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This paper applies an ancient Chinese algorithm to differential-difference equations, and a solitary-
solution formulation is obtained. The discrete mKdV lattice equation is used as an example to
elucidate the solution procedure.

1. Introduction

Discrete nonlinear lattices have been the focus of considerable attention in various branches
of science. Many differential equations on the nanoscales are invalid, but the problems arising
can be well modeled by differential-difference equations [1–5]. As is well known, there are
many physically interesting problems such as charge fluctuations in net work, ladder type,
electric circuits, phenomena in crystals, and molecular chains, which all can be modelled by
differential-difference equations [6–9].

Recently many analytical methods were proposed to solve differential-difference
equations, such as the exp-function method [10–12], the variational iteration method [13–
15], the homotopy perturbationmethod [16–19], and the parameterized perturbationmethod
[17]. A complete review on various analytical methods is available in [18, 19]. In this paper
we will apply an ancient Chinese algorithm to the discussed problem.
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2. Amplitude-Frequency Formulation for Nonlinear Oscillators

The ancient Chinese algorithm was first applied to nonlinear oscillators in 2006 [18], where
a simple frequency formulation is given. Consider a generalized nonlinear oscillator in the
form

u′′ + f(u) = 0, u(0) = A, u′(0) = 0. (2.1)

We use two trial functions

u1(t) = A cosω1t, (2.2)

u2 = A cosω2t, (2.3)

which are, respectively, the solutions of the following linear oscillator equations:

u′′ +ω2
1u = 0,

u′′ +ω2
2u = 0,

(2.4)

where ω1 and ω2 are trial frequencies which can be chosen freely; for example, we can set
ω1 = 1 and ω2 = 2 or ω1 = 1 and ω2 = ω, where ω is assumed to be the frequency of the
nonlinear oscillator.

Substituting (2.2) and (2.3) into, respectively, (2.1), we obtain the following residuals:

R1(t) = −Aω2
1 cosω1t + f(A cosω1t),

R2(t) = −Aω2
2 cosω2t + f(A cosω2t).

(2.5)

According to the ancient Chinese algorithm, an amplitude-frequency formulation for
nonlinear oscillators was proposed [18].

ω2 =
ω2

1R2(0) −ω2
2R1(0)

R2(0) − R1(0)
. (2.6)

Other modifications of the frequency formulation are shown in [20–23]. The frequency
formulation is now widely used to solve various nonlinear oscillators [20–25], and the basic
idea of the Chinese algorithm can also be used to solve other nonlinear problems [26–29].

3. Solitary-Solution Formulation for Differential-Difference Equations

Suppose the differential-difference equation we discuss in this paper is in the following
nonlinear polynomial form:

dun(t)
dt

= f(un−1, un, un+1), (3.1)

where un = u(n, t) is a dependent variable, and t is a continuous variable, and n, pi ∈ Z.
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Using the basic idea of the ancient Chinese algorithm, we choose two trial functions in
the following forms:

un,1(n, t) = f(ξn +ω1t),

un,2(n, t) = g(ξn +ω2t),
(3.2)

where ξn = nd + ξ0, ξ0 is arbitrary, and f and g are known functions. If a periodic solution
is searched for, f and g must be periodic functions; if a solitary solution is solved, f and g
must be of solitary structures. In this paper a bell solitary solution of a differential-difference
equation is considered, and trial functions are chosen as follows:

un,1(n, t) =
A

eξn+ω1t + e−(ξn+ω1t) + B
, ω1 = 1, (3.3)

un,2(n, t) =
A

eξn+ωt + e−(ξn+ωt) + B
, ω2 = ω. (3.4)

For un, un−1, and un+1 should be compatible; then, from (3.3), we have

un−1,1(n, t) =
A

eξn−d+t + e−(ξn−d+t) + B
,

un+1,1(n, t) =
A

eξn+d+t + e−(ξn+d+t) + B
,

(3.5)

and from (3.4), we have

un−1,2(n, t) =
A

eξn−d+ωt + e−(ξn−d+ωt) + B
, (3.6)

un+1,2(n, t) =
A

eξn+d+ωt + e−(ξn+d+ωt) + B
. (3.7)

Solution Procedure

Step 1. Define residual function

˜R(t) =
dun(t)
dt

− f(un−1, un, un+1). (3.8)

Substituting (3.3)–(3.7) into (3.1), we can obtain, respectively, the residual functions ˜R1 and
˜R2

˜R1(t) =
dun,1(t)

dt
− f(un−1,1, un,1, un+1,1),

˜R2(t) =
dun,2(t)

dt
− f(un−1,2, un,2, un+1,2).

(3.9)
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Step 2. Solitary-solution formulation is constructed as follows:

ω2 =
ω2

1
˜R2(0) −ω2

2
˜R1(0)

˜R2(0) − ˜R1(0)
, (3.10)

where ω1 = 1 and ω2 = ω.

Step 3. Combining the coefficients of eξn in (3.10), and setting them to be zero, we can solve
the algebraic equations to find the values of ω, A, and B. Finally an explicit solution is
obtained.

4. Application in Discrete mKdV Lattice

The famous mKdV lattice equation reads [10]

dun

dt
=
(

α − u2
n

)

(un−1 − un+1), (4.1)

where α/= 0.
Substituting (3.3)–(3.7) into (4.1), we obtain, respectively, the residual functions ˜R1

and ˜R2, and using the solitary-solution formulation, (3.10), we have

e3ξn
(

ω3+ω2αe−d−ω2αed−ω−αe−d + αed
)

− e−3ξn
(

ω3 +ω2αe−d −ω2αed −ω − αe−d + αed
)

+ e2ξnB
(

ω3e−d +ω3ed − 2ω2αed + 2ω2αe−d −ωed −ωe−d + 2αed − 2αe−d
)

− e−2ξnB
(

ω3e−d +ω3ed − 2ω2αed + 2ω2αe−d −ωed −ωe−d + 2αed − 2αe−d
)

+ eξn(ω3B2 −ω3 +ω3e−2d +ω3e2d +ω2A2ed −ω2A2e−d +ω2αe−d −ω2αed +ω2αB2e−d

−ω2αB2ed −ωB2 +ω −ωe2d −ωe−2d +A2e−d −A2ed + αB2ed − αB2e−d + αed − αe−d )

− e−ξn(ω3B2 −ω3 +ω3e−2d +ω3e2d +ω2A2ed −ω2A2e−d +ω2αe−d −ω2αed +ω2αB2e−d

−ω2αB2ed−ωB2+ω−ωe2d−ωe−2d +A2e−d −A2ed + αB2ed − αB2e−d + αed − αe−d )

= 0.
(4.2)

Setting the coefficients of eiξn to be zero, we have

ω3 +ω2αe−d −ω2αed −ω − αe−d + αed = 0,

B
(

ω3e−d +ω3ed − 2ω2αed + 2ω2αe−d −ωed −ωe−d + 2αed − 2αe−d
)

= 0

ω3B2 −ω3 +ω3e−2d +ω3e2d +ω2A2ed −ω2A2e−d +ω2αe−d −ω2αed +ω2αB2e−d,

−ω2αB2ed −ωB2 +ω −ωe2d −ωe−2d +A2e−d −A2ed + αB2ed − αB2e−d + αed − αe−d = 0.
(4.3)
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Solving (4.3) simultaneously, we have

ω = 2α sinh(d),

A = 2
√−α sinh(d),
B = 0.

(4.4)

We, therefore, obtain the following needed solitary solution:

un =
2
√−α sinh(d)

eξn+2α sinh(d)t + e−(ξn+2α sinh(d)t)
=
√−α sinh(d)sech{2α sinh(d)t + nd + ξ0}. (4.5)

5. Conclusions

Though there are many analytical methods, such as the exp-function method, the variational
iteration method, and the homotopy perturbation method, for differential-difference
equations, this paper suggests an effective and simple approach to such problems using the
basic idea of the ancient mathematics, and the simple formulation can be used routinely by
followers to various differential-difference equations.
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