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We study a q-analog of a singularly perturbed Cauchy problem with irregular singularity in the
complex domain which generalizes a previous result by Malek in (2011). First, we construct
solutions defined in open q-spirals to the origin. By means of a q-Gevrey version of Malgrange-
Sibuya theorem we show the existence of a formal power series in the perturbation parameter
which turns out to be the q-Gevrey asymptotic expansion (of certain type) of the actual solutions.

1. Introduction

We study a family of q-difference-differential equations of the following form:

εt∂SzX
(
ε, qt, z

)
+ ∂SzX(ε, t, z) =

S−1∑

k=0

bk(ε, z)
(
tσq

)m0,k
(
∂kzX
)(

ε, t, zq−m1,k
)
, (1.1)

where q ∈ C such that |q| > 1, m0,k,m1,k are positive integers, bk(ε, z) are polynomials in z
with holomorphic coefficients in ε on some neighborhood of 0 in C, and σq is the dilation
operator given by (σqX)(ε, t, z) = X(ε, qt, z). As in previous works [1–3], the map (t, z) �→
(qm0,k t, zq−m1,k) is assumed to be a volume shrinking map, meaning that the modulus of the
Jacobian determinant |q|m0,k−m1,k is less than 1, for every 0 ≤ k ≤ S − 1.

In [4], the second author studies a similar singularly perturbed Cauchy problem. In
this previous work, the polynomial bk(ε, z) :=

∑
s∈Ikbks(ε)z

s is such that, for all 0 ≤ k ≤ S−1, Ik
is a finite subset of N = {0, 1, . . .} and bks(ε) are bounded holomorphic functions on some
disc D(0, r0) in C which verify that the origin is a zero of order at least m0,k. The main
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point on these flatness conditions on the coefficients in bk(ε, z) is that the method used
by Canalis-Durand et al. in [5] could be adapted so that the initial singularly perturbed
problem turns into an auxiliary regularly perturbed q-difference-differential equation with
an irregular singularity at t = 0, preserving holomorphic coefficients bks (we refer to [4] for
the details). These constricting conditions on the flatness of bk(ε, z) is now omitted, so that
previous result is generalized. In the present workwewill make use not only of the procedure
considered in [5] but also of the methodology followed in [6]. In that work, the second author
considers a family of singularly perturbed nonlinear partial differential equations such that
the coefficients appearing possess poles with respect to ε at the origin after the change of
variable t �→ t/ε. This scenario fits our problem.

In both the present work and [6], the procedure for locating actual solutions relies on
the research of certain appropriate Banach spaces. The ones appearing here may be regarded
as q-analogs of the ones in [6].

In order to fix ideas we first settle a brief summary of the procedure followed. We
consider a finite family of discrete q-spirals (UIq

−N)I∈I in such a way that it provides a good
covering at 0 (Definition 4.6).

We depart from a finite family, with indices belonging to a set I, of perturbed Cauchy
problems (4.22) and (4.23). Let I ∈ I be fixed. Firstly, by means of a nondiscrete q-analog of
Laplace transform introduced by Zhang in [7] (for details on classical Laplace transform we
refer to [8, 9]), we are able to transform our initial problem into auxiliary equation (2.13) (or
(3.8)).

The transformed problem fits into a certain Cauchy auxiliary problem such as (2.13)
and (2.14) which is considered in Section 2. Here, its solution is found in the space of formal
power series in z with coefficients belonging to the space of holomorphic functions defined
in the product of discrete q-spirals to the origin in the variable ε (this domain corresponds
to UIq

−N in the auxiliary transformed problem) times a continuous q-spiral to infinity in the
variable τ (VIq

R+ for the auxiliary equation). Moreover, for any fixed ε and regarding our
auxiliary equation, one can deduce that the coefficients, as functions in the variable τ , belong
to the Banach space of holomorphic functions in VIq

R+ subject to q-Gevrey bounds

∣∣∣WI
β(ε, τ)

∣∣∣ ≤ C1β!HβeMlog2|τ/ε|
∣∣∣∣
τ

ε

∣∣∣∣

Cβ∣∣q
∣∣−A1β

2

, τ ∈ VIq
R+ , (1.2)

for positive constants C1, C,M,H,A1 > 0, where the index of the coefficient considered is β
(see Theorem 2.4).

Also, the transformed problem fits into the auxiliary problem (3.8) and (3.9), studied
in detail in Section 3. In this case, the solution is found in the space of formal power series in
zwith coefficients belonging to the space of holomorphic functions defined in the product of
a punctured disc at 0 in the variable ε times a punctured disc at the origin in τ . For a fixed
ε, the coefficients belong to the Banach space of holomorphic functions in D(0, ρ0) \ {0} such
that

∣∣∣WI
β(ε, τ)

∣∣∣ ≤ C1β!HβeMlog2|τ/ε||ε|−Cβ
∣∣q
∣∣−A1β

2

, τ ∈ D
(
0, ρ0
)
\ {0}, (1.3)

for positive constants C1, C,M,H,A1 > 0 when β is the index of the coefficient considered
(see Theorem 3.4).
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From these results, we get a sequence (WI
β)β∈N

consisting of holomorphic functions in

the variable τ so that the q-Laplace transform can be applied to its elements. In addition, the
function

XI(ε, t, z) :=
∑

β≥0
LλI

q;1W
I
β(ε, εt)

zβ

β!
(1.4)

turns out to be a holomorphic function defined in UIq
−N × T × C which is a solution of the

initial problem. Here, T is an adequate open half q-spiral to 0 and λI corresponds to certain
q-directions for the q-Laplace transform (see Proposition 4.3). The way to proceed is also
followed by the authors in [10, 11]when studying asymptotic properties of analytic solutions
of q-difference equations with irregular singularities.

It is worth pointing out that the choice of a continuous summation procedure unlike
the discrete one in [4] is due to the requirement of the Cauchy theorem on the way.

At this point we own a finite family (XI)I∈I of solutions of (4.22) and (4.23). The main
goal is to study its asymptotic behavior at the origin in some sense. Let ρ > 0. One observes
(Theorem 4.11) that whenever the intersection UI ∩UI ′ is not empty we have

|XI(ε, t, z) −XI ′(ε, t, z)| ≤ C1e
−(1/A)log2|ε| (1.5)

for positive constants C1, A and for every (ε, t, z) ∈ (UIq
−N ∩UI ′q

−N) × T ×D(0, ρ). Equation
(1.5) implies that the difference of two solutions of (4.22) and (4.23) admits q-Gevrey null
expansion of type A > 0 at 0 in UI ∩ UI ′ as a function with values in the Banach space
HT,ρ of holomorphic bounded functions defined in T×D(0, ρ) endowed with the supremum
norm. Flatness condition (1.5) allows us to establish the main result of the present work
(Theorem 6.3): the existence of a formal power series

X̂(ε) =
∑

k≥0

Xk

k!
εk ∈ HT,ρ[[ε]], (1.6)

formal solution of (1.1), such that, for every I ∈ I, each of the actual solutions (1.4) of
the problem (4.22) and (4.23) admits X̂ as its q-Gevrey expansion of a certain type in the
corresponding domain of definition.

Themain result heavily rests on aMalgrange-Sibuya-type theorem involving q-Gevrey
bounds, which generalizes a result in [4] where no precise bounds on the asymptotic
appear. In this step, we make use of the Whitney-type extension results in the framework
of ultradifferentiable functions. The Whitney-type extension theory is widely studied in
literature under the framework of ultradifferentiable functions subject to bounds of their
derivatives (see e.g., [12, 13]) and also it is a useful tool taken into account on the study of
continuity of ultraholomorphic operators (see [14–16]). It is also worth saying that, although
q-Gevrey bounds have been achieved in the present work, the type involved might be
increased when applying an extension result for ultradifferentiable functions from [13].

The paper is organized as follows.
In Sections 2 and 3, we introduce Banach spaces of formal power series and solve

auxiliary Cauchy problems involving these spaces. In Section 2, this is done when the
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variables rely in a product of a discrete q-spiral to the origin times a q-spiral to infinity, while
in Section 3 it is done when working on a product of a punctured disc at 0 times a disc at 0.

In Section 4 we first recall definitions and some properties related to q-Laplace
transform appearing in [7], firstly developed by Zhang. In this section we also find actual
solutions of the main Cauchy problem (4.22) and (4.23) and settle a flatness condition on
the difference of two of them so that, when regarding the difference of two solutions in the
variable ε, we are able to give some information on its asymptotic behavior at 0. Finally,
in Section 6 we conclude with the existence of a formal power series in ε with coefficients
in an adequate Banach space of functions which solves in a formal sense the problem
considered. The procedure heavily rests on a q-Gevrey version of the Malgrange-Sibuya
theorem, developed in Section 5.

2. A Cauchy Problem in Weighted Banach Spaces of Taylor Series

M,A1, C > 0 are fixed positive real numbers throughout the whole paper.
Let U,V be nonempty bounded open sets in C

	 := C \ {0}, and let q ∈ C
	 such that

|q| > 1. We define

Uq−N =
{
εq−n ∈ C : ε ∈ U, n ∈ N

}
, V qR+ =

{
τql ∈ C : τ ∈ V, l ∈ R, l ≥ 0

}
. (2.1)

We assume there exists M1 > 0 such that |τ + 1| > M1 for all τ ∈ VqR+ and also that the
distance from the set V to the origin is positive.

Definition 2.1. Let ε ∈ Uq−N and β ∈ N. Eβ,ε,V qR+ denotes the vector space of functions v ∈
O(VqR+) such that

‖v(τ)‖β,ε,V qR+ := sup
τ∈VqR+

{
|v(τ)|

eMlog2|τ/ε|

∣∣∣∣
τ

ε

∣∣∣∣

−Cβ
}
∣∣q
∣∣A1β

2

(2.2)

is finite.
Let δ > 0. H(ε, δ, V qR+) denotes the complex vector space of all formal series v(τ, z) =∑

β≥0vβ(τ)zβ/β! belonging to O(VqR+)[[z]] such that

‖v(τ, z)‖(ε,δ,V qR+ ) :=
∑

β≥0

∥∥vβ(τ)
∥∥
β,ε,V qR+

δβ

β!
< ∞. (2.3)

It is straightforward to check that the pair (H(ε, δ, V qR+), ‖ · ‖(ε,δ,V qR+ )) is a Banach space.

We consider the formal integration operator ∂−1z defined on O(VqR+)[[z]] by

∂−1z (v(τ, z)) :=
∑

β≥1
vβ−1(τ)

zβ

β!
∈ O
(
VqR+

)
[[z]]. (2.4)



Abstract and Applied Analysis 5

Lemma 2.2. Let s, k,m1, m2 ∈ N, δ > 0, ε ∈ Uq−N. One assumes that the following conditions
hold:

m1 ≤ C(k + s), m2 ≥ 2(k + s)A1. (2.5)

Then, there exists a constant C1 = C1(s, k,m1, m2, V,U,C,A1) (not depending on ε nor δ)
such that

∥
∥
∥
∥z

s

(
τ

ε

)m1

∂−kz v
(
τ, zq−m2

)
∥
∥
∥
∥
(ε,δ,V qR+ )

≤ C1δ
k+s‖v(τ, z)‖(ε,δ,V qR+ ), (2.6)

for every v ∈ H(ε, δ, V qR+).

Proof. Let v(τ, z) =
∑

β≥0vβ(τ)(zβ/β!) ∈ O(VqR+)[[z]]. We have that

∥∥∥∥z
s

(
τ

ε

)m1

∂−kz v
(
τ, zq−m2

)
∥∥∥∥
(ε,δ,V qR+ )

=

∥∥∥∥∥∥

∑

β≥k+s

(
τ

ε

)m1

vβ−(k+s)(τ)
β!

(
β − s

)
!

1
qm2(β−s)

zβ

β!

∥∥∥∥∥∥
(ε,δ,V qR+ )

=
∑

β≥k+s

∥∥∥∥∥

(
τ

ε

)m1

vβ−(k+s)(τ)
β!

(
β − s

)
!

1
qm2(β−s)

∥∥∥∥∥
β,ε,V qR+

δβ

β!
.

(2.7)

Taking into account the definition of the norm ‖ · ‖β,ε,V qR+ , we get

∥∥∥∥∥

(
τ

ε

)m1

vβ−(k+s)(τ)
β!

(
β − s

)
!

1
qm2(β−s)

∥∥∥∥∥
β,ε,V qR+

=
β!

(
β − s

)
!

∣∣q
∣∣A1(β−(k+s))2∣∣q

∣∣p(β)

sup
τ∈VqR+

{∣∣vβ−(k+s)(τ)
∣∣

eMlog2|τ/ε|

∣∣∣∣
τ

ε

∣∣∣∣

−C(β−(k+s))∣∣∣∣
ε

τ

∣∣∣∣

C(k+s)−m1
}

,

(2.8)

with p(β) = A1β
2 − A1(β − (k + s))2 − m2(β − s). From (2.5) we derive |ε/τ |C(k+s)−m1 ≤

(CU/CV )
C(k+s)−m1 for every ε ∈ Uq−N and τ ∈ VqR+ , where 0 < CV := min{|τ | : τ ∈ V }

and 0 < CU := max{|ε| : ε ∈ U}. Moreover,

p
(
β
)
= (2(k + s)A1 −m2)β − (k + s)2A1 +m2s, (2.9)

for every β ∈ N. Regarding condition (2.5)we obtain the existence of C1 > 0 such that

∣∣∣∣
ε

τ

∣∣∣∣

C(k+s)−m1∣∣q
∣∣p(β) ≤ C1, (2.10)
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for every τ ∈ VqR+ and β ∈ N. Inequality (2.6) follows from (2.7), (2.8), and (2.10):

∥
∥
∥
∥z

s

(
τ

ε

)m1

∂−kz v
(
τ, zq−m2

)
∥
∥
∥
∥
(ε,δ,V qR+ )

≤ C1

∑

β≥k+s

∥
∥vβ−(k+s)(τ)

∥
∥
β−(k+s),ε,V qR+

β!
(
β − s

)
!
δβ

β!

≤ C1δ
k+s
∑

β≥k+s

∥
∥vβ−(k+s)(τ)

∥
∥
β−(k+s),ε,V qR+

δβ−(k+s)
(
β − (k + s)

)
!
.

(2.11)

Lemma 2.3. Let F(ε, τ) be a holomorphic and bounded function defined onUq−N×VqR+ . Then, there
exists a constant C2 = C2(F,U, V ) > 0 such that

‖F(ε, τ)vε(τ, z)‖(ε,δ,V qR+ ) ≤ C2‖vε(τ, z)‖(ε,δ,V qR+ ) (2.12)

for every ε ∈ Uq−N, every δ > 0, and all vε ∈ H(ε, δ, V qR+).

Proof. Direct calculations regarding the definition of the elements inH(ε, δ, V qR+) allow us to
conclude when taking C2 := max{|F(ε, τ)| : ε ∈ Uq−N, τ ∈ VqR+}.

Let S ≥ 1 be an integer. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers and
bk(ε, z) =

∑
s∈Ikbks(ε)z

s a polynomial in z, where Ik is a finite subset of N and bks(ε) are

holomorphic bounded functions on D(0, r0). We assume Uq−N ⊆ D(0, r0).
We consider the following functional equation:

∂SzW(ε, τ, z) =
S−1∑

k=0

bk(ε, z)
(τ + 1)εm0,k

τm0,k
(
∂kzW

)(
ε, τ, zq−m1,k

)
(2.13)

with initial conditions

(
∂
j
zW
)
(ε, τ, 0) = Wj(ε, τ), 0 ≤ j ≤ S − 1, (2.14)

where the functions (ε, τ) �→ Wj(ε, τ) belong to O(Uq−N × VqR+) for every 0 ≤ j ≤ S − 1.
We make the following assumption.

Assumption A. For every 0 ≤ k ≤ S − 1 and s ∈ Ik, we have

m0,k ≤ C(S − k + s), m1,k ≥ 2(S − k + s)A1. (2.15)

Theorem 2.4. Let Assumption A be fulfilled. One also makes the following assumption on the initial
conditions in (2.14): there exist a constant Δ > 0 and 0 < M̃ < M such that, for every 0 ≤ j ≤ S − 1

∣∣Wj(ε, τ)
∣∣ ≤ ΔeM̃log2|τ/ε|, (2.16)
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for all τ ∈ VqR+ , ε ∈ Uq−N. Then, there existsW(ε, τ, z) ∈ O(Uq−N×VqR+)[[z]], solution of (2.13)
and (2.14), such that, if W(ε, τ, z) =

∑
β≥0Wβ(ε, τ)(zβ/β!), then there exist C2 > 0 and 0 < δ < 1

such that

∣
∣Wβ(ε, τ)

∣
∣ ≤ C2β!

(∣
∣q
∣
∣2A1S

δ

)β∣
∣
∣
∣
τ

ε

∣
∣
∣
∣

Cβ

eMlog2|τ/ε|∣∣q
∣
∣−A1β

2

, β ≥ 0, (2.17)

for every ε ∈ Uq−N and τ ∈ VqR+ .

Proof. Let ε ∈ Uq−N. We define the map Aε from O(VqR+)[[z]] into itself by

Aε

(
W̃(τ, z)

)
:=

S−1∑

k=0

bk(ε, z)
(τ + 1)εm0,k

τm0,k
[(

∂k−Sz W̃
)(

τ, zq−m1,k
)
+ ∂kzwε

(
τ, zq−m1,k

)]
, (2.18)

where wε(τ, z) :=
∑S−1

j=0Wj(ε, τ)(zj/j!). In the following lemma, we show that the restriction
of Aε to a neighborhood of the origin in H(ε, δ, V qR+) is a Lipschitz shrinking map for an
appropriate choice of δ > 0.

Lemma 2.5. There exist R > 0 and δ > 0 (not depending on ε) such that

(1) ‖Aε(W̃(τ, z))‖(ε,δ,V qR+ ) ≤ R for every W̃(τ, z) ∈ B(0, R); B(0, R) denotes the closed ball
centered at 0 with radius R inH(ε, δ, V qR+);

(2)

∥∥∥Aε(W̃1(τ, z)) −Aε

(
W̃2(τ, z)

)∥∥∥
(ε,δ,V qR+ )

≤ 1
2

∥∥∥W̃1(τ, z) − W̃2(τ, z)
∥∥∥
(ε,δ,V qR+ )

(2.19)

for every W̃1, W̃2 ∈ B(0, R).

Proof. Let R > 0 and 0 < δ < 1.
For the first part we consider W̃(τ, z) ∈ B(0, R) ⊆ H(ε, δ, V qR+). Lemmas 2.2 and 2.3

can be applied so that

∥∥∥Aε

(
W̃(τ, z)

)∥∥∥
(ε,δ,V qR+ )

≤
S−1∑

k=0

∑

s∈Ik

Mks

M1

[
C1δ

S−k+s
∥∥∥W̃(τ, z)

∥∥∥
(ε,δ,V qR+ )

+
∥∥∥∥z

s

(
τ

ε

)m0,k

∂kzwε

(
τ, zq−m1,k

)
∥∥∥∥
(ε,δ,V qR+ )

]

,

(2.20)
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with Mks = supε∈Uq−N |bks(ε)| < ∞, s ∈ Ik, 0 ≤ k ≤ S − 1. Taking into account the definition of
H(ε, δ, V qR+) and (2.16) we have

∥
∥
∥
∥z

s

(
τ

ε

)m0,k

∂kzwε

(
τ, zq−m1,k

)
∥
∥
∥
∥
(ε,δ,V qR+ )

=

∥
∥
∥
∥
∥
∥

S−1−k∑

j=0

(
τ

ε

)m0,k

Wj+k(ε, τ)
zj+s

j!qm1,kj

∥
∥
∥
∥
∥
∥
(ε,δ,V qR+ )

=
S−1−k∑

j=0

sup
τ∈VqR+

{∣
∣Wj+k(ε, τ)

∣
∣

eMlog2|τ/ε|

∣
∣
∣
∣
τ

ε

∣
∣
∣
∣

m0,k−C(j+s)
}
∣
∣q
∣
∣A1(j+s)

2 δj+s

j!
∣
∣q
∣
∣m1,kj

≤ Δ
S−1−k∑

j=0

∣
∣q
∣
∣A1(j+s)

2

δj+s

j!
∣∣q
∣∣m1,kj

max
{
e−(M−M̃)log2(x)xm0,k−C(j+s) : x > 0, 0 ≤ j + k ≤ S − 1, s ∈ Ik

}

≤ ΔC′
2,

(2.21)

for a positive constant C′
2.

We conclude this first part from an appropriate choice of R and δ > 0.
For the second part we take W̃1, W̃2 ∈ B(0, R) ⊆ H(ε, δ, V qR+). Similar arguments as

before yield

∥∥∥Aε

(
W̃1

)
−Aε

(
W̃2

)∥∥∥
(ε,δ,V qR+ )

≤
S−1∑

k=0

∑

s∈Ik

Mks

M1
C1δ

S−k+s
∥∥∥W̃1 − W̃2

∥∥∥
(ε,δ,V qR+ )

. (2.22)

An adequate choice for δ > 0 allows us to conclude the proof.

We choose constants R, δ as in the previous lemma.
From Lemma 2.5 and taking into account the shrinking map theorem on complete

metric spaces, we guarantee the existence of W̃ε(τ, z) ∈ H(ε, δ, V qR+) which is a fixed point
for Aε in B(0, R); it is to say, ‖W̃ε(τ, z)‖(ε,δ,V qR+ ) ≤ R and Aε(W̃ε(τ, z)) = W̃ε(τ, z).

Let us define

Wε(τ, z) := ∂−Sz W̃ε(τ, z) +wε(τ, z). (2.23)

If we write W̃ε(τ, z) =
∑

β≥0W̃β,ε(τ)(zβ/β!) and Wε(τ, z) =
∑

β≥0Wβ,ε(τ)(zβ/β!), then we have

that Wβ+S,ε ≡ W̃β,ε for β ≥ 0 and Wj,ε(τ) = Wj(ε, τ), 0 ≤ j ≤ S − 1.
From ‖W̃ε(τ, z)‖(ε,δ,V qR+ ) ≤ R we arrive at ‖W̃β,ε‖β,ε,V qR+ ≤ Rβ!(1/δ)β for every β ≥ 0.

This implies

∣∣∣W̃β,ε(τ)
∣∣∣ ≤ Rβ!

(
1
δ

)β∣∣∣∣
τ

ε

∣∣∣∣

Cβ

eMlog2|τ/ε|∣∣q
∣∣−A1β

2

, (2.24)

for every β ≥ 0 and τ ∈ VqR+ .
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This is valid for every ε ∈ Uq−N. We define W(ε, τ, z) := Wε(τ, z) and Wβ(ε, τ) :=
Wβ,ε(τ) for every (ε, τ) ∈ Uq−N × VqR+ , z ∈ C and β ≥ S. From (2.23), it is straightforward to
prove that W(ε, τ, z) =

∑
β≥0Wβ(ε, τ)(zβ/β!) is a solution of (2.13) and (2.14).

Moreover, holomorphy ofWβ inUq−N ×VqR+ for every β ≥ 0 can be deduced from the
recursion formula verified by the coefficients:

Wh+S(ε, τ)
h!

=
S−1∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1(ε)τ
m0,k

(τ + 1)εm0,k

Wh2+k(ε, τ)
h2!qm1,kh2

, h ≥ 0. (2.25)

This implies thatWβ(ε, τ) is holomorphic inUq−N × VqR+ for every β ∈ N.
It only remiains to prove (2.17). Upper and lower bounds for the modulus of the

elements in Uq−N and VqR+ , respectively, and usual calculations lead us to assure the
existence of a positive constant R1 > 0 such that

∣∣Wβ(ε, τ)
∣∣ =
∣∣∣W̃β−S,ε(τ)

∣∣∣ ≤ R1β!

(∣∣q
∣∣2A1S

δ

)β∣∣∣∣
τ

ε

∣∣∣∣

Cβ

eMlog2|τ/ε|∣∣q
∣∣−A1β

2

, (2.26)

for every β ≥ S, and for every ε ∈ Uq−N and τ ∈ VqR+ . This concludes the proof for β ≥ S.
Hypothesis (2.16) leads us to obtain (2.26) for 0 ≤ k ≤ S − 1.

Remark 2.6. If s > 0 for every s ∈ Ik, 0 ≤ k ≤ S − 1, then, for every R > 0, there exists small
enough δ > 0 in such a way that Lemma 2.5 holds.

3. Second Cauchy Problem in a Weighted Banach Space of
Taylor Series

This section is devoted to the study of the same equation as in the previous section when
the initial conditions are of a different nature. Proofs will only be sketched not to repeat
calculations.

Let 1 < ρ0, and letU ⊆ C
	, a bounded and open set with positive distance to the origin.

Ḋρ0 stands forD(0, ρ0) \ {0} in this section.M,A1, C remain the same positive constants as in
the previous section.

Definition 3.1. Let r0 > 0, ε ∈ D(0, r0) \ {0}, and β ∈ N. E2
β,ε,Ḋρ0

denotes the vector space of

functions v ∈ O(Ḋρ0) such that

|v(τ)|β,ε,Ḋρ0
:= sup

τ∈Ḋρ0

{

|v(τ)| |ε|Cβ

eMlog2|τ/ε|

}
∣∣q
∣∣A1β

2

, (3.1)

is finite. Let δ > 0. H2(ε, δ, Ḋρ0) stands for the vector space of all formal series v(τ, z) =∑
β≥0vβ(τ)zβ/β! belonging to O(Ḋρ0)[[z]] such that

|v(τ, z)|(ε,δ,Ḋρ0 )
:=
∑

β≥0

∣∣vβ(τ)
∣∣
β,ε,Ḋρ0

δβ

β!
< ∞. (3.2)

It is straightforward to check that the pair (H2(ε, δ, Ḋρ0), | · |(ε,δ,Ḋρ0 )
) is a Banach space.
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Lemma 3.2. Let s, k,m1, m2 ∈ N, δ > 0 and ε ∈ D(0, r0) \ {0}. One assumes that the following
conditions hold:

m1 ≤ C(k + s), m2 ≥ 2(k + s)A1. (3.3)

Then, there exists a constant C1 = C1(s, k,m1, m2, Ḋρ0 , U) (not depending on ε nor δ) such
that

∣
∣
∣
∣z

s

(
τ

ε

)m1

∂−kz v
(
τ, zq−m2

)
∣
∣
∣
∣
(ε,δ,Ḋρ0 )

≤ C1δ
k+s|v(τ, z)|(ε,δ,Ḋρ0 )

, (3.4)

for every v ∈ H2(ε, δ, Ḋρ0).

Proof. Let v(τ, z) ∈ O(Ḋρ0)[[z]]. The proof follows similar steps to those in Lemma 2.2. We
have

∣∣∣∣z
s

(
τ

ε

)m1

∂−kz v
(
τ, zq−m2

)
∣∣∣∣
(ε,δ,Ḋρ0 )

=
∑

β≥k+s

∣∣∣∣∣

(
τ

ε

)m1

vβ−(k+s)(τ)
β!

(
β − s

)
!

1
qm2(β−s)

∣∣∣∣∣
β,ε,Ḋρ0

δβ

β!
. (3.5)

From the definition of the norm | · |β,ε,Ḋρ0
, we get

∣∣∣∣∣

(
τ

ε

)m1

vβ−(k+s)(τ)
β!

(
β − s

)
!

1
qm2(β−s)

∣∣∣∣∣
β,ε,Ḋρ0

≤
β!

(
β − s

)
!

∣∣q
∣∣A1(β−(k+s))2∣∣q

∣∣p(β)

× sup
τ∈Ḋρ0

{∣∣vβ−(k+s)(τ)
∣∣

eMlog2|τ/ε|
|ε|C(β−(k+s))

}

ρm1
0 |ε|C(k+s)−m1 ,

(3.6)

with p(β) = A1β
2 − A1(β − (k + s))2 − m2(β − s). Identical arguments to those in Lemma 2.2

allow us to conclude.

Lemma 3.3. Let F(ε, τ) be a holomorphic and bounded function defined on (D(0, r0) \ {0}) × Ḋρ0 .
Then, there exists a constant C2 = C2(F) > 0 such that

|F(ε, τ)vε(τ, z)|(ε,δ,Ḋρ0 )
≤ C2|vε(τ, z)|(ε,δ,Ḋρ0 )

(3.7)

for every ε ∈ D(0, r0) \ {0}, every δ > 0, and every vε ∈ H2(ε, δ, Ḋρ0).

Let S, r0, m0,k,m1,k and bk, as in Section 2 and ρ0 > 0. One considers the Cauchy
problem

∂SzW(ε, τ, z) =
S−1∑

k=0

bk(ε, z)
(τ + 1)εm0,k

τm0,k
(
∂kzW

)(
ε, τ, zq−m1,k

)
(3.8)
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with initial conditions

(
∂
j
zW
)
(ε, τ, 0) = Wj(ε, τ), 0 ≤ j ≤ S − 1, (3.9)

where the functions (ε, τ) �→ Wj(ε, τ) belong toO((D(0, r0)\{0})×Ḋρ0) for every 0 ≤ j ≤ S−1.

Theorem 3.4. Let Assumption A be fulfilled. One makes the following assumption on the initial
conditions (3.9): there exist constants Δ > 0 and 0 < M̃ < M such that

∣
∣Wj(ε, τ)

∣
∣ ≤ ΔeM̃log2|τ/ε|, (3.10)

for every τ ∈ Ḋρ0 , ε ∈ D(0, r0) \ {0} and 0 ≤ j ≤ S− 1. Then, there existsW(ε, τ, z) ∈ O((D(0, r0) \
{0}) × Ḋρ0)[[z]], solution of (3.8) and (3.9) such that, if W(ε, τ, z) =

∑
β≥0Wβ(ε, τ)(zβ/β!), then

there exist C3 > 0 and 0 < δ < 1 such that

∣∣Wβ(ε, τ)
∣∣ ≤ C3β!

(∣∣q
∣∣2A1S

δ

)β

|ε|−CβeMlog2|τ/ε|∣∣q
∣∣−A1β

2

, β ≥ 0, (3.11)

for every ε ∈ D(0, r0) \ {0} and τ ∈ Ḋρ0 .

Proof. The proof of Theorem 2.4 can be adapted here so details will be omitted.
Let ε ∈ D(0, r0) \ {0} and 0 < δ < 1. We consider the map Aε from O(Ḋρ0)[[z]] into

itself defined as in (2.18) and construct wε(τ, z) as above. From (3.10)we derive

∣∣∣∣z
s

(
τ

ε

)m0,k

∂kzwε

(
τ, zq−m1,k

)
∣∣∣∣
(ε,δ,Ḋρ0 )

=
S−1−k∑

j=0

sup
τ∈Ḋρ0

∣∣Wj+k(ε, τ)
∣∣ |ε|C(j+s)

eMlog2|ε/τ |

∣∣∣∣
τ

ε

∣∣∣∣

m0,k∣∣q
∣∣A1(j+s)

2 δj+s

j!
∣∣q
∣∣m1,kj

≤ ΔC′
3,

(3.12)

for a positive constant C′
3 not depending on ε nor δ.

Lemmas 3.2, 3.3, and (3.12) allow us to affirm that one can find R > 0 and δ > 0 such
that the restriction of Aε to the disc D(0, R) in H2(ε, δ, Ḋρ0) is a Lipschitz shrinking map.
Moreover, there exists W̃ε(τ, z) ∈ H2(ε, δ, Ḋρ0) which is a fixed point forAε in B(0, R).

If we put W̃ε(τ, z) =
∑

β≥0W̃β,ε(τ)(zβ/β!), then one gets |W̃β,ε|β,ε,Ḋρ0
≤ Rβ!(1/δ)β for

β ≥ 0. This implies

∣∣∣W̃β,ε(τ)
∣∣∣ ≤ Rβ!

(
1
δ

)β

|ε|−CβeMlog2|τ/ε|∣∣q
∣∣−A1β

2

, β ≥ 0, τ ∈ Ḋρ0 . (3.13)
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The formal power series

W(ε, τ, z) :=
∑

β≥S
W̃β−S,ε(τ)

zβ

β!
+wε(τ, z) :=

∑

β≥0
Wβ(ε, τ)

zβ

β!
(3.14)

turns out to be a solution of (3.8) and (3.9) verifying that Wβ(ε, τ) is a holomorphic function
in (D(0, r0) \ {0}) × Ḋρ0 and the estimates (3.11) hold for β ≥ 0.

4. Analytic Solutions in a Small Parameter of
a Singularly Perturbed Problem

4.1. A q-Analog of the Laplace Transform and q-Asymptotic Expansion

In this subsection, we recall the definition and several results related to the Jacobi Theta
function and also a q-analog of the Laplace transform which was firstly developed by Zhang
in [7].

Let q ∈ C such that |q| > 1.
The Jacobi Theta function is defined in C

	 by

Θ(x) =
∑

n∈Z

q−n(n−1)/2xn, x ∈ C
	. (4.1)

From the fact that the Jacobi Theta function satisfies the functional equation xqΘ(x) = Θ(qx),
for x /= 0, we have

Θ
(
qmx
)
= qm(m+1)/2xmΘ(x), x ∈ C, x /= 0 (4.2)

for every m ∈ Z. The following lower bounds for the Jacobi Theta function will be useful in
the sequel.

Lemma 4.1. Let δ > 0. There exists C > 0 (not depending on δ) such that

|Θ(x)| ≥ Cδe(log
2|x|)/2 log |q||x|1/2, (4.3)

for every x ∈ C
	 such that |1 + xqk| > δ for all k ∈ Z.

Proof. Let δ > 0. From Lemma 5.1.6 in [17]we get the existence of a positive constant C1 such
that |Θ(x)| ≥ C1δΘ|q|(|x|) for every x ∈ C

	 such that |1 + xqk| > δ for all k ∈ Z. Now,

Θ|q|(|x|) =
∑

n∈Z

∣∣q
∣∣−n(n−1)/2|x|n ≥ max

n∈Z

∣∣q
∣∣−n(n−1)/2|x|n. (4.4)

Let us fix |x|. The function

f(t) = exp
(
−1
2
t(t − 1) log

∣∣q
∣∣ + t log|x|

)
(4.5)
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takes its maximum value at t0 = log |x|/ log |q| + 1/2 with f(t0) = C2 exp(log
2|x|/2 log |q|)

|x|1/2, for certain C2 > 0. Taking into account that

max
n∈Z

∣
∣q
∣
∣−n(n−1)/2|x|n ≥ f(
t0�) = f(t0)

∣
∣q
∣
∣−(
t0�−t0)

2/2 ≥ f(t0)
∣
∣q
∣
∣−1/2, (4.6)

one can conclude the result. Here 
·� stands for the entire part.

Corollary 4.2. Let δ > 0. For any ξ ∈ (0, 1) there exists Cξ = Cξ(δ) > 0 such that

|Θ(x)| ≥ Cξe
ξlog2|x|/2 log |q|, (4.7)

for every x ∈ C
	 such that |1 + xqk| > δ, for all k ∈ Z.

From now on, (H, ‖ · ‖
H
) stands for a complex Banach space.

For any λ ∈ C and δ > 0

Rλ,q,δ :=

{

z ∈ C
	 :

∣∣∣∣∣
1 +

λ

zqk

∣∣∣∣∣
> δ, ∀k ∈ R

}

. (4.8)

The following definition corresponds to a q-analog of the Laplace transform and can
be found in [7] when working with sectors in the complex plane.

Proposition 4.3. Let δ > 0 and ρ0 > 0. One fixes an open and bounded set V in C
	 such that

D(0, ρ0) ∩ V /= ∅. Let λ ∈ D(0, ρ0) ∩ V , and, f be a holomorphic function defined in Ḋρ0 with values
in H such that let can be extended to a function F defined in Ḋρ0 ∪ VqR+ and

‖F(x)‖
H
≤ C1e

Mlog2|x|, x ∈ Ḋρ0 ∪ VqR+ , (4.9)

for positive constants C1 > 0 and 0 < M < 1/2 log |q|.
Let πq = log(q)

∏
n≥0(1 − q−n−1)−1, and put

Lλ
q;1F(z) =

1
πq

∫∞λ

0

F(ξ)
Θ(ξ/z)

dξ

ξ
, (4.10)

where the path [0,∞λ] is given by t ∈ (−∞,∞) �→ qtλ. Then, Lλ
q;1F defines a holomorphic function

in Rλ,q,δ and it is known as the q-Laplace transform of f following direction [λ].

Proof. LetK ⊆ Rλ,q,δ be a compact set and z ∈ K. From the parametrization of the path [0,∞λ]
we have

∫∞λ

0

F(ξ)
Θ(ξ/z)

dξ

ξ
= log

(
q
)
∫∞

−∞

F
(
qtλ
)

Θ
(
qtλ/z

)dt. (4.11)
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Let 0 < ξ1 < 1 such that 0 < M < ξ1/2 log |q|, and let t ∈ R. We have that w = qtλ/z satisfies
|1 + qkw| > δ for every k ∈ Z. Corollary 4.2 and (4.9) yield

∫∞

−∞

∥∥
∥
∥
∥

F
(
qtλ
)

Θ
(
qtλ/z

)

∥∥
∥
∥
∥

H

dt ≤
∫∞

−∞

C1e
Mlog2|qtλ|

Cξ1e
(ξ1/2 log |q|)log2|qtλ/z|

dt

≤ L1

∫∞

−∞

∣
∣qtλ
∣
∣ξ1 log |z|/ log |q|

e(M−ξ1/2 log |q|)log2|qtλ|dt,

(4.12)

for a positive constant L1. There exist 0 < A < B such that A ≤ |z| ≤ B for every z ∈ K, so that
the last term in the chain of inequalities above is upper bounded by

L1

∫− log |λ|/ log |q|

−∞

∣
∣qtλ
∣
∣ξ1 logA/ log |q|

e(M−ξ1/2 log |q|)log2|qtλ|dt

+L1

∫∞

− log|λ|/ log|q|

∣∣qtλ
∣∣ξ1 logB/ log |q|

e(M−ξ1/2 log |q|)log2|qtλ|dt.

(4.13)

The result follows from this last expression.

Remark 4.4. If we let M = 1/2 log |q|, then Lλ
q;1F will only remain holomorphic in Rλ,q,δ ∩

D(0, r1) for certain r1 > 0.
In the next proposition, we recall a commutation formula for the q-Laplace transform

and the multiplication by a polynomial.

Proposition 4.5. Let V be an open and bounded set in C
	 and D(0, ρ0) such that V ∩D(0, ρ0)/= ∅.

Let φ be a holomorphic function on VqR+ ∪ Ḋρ0 with values in the Banach space (H, ‖ · ‖
H
) which

satisfies the following estimates: there exist C1 > 0 and 0 < M < 1/2 log |q| such that
∥∥φ(x)

∥∥
H
< C1e

Mlog2|x|, x ∈ Ḋρ0 ∪ VqR+ . (4.14)

Then, the functionmφ(τ) = τφ(τ) is holomorphic on VqR+ ∪ Ḋρ0 and satisfies estimates in the shape
above. Let λ ∈ V ∩D(0, ρ0) and δ > 0. One has the following equality:

Lλ
q;1

(
mφ
)
(t) = tLλ

q;1φ
(
qt
)

(4.15)

for every t ∈ Rλ,q,δ.

Proof. It is direct to prove that mφ is a holomorphic function in VqR+ ∪ Ḋρ0 and also that mφ
verifies bounds as in (4.14). From (4.2) we have Θ(x) = xΘ(x/q), x ∈ C

	, so

Lλ
q;1

(
mφ
)
(t) =

1
πq

∫∞λ

0

(
mφ
)
(ξ)

Θ(ξ/t)
dξ

ξ
=

1
πq

∫∞λ

0

φ(ξ)
Θ(ξ/t)

dξ

=
1
πq

∫∞λ

0

φ(ξ)
(ξ/t)Θ

(
ξ/qt
)dξ = tLλ

q;1

(
φ
)(
qt
)
,

(4.16)

for every t ∈ Rλ,q,δ.
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4.2. Analytic Solutions in a Parameter of a Singularly Perturbed
Cauchy Problem

The following definition of a good covering firstly appeared in [17], p. 36.

Definition 4.6. Let I = (I1, I2) be a pair of open intervals in R each one of length smaller than
1/4, and let UI be the corresponding open bounded set in C

	 defined by

UI =
{
e2πuiqv ∈ C

	 : u ∈ I1, v ∈ I2
}
. (4.17)

Let I be a finite family of tuple I as above verifying

(1)
⋃

I∈I(UIq
−N) = ν \ {0}, where ν is a neighborhood of 0 in C,

(2) the open setsUIq
−N, I ∈ I are four-by-four disjoint.

Then, we say that (UIq
−N)I∈I is a good covering.

Definition 4.7. Let (UIq−N)I∈I be a good covering. Let δ > 0. We consider a family of open
bounded sets {(VI)I∈I,T} in C

	 such that

(1) there exists 1 < ρ0 with VI ∩D(0, ρ0)/= ∅, for all I ∈ I,

(2) for every I ∈ I and τ ∈ VIq
R, |τ + 1| > δ,

(3) for every I ∈ I, t ∈ T, εu ∈ UI , and λv ∈ VI ∩D(0, ρ0), we have

∣∣∣∣1 +
λv

εutqr

∣∣∣∣ > δ, (4.18)

for every r ∈ R,

(4) |t| ≤ 1 for every t ∈ T.

We say that the family {(VI)I∈I,T} is associated to the good covering (UIq
−N)I∈I.

Let S ≥ 1 be an integer. For every 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers
and bk(ε, z) =

∑
s∈Ikbks(ε)z

s a polynomial in z, where Ik is a subset of N and bks(ε) are
bounded holomorphic functions on some disc D(0, r0) in C, 0 < r0 ≤ 1. Let (UIq

−N)I∈I be
a good covering such that UIq

−N ⊆ D(0, r0) for every I ∈ I.

Assumption B. We have

M <
1

2 log
∣∣q
∣∣ . (4.19)

Definition 4.8. Let ρ0 > 1 such that V ∩ D(0, ρ0)/= ∅. Let Δ, M̃ > 0 such that M̃ < M, and that
(ε, τ) �→ W(ε, τ) be a bounded holomorphic function on (D(0, r0) \ {0}) × Ḋρ0 verifying

|W(ε, τ)| ≤ ΔeM̃log2|τ/ε|, (4.20)
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for every (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0 . Assume moreover thatW(ε, τ) can be extended to an
analytic function (ε, τ) �→ WUV (ε, τ) on Uq−N × (VqR+ ∪ Ḋρ0) and

|WUV (ε, τ)| ≤ ΔeM̃log2|τ/ε|, (4.21)

for every (ε, τ) ∈ Uq−N × (VqR+ ∪ Ḋρ0). One says that the set {W,WUV , ρ0} is admissible.
Let I be a finite family of indices. For every I ∈ I, we consider the following singularly

perturbed Cauchy problem:

εt∂SzXI

(
ε, qt, z

)
+ ∂SzXI(ε, t, z) =

S−1∑

k=0

bk(ε, z)
(
tσq

)m0,k
(
∂kzXI

)(
ε, t, zq−m1,k

)
(4.22)

with bk as in (2.13), and with initial conditions

(
∂
j
zXI

)
(ε, t, 0) = φI,j(ε, t), 0 ≤ j ≤ S − 1, (4.23)

where the functions φI,j(ε, t) are constructed as follows. Let {(VI)I∈I,T} be a family of open
sets associated to the good covering (UIq

−N)I∈I. For every 0 ≤ j ≤ S − 1 and I ∈ I, let
{Wj,WUI,VI ,j , ρ0} be an admissible set. Let λI be a complex number in VI ∩ D(0, ρ0). We can
assume that r0 < 1 < |λI |. If not, we diminish r0 as desired. We put

φI,j(ε, t) := LλI
q;1

(
τ �−→ WUI,VI ,j(ε, τ)

)
(ε, εt). (4.24)

Lemma 4.9. The function (ε, t) �→ φI,j(ε, t), constructed as above, turns out to be holomorphic and
bounded on UIq

−N × T for every I ∈ I and all 0 ≤ j ≤ S − 1.

Proof. Let I ∈ I and 0 ≤ j ≤ S − 1. From (4.21), one has

∣∣WUI,VI ,j(ε, τ)
∣∣ ≤ ΔeM̃log2|τ/ε| = ΔeM̃log2|ε||τ |−2M̃ log |ε|eM̃log2|τ |, (4.25)

for every (ε, τ) ∈ UIq
−N × (VIq

R+ ∪ Ḋρ0). Let ε ∈ UIq
−N and M̃ < M̃2 < 1/2 log |q|. Then,

(4.25) can be upper bounded by Δ̃ exp(M̃2log
2|τ |), for some Δ̃ = Δ̃(ε) > 0. Estimates in (4.9)

hold so that Proposition 4.3 can be applied here. The third item in Definition 4.7 derives the
holomorphy of φI,j on UIq

−N × T.

We now prove the boundness of φI,j in its domain of definition. One has

∣∣φI,j(ε, t)
∣∣ =
∣∣∣LλI

q;1WUI,VI ,j(ε, εt)
∣∣∣ ≤
∣∣∣LλI

q;1,+WUI,VI ,j(ε, εt)
∣∣∣ +
∣∣∣LλI

q;1,−WUI,VI ,j(ε, εt)
∣∣∣,

(4.26)
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for every (ε, t) ∈ UIq
−N × T, where

LλI
q;1,+WUI,VI ,j(ε, εt) =

log
(
q
)

πq

∫∞

0

WUI,VI ,j

(
ε, qsλI

)

Θ
(
qsλI/εt

) ds,

LλI
q;1WUI,VI ,j,−(ε, εt) =

log
(
q
)

πq

∫0

−∞

WUI,VI ,j

(
ε, qsλI

)

Θ
(
qsλI/εt

) ds.

(4.27)

We only give bounds for the first integral. The estimates for the second one can be deduced
following a similar procedure.

Let 0 < ξ < 1 such that M̃ < ξ/2 log |q|. From Corollary 4.2 and (4.21)we deduce

∣
∣
∣LλI

q;1,+WUI,VI ,j(ε, εt)
∣
∣
∣ ≤
∣
∣log
(
q
)∣∣

∣
∣πq

∣
∣

∫∞

0

∣
∣
∣
∣
∣
WUI,VI ,j

(
ε, qsλI

)

Θ
(
qsλI/εt

)

∣
∣
∣
∣
∣
ds

≤
∣∣log
(
q
)∣∣Δ

∣∣πq

∣∣Cξ

∫∞

0

eM̃log2|qsλI/ε|

eξlog
2|qsλI/εt|/2 log |q|

ds

≤
∣∣log
(
q
)∣∣Δ

∣∣πq

∣∣Cξ

e(M̃−ξ/2 log |q|)log2|λI/ε|e−ξlog
2|t|/2 log |q|eξ log |λI/ε| log |t|/ log |q|

×
∫∞

0
e2(M̃−(ξ/2 log |q|))log2|q|s2e(M̃−ξ/2 log |q|) log |q| log |λI/ε|seξ log |t|sds ≤ Cj,

(4.28)

for some Cj > 0 which does not depend on ε nor t.

The following assumption is related to technical reasons appearing in the proof of
Lemma 4.9 and Theorem 4.11.

Assumption C. There exist a1, a2 > 0, 0 < ξ, ξ < 1 such that

(C.1) M < ξ/2 log |q|,
(C.2) ξ/2 −M log |q| − Ca1/2a2 > 0,

(C.3) Ca2/2a1 + C2/4ξ log |q|(ξ/2 log |q| −M) < A1.

The next remark clarifies the availability of these constants for a posed problem.

Remark 4.10. Assumptions A, B, and C strongly depend on the choice of q whose modulus
must rest near 1. For example, these assumptions on the constants are verified when taking
log |q| = 1/16, M = 1, A1 = 5, C = 1, ξ = 1/2, ξ = 1/2, a1 = 1, a2 = 4. Then, the next
theorem provides a solution for the equation

εt∂2zXI

(
ε, qt, z

)
+∂2zXI(ε, t, z) = (b00(ε)+b01(ε)z)t2XI

(
ε, q2t, zq−30

)
+b10(ε)t∂zXI

(
ε, qt, zq−10

)
,

(4.29)

with b00, b01, b10 being holomorphic functions near the origin.
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Theorem 4.11. Let Assumption A be fulfilled by the integers m0,k,m1,k, for 0 ≤ k ≤ S − 1 and also
Assumptions B and C for M,A1, C. One considers the problem (4.22) and (4.23) where the initial
conditions are constructed as above. Then, for every I ∈ I, the problem (4.22) and (4.23) has a
solution XI(ε, t, z) which is holomorphic and bounded in UIq

−N × T × C.
Moreover, for every ρ > 0, if I, I ′ ∈ I are such that UIq

−N ∩ UI ′q
−N /= ∅, then there exists a

positive constant C1 = C1(ρ) > 0 such that

|XI(ε, t, z) −XI ′(ε, t, z)| ≤ C1e
−(1/A)log2|ε|, (ε, t, z) ∈

(
UIq

−N ∩UI ′q
−N

)
× T ×D

(
0, ρ
)
, (4.30)

with 1/A = (1 − ξ)(ξ/2 log |q| −M) with ξ, ξ chosen as in Assumption C.

Proof. Let δ > 0 and I ∈ I. We consider the Cauchy problem (3.8) with initial conditions
(∂jzW)(ε, τ, 0) = Wj(ε, τ) for 0 ≤ j ≤ S − 1. From Theorem 3.4 we obtain the existence of a
unique formal solution W(ε, τ, z) =

∑
β≥0Wβ(ε, τ)(zβ/β) ∈ O((D(0, r0) \ {0}) × Ḋρ0)[[z]] and

positive constants C3 > 0 and 0 < δ1 < 1 such that

∣∣Wβ(ε, τ)
∣∣ ≤ C3β!

(∣∣q
∣∣2A1S

δ1

)β

|ε|−CβeMlog2|τ/ε|∣∣q
∣∣−A1β

2

, β ≥ 0, (4.31)

for (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0 .
Moreover, from Theorem 2.4 we get that the coefficients Wβ(ε, τ) can be extended to

holomorphic functions defined in UIq
−N × VIq

R+ and also the existence of positive constants
C2 and 0 < δ2 < 1 such that

∣∣Wβ(ε, τ)
∣∣ ≤ C2β!

(∣∣q
∣∣2A1S

δ2

)β∣∣∣∣
τ

ε

∣∣∣∣

Cβ

eMlog2|τ/ε|∣∣q
∣∣−A1β

2

, β ≥ 0, (4.32)

for (ε, τ) ∈ UIq
−N × VIq

R+ .
We choose λI ∈ VI ∩ D(0, ρ0). In the following estimates we will make use of the fact

that |ε| ≤ |λI | for every ε ∈ D(0, r0 \ {0}). Proposition 4.3 allows us to calculate the q-Laplace
transform of Wβ with respect to τ for every β ≥ 0,LλI

q;1(Wβ)(ε, τ). It defines a holomorphic
function in UIq

−N × RλI ,q,δ. From the fact that {(VI)I∈I,T} is chosen to be a family associated
to the good covering (UIq

−N)I∈I we derive that the function

(ε, t) �−→ LλI
q;1

(
Wβ

)
(ε, εt) (4.33)

is a holomorphic and bounded function defined inUIq
−N×T. We can define, at least formally,

XI(ε, t, z) :=
∑

β≥0
LλI

q;1

(
Wβ

)
(ε, εt)

zβ

β!
, (4.34)

in O(UIq
−N × T)[[z]]. If XI(ε, t, z) were a holomorphic function in UIq

−N × T × C, then
Proposition 4.5 would allow us to affirm that (4.34) is an actual solution of (4.22) and (4.23).
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In order to end the first part of the proof it remian to demonstrate that (4.34) defines in fact a
bounded holomorphic function in UIq

−N × T × C. Let (ε, t) ∈ UIq
−N × T and β ≥ 0. We have

∣
∣
∣LλI

q;1Wβ(ε, εt)
∣
∣
∣ ≤
∣
∣
∣LλI

q;1,+Wβ(ε, εt)
∣
∣
∣ +
∣
∣
∣LλI

q;1,−Wβ(ε, εt)
∣
∣
∣, (4.35)

where

LλI
q;1,+Wβ(ε, εt) =

log
(
q
)

πq

∫∞

0

Wβ

(
ε, qsλI

)

Θ
(
qsλI/εt

) ds,

LλI
q;1,−Wβ(ε, εt) =

log
(
q
)

πq

∫0

−∞

Wβ

(
ε, qsλI

)

Θ
(
qsλI/εt

) ds.

(4.36)

We now establish bounds for both integrals:

∣∣∣LλI
q;1,+Wβ(ε, εt)

∣∣∣ ≤
∣∣log q

∣∣
∣∣πq

∣∣

∫∞

0

∣∣∣∣∣
Wβ

(
ε, qsλI

)

Θ
(
qsλI/εt

)

∣∣∣∣∣
ds. (4.37)

Let 0 < ξ < 1 as in Assumption C. From (4.32) and (4.7), the previous integral is
bounded by

∣∣log q
∣∣

∣∣πq

∣∣

∫∞

0

C2β!
(∣∣q
∣∣2A1S/δ2

)β∣∣qsλI/ε
∣∣CβeMlog2|qsλI/ε|

∣∣q
∣∣−A1β

2

Cξ exp
(
ξlog2

∣∣qsλI/εt
∣∣/2 log

∣∣q
∣∣
) ds

≤
∣∣log q

∣∣
∣∣πq

∣∣
C2

Cξ
β!

(∣∣q
∣∣2A1S

δ2

)β∣∣∣∣
λI
ε

∣∣∣∣

Cβ∣∣q
∣∣−A1β

2
∫∞

0

∣∣q
∣∣CsβeMlog2|qsλI/ε|

exp
(
ξlog2

∣∣qsλI/εt
∣∣/2 log

∣∣q
∣∣
)ds.

(4.38)

Let a1, a2 be as in Assumptions (C.2) and (C.3).
From (a1s − a2β)

2 ≥ 0 and (2.5) in Definition 4.7, the previous inequality is upper
bounded by

A
∫∞

0

∣∣q
∣∣−Bs2e(M−ξ/2 log |q|)log2|λI/ε|e((2M log |q|−ξ) log |λI/ε|+ξ log |t|)sds, (4.39)

where 0 < B = ξ/2 −M log |q| − Ca1/2a2 and

A =

∣∣log q
∣∣

∣∣πq

∣∣
C2

Cξ
β!

(∣∣q
∣∣2A1S

δ2

)β∣∣∣∣
λI
ε

∣∣∣∣

Cβ∣∣q
∣∣−A1β

2+Ca2β2/2a1e−ξlog
2|t|/2 log |q|eξ log |λI/ε| log |t|/ log |q|.

(4.40)
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The previous integral is uniformly bounded for ε ∈ D(0, r0) \ {0} and t ∈ T from the
hypotheses made on these sets. The expression in (4.39) can be bounded by

∣
∣log q

∣
∣

∣
∣πq

∣
∣

C′
2

Cξ
β!

(∣
∣q
∣
∣2A1S

δ2

)β∣
∣
∣
∣
λI
ε

∣
∣
∣
∣

Cβ

e(M−ξ/2 log |q|)log2|λI/ε|
∣
∣q
∣
∣−A1β

2+Ca2β2/2a1

× e−ξlog
2|t|/2 log |q|eξ log |λI/ε| log |t|/ log |q|,

(4.41)

for an appropriate constant C′
2 > 0.

The function s �→ sγβe−αlog
2(s) takes its maximum at s = eγβ/(2α) so each element in the

image set is bounded by e(γβ)
2/(4α) . Taking this to the expression above we get

∣
∣∣LλI

q;1,+Wβ(ε, εt)
∣
∣∣ ≤
∣
∣log q

∣
∣

∣∣πq

∣∣
C′′

2

Cξ
β!

(∣
∣q
∣
∣2A1S

δ2

)β
∣∣q
∣∣−A1β

2+Ca2β2/2a1+C2β2/4 log |q|(ξ/(2 log |q|)−M)
,

(4.42)

for certain C′′
2 > 0.

Assumption (C.3) applied to the last term in the previous expression allows us to
deduce that the sum

∑

β≥0

∣∣∣LλI
q;1,+Wβ(ε, εt)

∣∣∣
|z|β

β!
(4.43)

converges in the variable z uniformly in the compact sets of C.
We now study LλI

q;1,−Wβ(ε, εt). We have

∣∣∣LλI
q;1,−Wβ(ε, εt)

∣∣∣ ≤
∣∣log q

∣∣
∣∣πq

∣∣

∫0

−∞

∣∣∣∣∣
Wβ

(
ε, qsλI

)

Θ
(
qsλI/εt

)

∣∣∣∣∣
ds. (4.44)

From (3.11) and (4.7) the previous integral is bounded by

∣∣log q
∣∣

∣∣πq

∣∣

∫0

−∞

C3β!
(∣∣q
∣∣2A1S/δ1

)β
|ε|−CβeMlog2|qsλI/ε|

∣∣q
∣∣−A1β

2

Cξeξlog
2|qsλI/εt|/2 log |q|

ds. (4.45)

Similar calculations to those in the first part of the proof resting on Assumption C can
be made so that the series

∑

β≥0
LλI

q;1,−Wβ(ε, εt)
zβ

β!
(4.46)

is uniformly convergent with respect to the variable z in the compact sets of C, for (ε, t) ∈
UIq

−N × T. We will not go into detail not to repeat calculations.
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The estimates (4.43) and (4.46) imply the convergence of the series in (4.34) for every
z ∈ C. The boundness of the q-Laplace transform with respect to ε is guaranteed so the first
part of the result is achieved.

Let I, I ′ ∈ I such that UIq
−N ∩ UI ′q

−N /= ∅ and ρ > 0. For every (ε, t, z) ∈ (UIq
−N ∩

UI ′q
−N) × T ×D(0, ρ)we have

|XI(ε, t, z) −XI ′(ε, t, z)| ≤
∑

β≥0

∣
∣
∣LλI

q;1Wβ(ε, εt) − LλI′
q;1Wβ(ε, εt)

∣
∣
∣
ρβ

β!
. (4.47)

We can write

LλI
q;1Wβ(ε, εt) − LλI′

q;1Wβ(ε, εt) =
1
πq

(∫

γ1

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
−
∫

γ2

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
+
∫

γ3−γ4

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ

)

,

(4.48)

where the path γ1 is given by s ∈ (0,∞) �→ qsλI , γ2 by s ∈ (0,∞) �→ qsλI ′ , γ3 by s ∈ (−∞, 0) �→
qsλI , and γ4 by s ∈ (−∞, 0) �→ qsλI ′ .

Without loss of generality, we can assume that |λI | = |λI ′ |.
For the first integral we deduce

∣∣∣∣∣

∫

1

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ

∣∣∣∣∣
≤
∣∣log
(
q
)∣∣
∫∞

0

∣∣Wβ

(
ε, qsλI

)∣∣
∣∣Θ
(
qsλI/εt

)∣∣ ds. (4.49)

Similar estimates as in the first part of the proof lead us to bound the right part of the previous
inequality by

C′′′
2

Cξ
β!

(∣∣q
∣∣2A1S

δ2

)β∣∣∣∣
λI
ε

∣∣∣∣

Cβ∣∣q
∣∣−A1β

2+(Ca2/2a1)β2e(M−ξ/2 log |q|)log2|λI/ε|, (4.50)

for certain C′′′
2 > 0. For any ξ ∈ (0, 1) we have

∣∣∣∣
λI
ε

∣∣∣∣

Cβ

eξ(M−ξ/2 log |q|)log2|λI/ε| ≤ eC
2β2/4ξ(ξ/2 log |q|−M), β ≥ 0. (4.51)

This yields

∫

γ1

∣∣∣∣∣
Wβ

(
ε, qsλI

)

Θ
(
qsλI/εt

)

∣∣∣∣∣
ds

≤
C′′′

2

Cξ
β!

(
|q|2A1S

δ2

)β
∣∣q
∣∣(−A1+(Ca2/2a1)+C2/4ξ log |q|((ξ/2 log |q|)−M))β2

e(1−ξ)(M−(ss))log2|λI/ε|.

(4.52)

We choose ξ as in Assumption C.
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The integral corresponding to the path γ2 can be bounded following identical steps.
We now give estimates concerning γ3 − γ4. It is worth saying that the function in the

integrand is well defined for (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0 and does not depend on the index
I ∈ I. This fact and the Cauchy theorem allow us to write for any n ∈ N

∫

Γn

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
= 0, (4.53)

where Γn = γn,1 + γ5 − γn,2 − γn,3 is the closed path defined in the following way: s ∈ [−n, 0] �→
γn,1(s) = λIq

s,γ5 is the arc of circumference from λI to λI ′ , s ∈ [−n, 0] �→ γn,2(s) = λI ′q
s, and γn,3

is the arc of circumference from λIq
−n to λI ′q

−n. Taking n → ∞we derive

0 = lim
n→∞

∫

Γn

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
= lim

n→∞

∫

γn,1+γ5−γn,2

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
− lim

n→∞

∫

γn,3

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
. (4.54)

Usual estimates lead us to prove that

lim
n→∞

∫

γn,3

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
= 0. (4.55)

Moreover,

lim
n→∞

∫

γn,1+γ5−γn,2

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
=
∫

γ3+γ5−γ4

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
. (4.56)

From (4.54), (4.55), and (4.56) we obtain

∫

γ3−γ4

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
=
∫

−γ5

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ
=
∫θI

θI′

Wβ

(
ε, |λI |eiθ

)

Θ
(
|λI |eiθ/εt

) dθ, (4.57)

where θI = arg(λI), θI ′ = arg(λI ′). Taking into account Definition 4.7 and (4.31) we derive
that the modulus of the last term in the previous equality is bounded by

length
(
γ5
)
C3

Cξ
β!

(∣∣q
∣∣2A1S

δ1

)β

|ε|−Cβ eMlog2|λI/ε|

e(ξ/2 log |q|)log
2|λI/εt|

∣∣q
∣∣−A1β

2

≤ C′
3β!

(∣∣q
∣∣2A1S

δ1

)β

|ε|−Cβe(M−ξ/2 log |q|)log2|λI/ε|
∣∣q
∣∣−A1β

2

≤ C′
3β!

(∣∣q
∣∣2A1S

δ1

)β

|ε|−Cβeξ(M−ξ/2 log |q|)log2|ε|∣∣q
∣∣−A1β

2

e(1−ξ)(M−ξ/2 log |q|)log2|ε|

(4.58)
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for adequate positive constants C3, C
′
3. From the standard estimates we achieve

∣
∣
∣
∣
∣

∫

γ3−γ4

Wβ(ε, ξ)
Θ(ξ/εt)

dξ

ξ

∣
∣
∣
∣
∣
≤ C′

3β!

(∣
∣q
∣
∣2A1S

δ1

)β
∣
∣q
∣
∣−A1β

2

eC
2/4ξ(ξ/2 log |q|−M)β2e(1−ξ)(M−ξ/2 log |q|)log2|ε|.

(4.59)

From (4.47), (4.48), (4.52), (4.59) and Assumption (C.3) we conclude the existence of
a positive constant C′

1 > 0 such that

|XI(ε, t, z) −XI ′(ε, t, z)| ≤ C′
1

∑

β≥0
β!

(
|q|2A1S

δ0

)β
∣
∣q
∣
∣(−A1+(Ca2/2a1)+C2/4ξ log |q|(ξ/2 log |q|−M))β2

× e(1−ξ)(M−ξ/2 log |q|)log2|ε| ρ
β

β!
≤ C1e

(1−ξ)(M−ξ/2 log |q|)log2|ε|,

(4.60)

for every (ε, t, z) ∈ (UIq
−N ∩UI ′q

−N) × T ×D(0, ρ), with δ0 = min{δ1, δ2}.

5. A q-Gevrey Malgrange-Sibuya-Type Theorem

In this section we obtain a q-Gevrey version of the so-called Malgrange-Sibuya theorem
which allows us to reach our final main achievement: the existence of a formal series solution
of problem (4.22) and (4.23)which asymptotically represents the actual solutions obtained in
Theorem 4.11, meaning that, for every I ∈ I, XI admits this formal solution as its q-Gevrey
asymptotic expansion in the variable ε.

In [4], a Malgrange-Sibuya-type theorem appears with similar aims as in this work.
We complete the information there giving bounds on the estimates appearing for the q-
asymptotic expansion. This mentioned work heavily rests on the theory developed by Ramis
et al. in [17].

In the present work, although q-Gevrey bounds are achieved, the q-Gevrey type
involved will not be preserved, suffering an increase on the way.

The nature of the proof relies on the one concerning the classical Malgrange-Sibuya
theorem for Gevrey asymptotics which can be found in [18].

Let H be a complex Banach space.

Definition 5.1. Let U be a bounded open set in C
	 andA > 0. One says a holomorphic function

f : Uq−N → H admits f̂ =
∑

n≥0fnε
n ∈ H[[ε]] as its q-Gevrey asymptotic expansion of typeA

in Uq−N if for every compact set K ⊆ U there exist C1,H > 0 such that

∥∥∥∥∥
f(ε) −

N∑

n=0

fnε
n

∥∥∥∥∥
H

≤ C1H
N
∣∣q
∣∣A(N2/2) |ε|N+1

(N + 1)!
, N ≥ 0, (5.1)

for every ε ∈ Kq−N.
The following proposition can be found, under slight modifications in Section 4 of

[17].
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Proposition 5.2. Let A > 0 and U ⊆ C
	 be an open and bounded set. Let f : Uq−N → H be

a holomorphic function that admits a formal power series f̂ ∈ H[[ε]] as its q-Gevrey asymptotic
expansion of type A in Uq−N. Then, if f̂ (k) stands for the kth formal derivative of f̂ for every k ∈ N,
one has that f (k) admits f̂ (k) as its q-Gevrey asymptotic expansion of type A inUq−N.

Proposition 5.3. Let A > 0, and let f : Uq−N → H a holomorphic function inUq−N. Then,

(i) if f admits 0̂ as its q-Gevrey expansion of type A, then for every compact set K ⊆ U there
exists C1 > 0 with

∥
∥f(ε)

∥
∥

H
≤ C1e

−(1/ã)(1/2 log |q|)log2|ε|, (5.2)

for every ε ∈ Kq−N and every ã > A;

(ii) if for every compact set K ⊆ U there exists C1 > 0 with

∥∥f(ε)
∥∥

H
≤ C1e

−(1/A)(1/2 log |q|)log2|ε|, (5.3)

for every ε ∈ Kq−N, then f admits 0̂ as its q-Gevrey asymptotic expansion of type ã in
Uq−N, for every ã > A.

Proof. Let C1,H,A > 0 and ε ∈ C
	. The function

G(x) = C1 exp

(

log(H)x +
log
∣∣q
∣∣A

2
x2 + (x + 1) log|ε|

)

(5.4)

reaches its minimum for x > 0 at x0 = (− log(H) − log |ε|)/A log |q|. We deduce both results
from standard calculations.

Definition 5.4. Let (UIq−N)I∈I be a good covering at 0 (see Definition 4.6) and gI,I ′ : UIq
−N ∩

UI ′q
−N → H a holomorphic function in UIq

−N ∩UI ′q
−N for I, I ′ ∈ I when the intersection is

not empty. The family (gI,I ′)(I,I ′)∈I2 is a q-Gevrey H-cocycle of type A > 0 attached to a good
covering (UIq

−N)I∈I if the following properties are satisfied.

(1) gI,I ′ admits 0̂ as its q-Gevrey asymptotic expansion of typeA > 0 onUIq
−N ∩UI ′q

−N

for every (I, I ′) ∈ I.
(2) gI,I ′(ε) = −gI ′,I(ε) for every (I, I ′) ∈ I, and ε ∈ UIq

−N ∩UI ′q
−N.

(3) One has gI,I ′′(ε) = gI,I ′(ε) + gI ′,I ′′(ε) for all ε ∈ UIq
−N ∩UI ′q

−N ∩UI ′′q
−N, I, I ′, I ′′ ∈ I.

Let ρ > 0 and T ⊆ C
	 be an open and bounded set. HT,ρ stands for the Banach space of

holomorphic and bounded functions in T ×D(0, ρ)with the supremum norm.

Proposition 5.5. Let ρ > 0. We consider the family (XI(ε, t, z))I∈I constructed in Theorem 4.11.
Then, the set of functions (gI,I ′(ε))(I,I ′)∈I2 defined by

gI,I ′(ε) := (t, z) ∈ T ×D
(
0, ρ
)
�−→ XI ′(ε, t, z) −XI(ε, t, z) (5.5)
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for I, I ′ ∈ I is a q-Gevrey HT,ρ-cocycle of type Ã for every

Ã > A :=
1

(
1 − ξ

)((
ξ/2 log

∣
∣q
∣
∣) −M

)
2 log

∣
∣q
∣
∣
=

1
(
1 − ξ

)(
ξ − 2M log

∣
∣q
∣
∣)
, (5.6)

attached to the good covering (UIq
−N)I∈I.

Proof. The first property in Definition 5.4 directly comes from Theorem 4.11 and
Proposition 5.3. The other two are verified by the construction of the cocycle.

We recall several definitions and an extension result from [13]which will be crucial in
our work.

Definition 5.6. A continuous increasing functionw : [0,∞) → [0,∞) is a weight function if it
satisfies the following:

(α) there exists k ≥ 1 with w(2t) ≤ k(w(t) + 1) for all t ≥ 0,

(β)
∫∞
0 w(t)/(1 + t2)dt < ∞,

(γ) limt→∞(log t)/w(t) = 0,

(δ) φ : t �→ w(et) is convex.

The Young conjugate associated to φ, φ	 : [0,∞) → R is defined by

φ	(y
)
:= sup

{
xy − φ(x) : x ≥ 0

}
. (5.7)

Definition 5.7. Let K be a nonempty compact set in R
2. A jet on K is a family F = (fα)α∈N2

where fα : K → C is a continuous function on K for each α ∈ N
2.

Let w be a weight function. A jet F = (fα)α∈N2 on K is said to be a w-Whitney jet (of
Roumieu type) on K if there exist m > 0 and M > 0 such that

∥∥f
∥∥
K,1/m := sup

x∈K,α∈N2

∣∣fα(x)
∣∣ exp

(
− 1
m
φ	(m|α|)

)
≤ M, (5.8)

and for every l ∈ N, α ∈ N
2 with |α| ≤ l and x, y ∈ K one has

∣∣∣
(
Rl

xF
)

α

(
y
)∣∣∣ ≤ M

∣∣x − y
∣∣l+1−|α|

(l + 1 − |α|)! exp
(

1
m
φ	(m(l + 1))

)
, (5.9)

where (Rl
xF)α(y) := fα(y) −

∑
|α+β|≤l(1/β!)f

α+β(x)(y − x)β.

E{w}(K) denotes the linear space of w-Whitney jets on K.

Definition 5.8. Let K ⊆ R
2 be a nonempty compact set and w a weight function in K. A

continuous function f : K → C is w − C∞ in the sense of Whitney in K if there exists a
w-Whitney jet on K, (fα)α∈N2 such that f (0,0) = f .

For an open set Ω ∈ R
2 we defineE{w}(Ω) := {f ∈ C∞(Ω) : ∀K ⊆ Ω, K compact, ∃m >

0, ‖f‖K,1/m < ∞}.
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The following result establishes conditions on aweight function so that a jet in E{w}(K)
can be extended to an element in E{w}(R2).

Theorem 5.9 (Corollary 3.10, [13]). For a given weight function w, the following statements are
equivalent.

(1) For every nonempty closed setK in R
2 the restriction map sending a function f ∈ E{w}(R2)

to the family of derivatives of f in K, (f (α) |K)α∈N2 ∈ E{w}(K), is a surjective map.

(2) w is a strong weight function, that is to say,

lim
ε→ 0+

lim
t→∞

εw(t)
w(εt)

= 0. (5.10)

Let k1 = 1/4 log |q|. One considers the weight function defined byw0(t) = k1log
2(t) for

t ≥ 1 and w0(t) = 0 for 0 ≤ t ≤ 1. As the authors write in [13], the value of a weight function
near the origin is not relevant for the space of functions generated in the sequel.

The following lemma can be easily verified.

Lemma 5.10. w0 is a weight function.

Under this definition of w0 one has

φ	
w0

(
y
)
= sup

{
xy − φw0(x) : x ≥ 0

}
= sup

{

xy − x2

4 log
∣∣q
∣∣ : x ≥ 0

}

= log
∣∣q
∣∣y2, y ≥ 0.

(5.11)

The spaces appearing in Definition 5.7 concerning this weight function are the
following: for any nonempty compact set K ⊆ R

2,E{w0}(K) is the set of w0-Whitney jets on
K, which consists of every jet F = (fα)α∈N2 on K such that there exist m ∈ N,M > 0 with

∣∣fα(x)
∣∣ ≤ M

∣∣q
∣∣m|α|2

, x ∈ K, α ∈ N
2, (5.12)

and such that for every l ∈ N and α ∈ N
2 with |α| ≤ l one has

∣∣∣
(
Rl

xF
)

α

(
y
)∣∣∣ ≤ M

∣∣x − y
∣∣l+1−|α|

(l + 1 − |α|)!
∣∣q
∣∣m(l+1)2

, x, y ∈ K. (5.13)

We derive that E{w0}(K) consists of the Whitney jets onK such that there exist C1,H >
0 with

∣∣fα(x)
∣∣ ≤ C1H

|α|∣∣q
∣∣A(|α|2/2)

, x ∈ K,α ∈ N
2, (5.14)
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and for every x, y ∈ K and all l ∈ N, α ∈ N
2 with |α| ≤ l,

∣
∣
∣
(
Rl

xF
)

α

(
y
)∣∣
∣ ≤ C1H

l
∣
∣q
∣
∣A(l2/2)

∣
∣x − y

∣
∣l+1−|α|

(l + 1 − |α|)! . (5.15)

Theorem 5.11. w0 is a strong weight function so that Theorem 5.9 holds.

Proof. We have

lim
ε→ 0+

lim
t→∞

εw(t)
w(εt)

= lim
ε→ 0+

lim
t→∞

εk1log
2(t)

k1log
2(εt)

= lim
ε→ 0+

ε = 0. (5.16)

Remark 5.12. A continuous function f which isw0 −C∞ in the sense of Whitney on a compact
set K is indeed C∞ in the usual sense in Int(K) and verifies q-Gevrey bounds of the same
type. Moreover, we have

fk(x, y
)
= ∂k1x ∂k2y f

(
x, y
)
, (5.17)

for every k = (k1, k2) ∈ N
2 and (x, y) ∈ Int(K).

The next result is an adaptation of Lemma 4.1.2 in [17]. Here, we need to determine
bounds in order to achieve a q-Gevrey-type result.

Lemma 5.13. Let U be an open set in C
	 and f : Uq−N → H a holomorphic function with f̂ =∑

h≥0ahε
h ∈ H[[ε]] being its q-Gevrey asymptotic expansion of type A > 0 in Uq−N. Then, for any

n ∈ N, the family ∂nεf(ε) of n-complex derivatives of f satisfies that, for every compact setK ⊆ U and
k,m ∈ N with k ≤ m, there exist C1,H > 0 such that

∥
∥∥∥∥
∂kεf(εa) −

m−k∑

h=0

∂k+hε f(εb)
h!

(εa − εb)h
∥∥∥∥∥

H

≤ C1H
m
∣∣q
∣∣A(m2/2) |εa − εb|m+1−k

(m + 1 − k)!
, (5.18)

for every εa, εb ∈ Kq−N ∪ {0}. Here, one writes ∂lεf(0) = l!al for l ∈ N.

Proof. We will first state the result when εb = 0. Indeed, we prove in this first step that the
family of functions with q-Gevrey asymptotic expansion of type A > 0 in a fixed q-spiral is
closed under derivation. Proposition 5.2 turns out to be a particular case of this result.

Let m ∈ N, K be a compact set in U, and consider another compact set K1 such that
K ⊆ K1 ⊆ U. We define

Rm(ε) := ε−m−1
(

f(ε) −
m∑

h=0

∂hεf(0)
h!

εh
)

, ε ∈ Kq−N, (5.19)
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where ∂hεf(0) denotes the limit of ∂hεf(ε) for ε ∈ Kq−N tending to 0. Then, we have that

∂εf(ε) =
m∑

h=1

∂hεf(0)
h!

hεh−1 + (∂εRm(ε))εm+1 + (m + 1)Rm(ε)εm. (5.20)

Moreover, from Definition 5.1, there exist C,H > 0 such that ‖Rm(ε)‖ ≤ CHm|q|A(m2/2)/
(m + 1)! for every ε ∈ K1q

−N.

Lemma 5.14 (Lemma 4.4.1 [17]). There exists ρ > 0 such that D(ε, ρ|ε|) ⊆ K1q
−N for every ε ∈

Kq−N.

The Cauchy’s integral formula and q-Gevrey expansion of f guarantee the existence
of a positive constant C2 > 0 such that

‖∂εRm(ε)‖H
≤ C2H

m

∣∣q
∣∣A(m2/2)

(m + 1)!
1

ρ|ε| , ε ∈ Kq−N, (5.21)

This yields the existence of C3 > 0 such that

∥∥∥∥∥
ε−m
(

∂εf(ε) −
m−1∑

h=0

∂h+1ε f(0)
h!

εh
)∥∥∥∥∥

H

≤ ‖∂εRm(ε)‖H
|ε| + (m + 1)‖Rm(ε)‖H

≤ C2A
m
1

∣∣q
∣∣A(m2/2)

m!
, ε ∈ Kq−N.

(5.22)

An induction reasoning is sufficient to conclude the proof for every m ≥ 0.
We now study the case where εb /= 0 and only give details for k = 0. For k ≥ 1 one only

has to take into account that the derivatives of f also admit q-Gevrey asymptotic expansion
of type A and consider the function ∂kεf .

If εb /= 0 we treat two cases:
if |εa − εb| ≤ ρ|εb|, then [εa, εb] is contained inK1q

−N and we conclude from the Cauchy
integral formula.

If |εa−εb| > ρ|εb|, thenwe bear inmind that the result is obviouswhen f is a polynomial
and write f(ε) = εm+1Rm(ε) + p(ε) where p(ε) =

∑m
h=0(∂

h
εf(0)/h!ε

h). So, it is sufficient to
prove (5.18)when f(ε) := εm+1Rm(ε). The result follows from q-Gevrey bounds for ‖∂kεRm‖H

,
k = 0, . . . , n and usual estimates.

The following lemma generalizes Lemma 6 in [4].

Lemma 5.15. Let f : Uq−N → H be a holomorphic function having f̂(ε) =
∑

h≥0ahε
h ∈ H[[ε]]

as its q-Gevrey asymptotic expansion of type A > 0 on Uq−N. Let K ⊆ U be a compact set. Then,
the function (ε1, ε2) �→ φ(ε1 + iε2) = f(ε1, ε2) is a w0 − C∞ function in the sense of Whitney on the
compact set

K′ =
{
(ε1, ε2) ∈ R

2 : ε1 + iε2 ∈ Kq−N ∪ {0}
}
. (5.23)



Abstract and Applied Analysis 29

Proof. We consider the set of functions (φ(k1,k2))(k1,k2)∈N2 defined by

φ(k1,k2) := ik2∂k1+k2ε f(ε), (k1, k2) ∈ N
2, (ε1, ε2) ∈ K′. (5.24)

From Lemma 5.13, function f satisfies bounds as in (5.18). Written in terms of the elements
in (φ(k1,k2))(k1,k2)∈N2 we have the existence of C1,H > 0 such that for, every (k1, k2) ∈ N

2,m ≥ 0,

∥
∥
∥
∥
∥
∥

1
ik2

φ(k1,k2)
(
x1, y1

)
−

m−|(k1,k2)|∑

p=0

∑

h1+h2=p

φ(k1+h1,k2+h2)
(
x2, y2

)

ik2+h2p!

×
p!

h1!h2!
(x1 − x2)h1 ih2

(
y1 − y2

)h2

∥
∥
∥
∥
∥
∥

H

≤ C1H
m
∣∣q
∣∣A(m2/2)

∥∥(x1 − x2, y1 − y2
)∥∥m+1−|(k1,k2)|

R2

(m + 1 − |(k1, k2)|)!

(5.25)

for (x1, y1), (x2, y2) ∈ K′. Expression (5.14) can be directly checked from (5.24) and (5.18) for
εb = 0 and m = k. This yields that the set (φ(k1,k2))(k1,k2)∈N2 is an element in E{w0}(K

′).

The next result allows us to glue together a finite number of jets in E{w0}(K), for a given
compact set K.

Theorem 5.16 ([19]. Theorem II.1.3). Let K1, K2 be compact sets in R
2. The following statements

are equivalent.

(i) The sequence

0 −→ E{w0}(K1 ∪K2)
π−→ E{w0}(K1) ⊕ E{w0}(K2)

δ−→ E{w0}(K1 ∩K2) −→ 0 (5.26)

is exact. π(f) = (f |K1
, f |K2

) and δ(f, g) = f |K1∩K2
− g |

K1∩K2
.

(ii) Let f1 ∈ E{w0}(K1) and f2 ∈ E{w0}(K2) be such that f1(x) = f2(x) for every x ∈ K1 ∩K2.
The function f defined by f(x) = f1(x) if x ∈ K1 and f(x) = f2(x) if x ∈ K2 belongs to
E{w0}(K1 ∪K2).

(iii) If K1 ∩K2 /= ∅, then there exist A3, A4 > 0 such that

M(A3 dist(x,K1 ∩K2)) ≤ A4M(dist(x,K2)), (5.27)

for every x ∈ K1. Here, M denotes the function given by M(0) = 0 and M(t) =
infn∈Nt

nMn for t > 0. dist(x,K) stands for the distance from x to the set K.

Corollary 5.17 ([17], Lemma 4.3.6). Given K̃1, K̃2 nonempty compact sets in C
	, if one putsKj :=

{(ε1, ε2) ∈ R
2 : ε1 + iε2 ∈ K̃jq

−N ∪ {0}}, j = 1, 2, then the previous theorem holds for K1 and K2.
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As the authors remark in [17], condition (iii) in the previous result is known as the
transversality condition which is more constricting than Łojasiewicz’s condition (see [20]).

The next proposition is devoted to show that the cocycle constructed in Proposition 5.5
splits in the space ofw0–C∞ functions in the sense ofWhitney. Whitney-type extension results
on E{w0}(K) (Theorems 5.9 and 5.11)will play an important role in the following step.

Proposition 5.18. Let (UIq
−N)I∈I be a good covering, and let (gI,I ′(ε))(I,I ′)∈I2 be the q-Gevrey HT,ρ-

cocycle of type Ã constructed in Proposition 5.5. One chooses a family of compact sets KI ⊆ UI for
I ∈ I, with Int(KI)/= ∅, in such a way that

⋃
I∈I(KIq

−N) is U \ {0}, where U is a neighborhood of 0
in C.

Then, for all I ∈ I, there exists a w0 − C∞ function fI(ε1, ε2) in the sense of Whitney on the
compact set AI = {(ε1, ε2) ∈ R

2 : ε1 + iε2 ∈ KIq
−N ∪ {0}}, with values in the Banach space HT,ρ,

such that

gI,I ′(ε1 + iε2) = fI ′(ε1, ε2) − fI(ε1, ε2) (5.28)

for all I, I ′ ∈ I such that AI ∩AI ′ /= ∅ and, for every (ε1, ε2) ∈ AI ∩AI ′ .

Proof. The proof follows similar arguments to those Lemma 3.12 in [17] and it is an
adaptation of Proposition 5 in [4] under q-Gevrey settings.

Let I, I ′ ∈ I such that AI ∩ AI ′ /= ∅. From Lemma 5.15, we have that the function
(ε1, ε2) �→ gI,I ′(ε1 + iε2) is a w0 − C∞ function in the sense of Whitney on AI ∩ AI ′ . In the
following we provide the construction of fI for I ∈ I verifying (5.28).

Let us fix any I ∈ I. We consider any w0 − C∞ function in the sense of Whitney on AI .
By definition of the good covering (UIq

−N)I∈I the following cases are possible.

Case 1. If there is at least one I ′ ∈ I, I /= I ′, such that AI ∩ AI ′ /= ∅ but AI ∩ AI ′ ∩ AI ′′ = ∅ for
every I ′′ ∈ I with I ′′ /= I ′ /= I, then we define eI,I ′(ε1, ε2) = fI(ε1, ε2) + gI,I ′(ε1 + iε2) for every
(ε1, ε2) ∈ AI∩AI ′ . eI,I ′ is aw0−C∞ function in the sense ofWhitney inAI∩AI ′ . From Theorems
5.9 and 5.11, we can extend eI,I ′ to a w0 − C∞ function in the sense of Whitney on AI ′ . This
extension is called fI ′ . We have

gI,I ′(ε1 + iε2) = fI ′(ε1, ε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI ∩AI ′ . (5.29)

Case 2. There exist two different I ′, I ′′ ∈ I with I ′ /= I /= I ′′ such that AI ∩AI ′ ∩AI ′′ /= ∅. We first
construct a w0 − C∞ function in the sense of Whitney on AI ′ , fI ′(ε1, ε2), verifying

gI,I ′(ε1 + iε2) = fI ′(ε1, ε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI ∩AI ′ . (5.30)

We define eI,I ′′(ε1, ε2) = fI(ε1, ε2) + gI,I ′′(ε1 + iε2) for every (ε1, ε2) ∈ AI ∩AI ′′ and eI ′,I ′′(ε1, ε2) =
fI ′(ε1, ε2) + gI ′,I ′′(ε1 + iε2) whenever (ε1, ε2) ∈ AI ′ ∩ AI ′′ . From (5.30), we have eI,I ′′(ε1, ε2) =
eI ′,I ′′(ε1, ε2) for every (ε1, ε2) ∈ AI ∩AI ′ ∩AI ′′ . From this, we can define

eI ′′(ε1, ε2) :=

⎧
⎨

⎩

eI,I ′′(ε1, ε2) if (ε1, ε2) ∈ AI ∩AI ′′ ,

eI ′,I ′′(ε1, ε2) if (ε1, ε2) ∈ AI ′ ∩AI ′′ .
(5.31)
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From Theorem 5.16 and Corollary 5.17 we deduce that eI ′′(ε1, ε2) can be extended to aw0−C∞

function in the sense ofWhitney inAI ′′ , fI ′′(ε1, ε2). It is straightforward to check, from the way
fI ′′ was constructed, that fI ′′(ε1, ε2) = fI(ε1, ε2) + gI,I ′′(ε1 + iε2) when (ε1, ε2) ∈ AI ∩ AI ′′ and
also fI ′′(ε1, ε2) = fI ′(ε1, ε2) + gI ′,I ′′(ε1 + iε2) for (ε1, ε2) ∈ AI ′ ∩AI ′′ .

These two cases solve completely the problem since nonempty intersection of four
different compacts in (AI)I∈I is not allowed when working with a good covering. The
functions in (fI)I∈I satisfy (5.28).

6. Existence of Formal Series Solutions and q-Gevrey Expansions

In the current section we set the main result in this work. We establish the existence of a
formal power series with coefficients belonging to HT,ρ which asymptotically represents the
actual solutions found in Theorem 4.11 for the problem (4.22) and (4.23). Moreover, each
actual solution turns out to admit this formal power series as q-Gevrey expansion of a certain
type in the q-spiral where the solution is defined.

The following lemma will be useful in the following. We only sketch its proof. For
more details we refer to [21].

Lemma 6.1. LetU be an open and bounded set in R
2. We consider h ∈ C∞(U) (in the classical sense)

verifying bounds as in (5.14) and (5.15) for every (ε1, ε2) ∈ U. Let g be the solution of the equation

∂εg(ε1, ε2) :=
1
2
(∂ε1 + i∂ε2)g(ε1 + iε2) = h(ε1, ε2), (ε1, ε2) ∈ U. (6.1)

Then, g also verifies bounds such as those in (5.14) and (5.15) for (ε1, ε2) ∈ U.

Proof. Let h1 be any extension of the function h to R
2 with compact support which preserves

bounds in (5.14) and (5.15) in R
2. We have that

g(ε1, ε2) := − 1
π

∫

R2

h1(x)
x − ε

dξ dη, (ε1, ε2) ∈ U, (6.2)

solves (6.1). Here, ε = (ε1, ε2), x = (ξ, η), and dξdη stands for the Lebesgue measure in x-
plane. Bounds in (5.14) for the function g come out from

∂α1+α2g

∂εα1
1 ∂εα2

2

(ε1, ε2) = − 1
π

∫

R2

∂α1+α2h1

∂εα1
1 ∂εα2

2

(x)
1

x − ε
dξ dη, (6.3)

for every α = (α1, α2) ∈ N
2 and (ε1, ε2) ∈ U and from the fact that the function x = (x1, x2) �→

1/|x| is Lebesgue integrable in any compact set containing 0.
On the other hand, g satisfies the estimates in (5.15) from the Taylor formula with

integral remainder.

We now give a decomposition result of the functions XI constructed in Theorem 4.11.
The procedure is adapted from [4] under q-Gevrey settings. For every I ∈ I, we write XI(ε) :
UIq

−N → HT,ρ for the holomorphic function given by XI(ε) := (t, z) �→ XI(ε, t, z).



32 Abstract and Applied Analysis

Proposition 6.2. There exist a w0 − C∞ function u(ε1, ε2) and a holomorphic function a(ε1 + iε2)
defined on the neighborhood Int(

⋃
I∈I AI) of 0 such that

XI(ε1 + iε2) = fI(ε1, ε2) + u(ε1, ε2) + a(ε1 + iε2), (ε1, ε2) ∈ Int(AI), (6.4)

for every I ∈ I.

Proof. From the definition of the cocycle (gI,I ′)(I,I ′)∈I2 in Proposition 5.5 and from
Proposition 5.18 we derive

XI(ε1 + iε2) − fI(ε1, ε2) = XI ′(ε1 + iε2) − fI ′(ε1, ε2), (ε1, ε2) ∈ AI ∩AI ′ \ {(0, 0)}, (6.5)

whenever (I, I ′) ∈ I2 and AI ∩AI ′ /= ∅. The function X − f given by

(
X − f

)
(ε1, ε2) := XI(ε1 + iε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI \ {(0, 0)}, (6.6)

is well defined on W \ {(0, 0)}, where W =
⋃

I∈I AI is a closed neighborhood of (0, 0).
For every I ∈ I, XI is a holomorphic function on UIq

−N so that the Cauchy-Riemann
equations hold:

∂ε(XI)(ε1 + iε2) = 0, (ε1, ε2) ∈ AI \ {(0, 0)}. (6.7)

This yields ∂ε(X − f)(ε1, ε2) = −∂εfI(ε1, ε2) for every I ∈ I and (ε1, ε2) ∈ Int(AI).
We have that −∂εfI(ε1, ε2) can be extended to aw0−C∞ function in the sense ofWhitney

on AI . This yields that fI is w0 − C∞ in the sense of Whitney on AI . In fact, their q-Gevrey
types coincide.

From this, we deduce that ∂ε(X − f) is a w0 − C∞ function in the sense of Whitney on
AI for every I ∈ I and also that ∂εfI(ε1, ε2) = ∂εfI ′(ε1, ε2) for every (ε1, ε2) ∈ Int(AI ∩ AI ′)
and every I, I ′ ∈ I because gI,I ′(ε) is a holomorphic function onUIq

−N ∩UI ′q
−N. The previous

equality is also true for (ε1, ε2) ∈ AI ∩ AI ′ from the fact that fI is w0 − C∞ in the sense of
Whitney on AI .

From Theorem 5.16 and Corollary 5.17 we derive that ∂ε(X − f) is a w0 − C∞ function
in the sense of Whitney on

⋃
I∈I AI .

Taking into account Lemma 6.1 we derive the existence of a C∞ function u(ε1, ε2) in
the usual sense, defined in Int(W) and verifying q-Gevrey bounds of a certain positive type,
such that

∂εu(ε1, ε2) = ∂ε
(
X − f

)
(ε1, ε2), (ε1, ε2) ∈ Int(W). (6.8)

From this last expressionwe have that u(ε1, ε2)−(X−f)(ε1, ε2) defines a holomorphic function
on Int(W) \ {(0, 0)}.

For every I ∈ I, XI is a bounded HT,ρ-function in Int(W) \ {(0, 0)}, and so it is the
function u(ε1, ε2) − (X − f)(ε1, ε2). The origin turns out to be a removable singularity so the
function u(ε1, ε2) − (X − f)(ε1, ε2) can be extended to a holomorphic function defined on
Int(W). The result follows from here.
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We are under conditions to enunciate the main result in the present work.

Theorem 6.3. Under the same hypotheses as in Theorem 4.11, there exists a formal power series

X̂(ε, t, z) =
∑

k≥0

Xk(t, z)
k!

εk ∈ HT,ρ[[ε]], (6.9)

formal solution of

εt∂SzX̂
(
ε, qt, z

)
+ ∂SzX̂(ε, t, z) =

S−1∑

k=0

bk(ε, z)
(
tσq

)m0,k
(
∂kzX̂
)(

ε, t, zq−m1,k
)
. (6.10)

Moreover, let I ∈ I, and let K̃I be any compact subset of Int(KI). There exists B > 0 such that
the function XI(ε, t, z) constructed in Theorem 4.11 admits X̂(ε, t, z) as its q-Gevrey asymptotic
expansion of type B in K̃Iq

−N.

Proof. Let I ∈ I, and let K̃I be any compact subset of Int(KI).
From Proposition 6.2 we can extend XI(ε1 + iε2) to a w0 − C∞ function in the sense of

Whitney on ÃI = {(ε1, ε2) ∈ R
2 : ε1 + iε2 ∈ K̃Iq

−N ∪ {0}} ⊆ Int(AI) ∪ {(0, 0)}. Let us fix I ∈ I.
We consider the family (X(h1,h2)(ε1, ε2))(h1,h2)∈N2 associated to XI by Definition 5.7. We have

X
(h1,h2)
I (ε1, ε2) = ∂h1

ε1 ∂
h2
ε2XI(ε1 + iε2) = ih2∂h1+h2

ε XI(ε), (ε1, ε2) ∈ ÃI \ {(0, 0)}, (6.11)

because XI(ε) is holomorphic on Int(KI)q−N.
We have that X(h1,h2)

I (ε1, ε2) is continuous at (0, 0) for every (h1, h2) ∈ N
2 so we can

define k ≥ 0

Xk,I :=
X

(h1,h2)
I (0, 0)

ih2
∈ HT,ρ, (6.12)

whenever h1 + h2 = k. The estimates held by any w0 − C∞ function in the sense of Whitney
(see Definition 5.7 for α = (0, 0)) lead us to the existence of positive constants C1,H, B > 0
such that

∥∥∥∥∥∥
XI(ε1 + iε2) −

m∑

p=0

Xp,I

p!
(ε1 + iε2)p

∥∥∥∥∥∥
HT,ρ

≤ C1H
m
∣∣q
∣∣B(m2/2) |ε1 + iε2|m+1

(m + 1)!
, (6.13)

for every m ≥ 0 and ε1 + iε2 ∈ K̃Iq
−N. As a matter of fact, this shows that XI admits X̂I(ε) =∑

k≥0(Xk/k!)εk as its q-Gevrey expansion of type B > 0 in K̃Iq
−N.

The formal power series X̂I does not depend on I ∈ I. Indeed, from Theorem 4.11 we
have thatXI(ε)−XI ′(ε) admits both 0̂ and X̂I ′ −X̂I as q-asymptotic expansion on K̃Iq

−N∩K̃I ′q
−N

whenever this intersection is not empty. We put X̂ := X̂I for any I ∈ I. The function Xk,I =
Xk,I(t, z) ∈ HT,ρ does not depend on I for every k ≥ 0. We write Xk := Xk,I for k ≥ 0.
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XI admits X̂ =
∑

k≥0(Xk/k!)εk as its q-Gevrey asymptotic expansion of type B > 0 in K̃Iq
−N

for all I ∈ I.
In order to achieve the result, it only remains to prove that X̂(ε, t, z) is a formal solution

of (6.10). Let l ≥ 1. If we derive l times with respect to ε in (6.10), we get that ∂lεXI(ε, t, z) is a
solution of

εt∂Sz∂
l
εXI

(
ε, qt, z

)
+ t∂Sz l∂

l−1
ε XI

(
ε, qt, z

)
+ ∂Sz∂

l
εXI(ε, t, z)

=
S−1∑

k=0

∑

l1+l2=l

l!
l1!l2!

∂l1ε bk(ε, z)∂
l2
ε

(((
tσq

)m0,k
)
∂kzXI

)(
ε, t, zq−m1,k

)
.

(6.14)

for every l ≥ 1, (t, z) ∈ T ×D(0, ρ) and ε ∈ K̃Iq
−N. Letting ε tend to 0 in (6.14), we obtain

t∂Sz
Xl−1
(
qt, z
)

(l − 1)!
+ ∂Sz

Xl(t, z)
l!

=
S−1∑

k=0

∑

l1+l2=l

∂l1ε bk(ε, z)|ε=0
l1!

((
tσq

)m0,k ∂kzXl2

)(
t, zq−m1,k

)

l2!

(6.15)

for every l ≥ 1, (t, z) ∈ T ×D(0, ρ). The holomorphy of bk(ε, z)with respect to ε at 0 implies

bk(ε, z) =
∑

l≥0

∂lεbk(ε, z)|ε=0
l!

εl, (6.16)

for ε near 0 and for every z ∈ C. Statements (6.14) and (6.15) conclude that X̂(ε, t, z) =∑
k≥0Xk(t, z)(εk/k!) is a formal solution of (6.10).
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Rendus de l’Académie des Sciences. Série I. Mathématique, vol. 331, no. 1, pp. 31–34, 2000.
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