce‖20,e

)1/2(
hμ−3/2‖|u|‖s + ch1/2

∥
∥
∥Phu − uNS

h

∥
∥
∥
h

)

� chμ−3/2
(
∑

e∈E
‖Δw − Ce‖20,e

)1/2

‖|u|‖s,

(4.11)

where Ce is some positive constant. Substituting the following estimate

∑

e∈E
‖Δw − Ce‖20,e � c

∑

e∈E
he‖w‖23,e � ch‖w‖24 � ch

∥∥∥u − uNS
h

∥∥∥
2

(4.12)

into (4.11) gives

I3 � chμ−1‖|u|‖s
∥∥∥u − uNS

h

∥∥∥. (4.13)

Finally, substituting (4.9)–(4.13) into (4.8), we obtain

∥∥∥u − uNS
h

∥∥∥ � chμ−1‖|u|‖s. (4.14)

5. C0 Superpenalty Nonsymmetric Method

In order to obtain the optimal L2 error estimate for the nonsymmetric method, in this section
we will consider the C0 superpenalty nonsymmetric method. First, we introduce a new
nonsymmetric bilinear form:

aSNS(u, v) =
∑

K∈Th

∫

K

ΔuΔvdx −
∑

e∈E

∫

e

{Δu}
[
∂v

∂n

]
ds +
∑

e∈E

∫

e

{Δv}
[
∂u

∂n

]
ds

+
∑

e∈E

1
h3
e

∫

e

[
∂u

∂n

][
∂v

∂n

]
.

(5.1)



16 Abstract and Applied Analysis

The broken H2 norm is modified to

‖|vh|‖h =

(
∑

K∈Th

|vh|22,Ki
+
∑

e∈E

1
h3
e

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e

)1/2

, ∀vh ∈ Vh. (5.2)

From Lemma 2.1, it is easy to show that there exists some constant κ2 > 0 such that

aSNS(vh, vh) � κ2‖|vh|‖2h, ∀vh ∈ Vh. (5.3)

In fact, we have

aSNS(vh, vh) =
∑

K∈Th

‖Δvh‖20,K +
∑

e∈E

1
h3
e

∥
∥
∥
∥

[
∂vh

∂n

]∥∥
∥
∥

2

0,e

� 1
2

∑

e∈E

1
h3
e

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e
+
1
2

(
∑

K∈Th

‖Δvh‖20,K +
∑

e∈E

1
he

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e

)

� 1
2

∑

e∈E

1
h3
e

∥∥∥∥

[
∂vh

∂n

]∥∥∥∥

2

0,e
+
κ0

2

∑

K∈Th

|vh|22,K � κ2‖|vh|‖2h

(5.4)

for κ2 = min{1/2, κ0/2}. Since the solution u to problem (2.1) belongs to H4(Ω) ∩ H2
0(Ω),

then it satisfies

aSNS(u, v) =
(
f, v
)
, ∀v ∈ V. (SNSP)

In this case, the the C0 superpenalty nonsymmetric finite element approximation of (2.1) is

find uSNS
h ∈ Vh such that,

aSNS

(
uSNS
h , vh

)
=
(
f, vh

)
, ∀vh ∈ Vh.

(5.5)

Then, we have the following orthogonal equation:

aSNS

(
uSNS
h − u, vh

)
= 0, ∀vh ∈ Vh. (5.6)

Let Πh be the C1 continuous interpolated operator defined in Section 3. Observe that
[(∂u −Πhu)/∂n] = 0 on every e ∈ E, and proceeding as in the proof of Lemmas 3.2 and 4.1,
we have the following.

Lemma 5.1. For all φ ∈ V , there holds

aNS
(
φ −Πhφ, vh

)
� chμ−2‖|vh|‖h

∥∥∣∣φ
∣∣∥∥

s, ∀vh ∈ Vh, (5.7)

where μ = min{s, r + 1} and c > 0 is independent of h.
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Using Lemma 5.1, the following optimal broken H2 error estimate holds.

Theorem 5.2. Suppose that u ∈ V and uSNS
h

∈ Vh are the solutions to problems (SNSP) and (5.5),
respectively; then there holds

∥
∥
∥
∣
∣
∣u − uSNS

h

∣
∣
∣
∥
∥
∥
h

� chμ−2‖|u|‖s, (5.8)

where μ = min{s, r + 1} and c > 0 is independent of h.

The main result in this section is the following optimal L2 error estimate.

Theorem 5.3. Suppose that u ∈ V and uSNS
h ∈ Vh are the solutions to problems (SNSP) and (5.5),

respectively; then there holds

∥∥∥u − uSNS
h

∥∥∥ � chμ‖|u|‖s, (5.9)

where μ = min{s, r + 1} and c > 0 is independent of h.

Proof. Let g = u − uSNS
h . Multiplying (3.17) by u − uSNS

h and integrating over Ω, we have

∥∥∥u − uSNS
h

∥∥∥
2
=
∫

Ω

(
Δ2w
)(

u − uSNS
h

)
dx = aSNS

(
w,u − uSNS

h

)

= aSNS

(
w −Πhw, u − uSNS

h

)
+ 2
∑

e∈E

∫

e

{ΔΠhw}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds

− 2
∑

e∈E

∫

e

{
Δ
(
u − uSNS

h

)}[∂Πhw

∂n

]
ds

= aSNS

(
w −Πhw, u − uSNS

h

)
+ 2
∑

e∈E

∫

e

{ΔΠhw}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds

=
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
u − uSNS

h

)
dx

+ 3
∑

e∈E

∫

e

{Δ(Πhw −w)}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds + 2

∑

e∈E

∫

e

{Δw}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds

= I4 + I5 + I6,

(5.10)
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where we use Πhw ∈ C1(Ω) ∩ H2
0(Ω). Proceeding as in the proof of Theorem 4.2, we can

estimate I4 and I5 as follows:

I4 =
∑

K∈Th

∫

K

Δ(w −Πhw)Δ
(
u − uSNS

h

)
dx � chμ‖|u|‖s

∥
∥
∥u − uSNS

h

∥
∥
∥, (5.11)

I5 = 3
∑

e∈E

∫

e

{Δ(Πhw −w)}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds � chμ‖|u|‖s

∥
∥
∥u − uSNS

h

∥
∥
∥. (5.12)

The different estimate compared to Theorem 4.3 is the estimate of I6. Under the new norm
||| · |||h, we have

I6 = 2
∑

e∈E

∫

e

{Δw}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds = 2

∑

e∈E

∫

e

{Δw − c}

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦ds

� c

(
∑

e∈E
h3
e‖Δw − C‖20,e

)1/2
⎛

⎜
⎝
∑

e∈E

1
h3
e

∥∥∥∥∥∥∥

⎡

⎢
⎣
∂
(
u − uSNS

h

)

∂n

⎤

⎥
⎦

∥∥∥∥∥∥∥

2

0,e

⎞

⎟
⎠

1/2

� ch2
∥∥∥u − uSNS

h

∥∥∥ ·
∥∥∥
∣∣∣u − uSNS

h

∣∣∣
∥∥∥
h

� chμ‖|u|‖s
∥∥∥u − uSNS

h

∥∥∥.

(5.13)

Substituting (5.11)–(5.13) into (5.10) yields the following optimal L2 error estimate:

∥∥∥u − uSNS
h

∥∥∥ � chμ‖|u|‖s. (5.14)
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