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We generalize a fixed point theorem in partially ordered complete metric spaces in the study of A.
Amini-Harandi andH. Emami (2010). We also give an application on the existence and uniqueness
of the positive solution of a multipoint boundary value problem with fractional derivatives.

1. Introduction

Let S denote the class of those functions β : [0,+∞) → [0, 1) which satisfies the condition

β(tn) −→ 1 implies tn −→ 0. (1.1)

The following generalization of Banach’s contraction principle is due to Geraghty [1].

Theorem 1.1. Let (M,d) be a complete metric space and let f : M → M be a map. Suppose there
exists β ∈ S such that for each x, y ∈ M,

d
(
f(x), f

(
y
)) ≤ β

(
d
(
x, y

))
d
(
x, y

)
. (1.2)

Then f has a unique fixed point z ∈ M, and {fn(x)} converges to z, for each x ∈ M.

And then, Amini-Harandi and Emami [2] proved a version of Theorem 1.1 in the
context of partially ordered complete metric spaces.
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Theorem 1.2. Let (M,�) be a partially ordered set and suppose that there exists a metric d in M
such that (M,d) is a complete metric space. Let f : M → M be a nondecreasing mapping, and there
exists an element x0 ∈ M with x0 � f(x0). Suppose that there exists β ∈ S such that

d
(
f(x), f

(
y
)) ≤ β

(
d
(
x, y

))
d
(
x, y

)
, for each x, y ∈ M with x � y. (1.3)

Assume that either f is continuous or M is such that

if an increasing sequence {xn} −→ x in M, then xn � x, ∀n. (1.4)

Besides, if

for any x, y ∈ M, there exists z ∈ M which is comparable to x and y, (1.5)

Then f has a unique fixed point.

Theorem 2.2 was also applied to obtain the existence and uniqueness of the solution
of a periodic boundary value problem by Amini-Harandi and Emami [2] and a singular
fractional three-point boundary value problem by Cabrera et al. [3].

2. Main Results

In this section, we firstly define a class of functions A by β : [0,+∞) → [0,+∞), and there
exists a constant K > 0 such that

sup
t∈[0,+∞)

{
β(t)

} ≤ K. (2.1)

Remark 2.1. Function classes A include all bounded functions on [0,+∞) with upper bound
K which are more extensive than those of S. For example, β(t) = K sin t ∈ A but not in S.

Now, we give an extended version of Theorem 1.2 in the context of partially ordered
complete metric spaces.

Theorem 2.2. Let (M,�) be a partially ordered set and suppose that there exists a metric d in M
such that (M,d) is a complete metric space. Let f : M → M be a nondecreasing mapping, and there
exists s an element x0 ∈ M with x0 � f(x0). Suppose that there exists a constant θ ∈ (0, 1/K) and
β ∈ S such that

d
(
f(x), f

(
y
)) ≤ θβ

(
θd

(
x, y

))
d
(
x, y

)
, for each x, y ∈ M with x � y. (2.2)

Assume that either f is continuous or

if an increasing sequence {xn} −→ x in M, then xn � x, ∀n. (2.3)
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Besides, if

for any x, y ∈ M, there exists z ∈ M which is comparable to x and y, (2.4)

then f has a unique fixed point.

Proof. We first show that f has a fixed point. Since x0 � f(x0) and f is an increasing function,
we obtain by induction that

x0 � f(x0) � f2(x0) � f3(x0) � · · · � fn(x0) � · · · . (2.5)

Put xn+1 = fn(x0), n = 1, 2, . . . For each integer n ≥ 1, from (2.5), we have xn � xn+1, then by
(2.2)

d(xn+1, xn) = d
(
fn(x0), fn−1(x0)

)
≤ θβ(θd(xn, xn−1))d(xn, xn−1) ≤ Kθd(xn, xn−1). (2.6)

If there exists n0 ∈ N such that d(xn0 , xn0−1) = 0, then xn0 = fn0−1(x0) = f(xn0−1) = xn0−1
and xn0−1 is a fixed point; in this case, the proof is finished. Otherwise, for any n ∈ N,
d(xn, xn−1)/= 0. Then by (2.6), we have

d(xn+1, xn) ≤ Kθd(xn, xn−1) ≤ · · · ≤ (Kθ)n+1d(xn0 , xn0−1) −→ 0, as n −→ +∞, (2.7)

that is,

d(xn+1, xn) −→ 0, as n −→ +∞. (2.8)

Now, we show that xn is a Cauchy sequence. By the triangle inequality and (2.2), we
have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)

≤ d(xn, xn+1) + θβ(θd(xn, xm))d(xn, xm) + d(xm+1, xm)

≤ d(xn, xn+1) + θKd(xn, xm) + d(xm+1, xm),

(2.9)

and then

d(xn, xm) ≤ (1 −Kθ)−1[d(xn, xn+1) + d(xm+1, xm)] −→ 0, as m,n −→ +∞, (2.10)

which implies that xn is a Cauchy sequence in M. Since (M,d) is a complete metric space,
then there exists a z ∈ M such that limn→+∞xn = z. To prove that z is a fixed point of f , if f is
continuous, then

z = lim
n→+∞

xn = lim
n→+∞

fn(x0) = lim
n→+∞

fn+1(x0) = f

(
lim

n→+∞
fn(x0)

)
= f(z), (2.11)
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hence z = f(z). If case (2.3) holds, then we claim that f(z) = z still holds. In fact,

d
(
f(z), z

) ≤ d
(
f(z), f(xn)

)
+ d

(
f(xn), z

) ≤ θKd(z, xn) + d(xn+1, z), (2.12)

since d(z, xn) → 0, taking limit as n → +∞, then d(f(z), z) ≤ 0, this proves that d(f(z), z) =
0; consequently, f(z) = z.

Let y be another fixed point of f . From (2.4) there exists x ∈ M which is comparable
to y and z. Monotonicity implies that fn(x) is comparable to fn(y) = y and fn(z) = z for
n = 0, 1, 2 . . . Moreover,

d
(
z, fn(x)

)
= d

(
fn(z), fn(x)

) ≤ Kθd
(
z, fn−1(x)

)
. (2.13)

Taking limit, and then limn→+∞d (z, fn(x)) = 0. Similar to [2], we have d(z, y) = 0. The proof
of the uniqueness of the fixed point is completed.

3. Application to Fractional Differential Equations

In this section, we consider the unique positive solution for a general higher order fractional
differential equation by using the generalized fixed point theorem

−Dαx(t) = f(t, x(t),Dμ1x(t),Dμ2x(t), . . . ,Dμn−1x(t)),

Dμix(0) = 0, 1 ≤ i ≤ n − 1,

Dμn−1+1x(0) = 0, Dμn−1x(1) =
m−2∑

j=1

ajDμn−1x
(
ξj
)
,

(3.1)

where n − 1 < α ≤ n, n ∈ N and n ≥ 3 with 0 < μ1 < μ2 < · · · < μn−2 < μn−1 and n − 3 < μn−1 <
α − 2, aj ∈ R, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 satisfying 0 <

∑m−2
j=1 ajξ

α−μn−1−1
j < 1 and Dα is the

standard Riemann-Liouville derivative, f ∈ C([0, 1] ×R
n, [0,+∞)). Recently, there has been a

significant development in the study of fractional differential equations; for more details we
refer the reader to [4–12] and the references cited therein.

For the convenience of the reader, we present some notations and lemmas which will
be used in the proof of our results.

Definition 3.1 (see [13, 14]). The Riemann-Liouville fractional integral of order α > 0 of a
function x : (0,+∞) → R is given by

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds, (3.2)

provided that the right-hand side is pointwise defined on (0,+∞).
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Definition 3.2 (see [13, 14]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by

Dα
t x(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, (3.3)

where n = [α]+1, [α] denotes the integer part of number α, provided that the right-hand side
is pointwise defined on (0,+∞).

Proposition 3.3 (see [13, 14]). Consider the following.

(1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dσ
t I

νx(t) = Iν−σx(t), Dσ
t I

σx(t) = x(t). (3.4)

(2) If ν > 0, σ > 0, then

Dν
t t

σ−1 =
Γ(σ)

Γ(σ − ν)
tσ−ν−1. (3.5)

Proposition 3.4 (see [13, 14]). Let α > 0, and f(x) is integrable, then

IαDα
t x(t) = f(x) + c1x

α−1 + c2x
α−2 + · · · + cnx

α−n, (3.6)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Lemma 3.5 (see [15]). Let x(t) = Iμn−1u(t), then BVP (3.1) is equivalent to the following BVP:

−Dα−μn−1u(t) = f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)
,

u(0) = u′(0) = 0 u(1) =
m−2∑

j=1

aju
(
ξj
)
.

(3.7)

Moreover, if v ∈ C([0, 1], [0,+∞)) is a solution of problem (3.7), then the function x(t) = Iμn−1u(t)
is a positive solution of problem (3.1).

Let

k(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(t(1 − s))α−μn−1−1 − (t − s)α−μn−1−1

Γ
(
α − μn−1

) , 0 ≤ s ≤ t ≤ 1,

(t(1 − s))α−μn−1−1

Γ
(
α − μn−1

) , 0 ≤ t ≤ s ≤ 1,

(3.8)



6 Abstract and Applied Analysis

from [15], the Green function of (3.7) is

H(t, s) = k(t, s) +
tα−μn−1−1

1 −∑m−2
j=1 ajξ

α−μn−1−1
j

m−2∑

j=1

ajk
(
ξj , s

)
, (3.9)

and with property

0 ≤ H(t, s) ≤ 1
Γ
(
α − μn−1

)

⎛

⎝1 +

∑m−2
j=1 aj

1 −∑m−2
j=1 ajξ

α−μn−1−1
j

⎞

⎠ = η. (3.10)

In our considerations, we will work in the Banach space E = C([0, 1];R) with the
classical metric given by d(x, y) = sup0≤t≤1|x(t)−y(t)|. Notice that this space can be equipped
with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for any t ∈ [0, 1]. (3.11)

In [2], it is proved that (C[0, 1],≤) satisfies condition (2.3) of Theorem 2.2.Moreover, for x, y ∈
C[0, 1], as the function max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition [15]. Consider the
cone

P = {u ∈ C[0, 1] : u(t) ≥ 0}. (3.12)

Note that as P is a closed set of C[0, 1], P is a complete metric space.
It is well known that the BVP (3.7) is equivalent to the integral equation

u(t) =
∫1

0
H(t, s)f

(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds. (3.13)

Now, for u ∈ P we define the operator T by

(Tu)(t) =
∫1

0
H(t, s)f

(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds. (3.14)

Then from the assumption on f and (3.10), we have

T(P) ⊂ P. (3.15)

We also introduce the following class of nondecreasing functions B by φ : [0,+∞) →
[0,+∞) satisfying the following:

φ(x) ≤ Kx, for any x > 0. (3.16)
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Clearly, if φ ∈ B, then φ(x)/x ∈ A. The standard functions φ ∈ B, for example, φ(x) = Kx,
φ(x) = (2K/π)x arctanx, and φ(x) = Kx2/(1 + x).

Theorem 3.6. Suppose f(t, x1, x2, . . . , xn) is nondecreasing in xi on [0,+∞); moreover, there exist
n positive constants ρi, i = 1, 2, . . . , n that satisfy

max
{
ρ1, ρ2, . . . , ρn

} ≤ (
nη

)−1
, (3.17)

and there exist a function φ ∈ B and constants 0 < θ1 < Γ(μn−1)/K, 0 < θn < 1/K, 0 < θi <
Γ(μn−1 − μi)/K, i = 1, 2, . . . , n − 2 such that

∣
∣f(t, x1, x2, . . . , xn) − f

(
t, y1, y2, . . . , yn

)∣∣ ≤
n∑

i=1

ρiφ
(
θi
(
xi − yi

))
, (3.18)

for xi, yi ∈ [0,+∞), i = 1, 2, . . . , n with xi ≥ yi and t ∈ [0, 1]. Then problem (3.1) has a unique
nonnegative solution.

Proof. We check that the hypotheses in Theorem 2.2 are satisfied.
Firstly, the operator T is nondecreasing by the hypothesis. Then for any u ≥ v, we have

(Tu)(t) =
∫1

0
H(t, s)f

(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds

≥
∫1

0
H(t, s)f

(
s, Iμn−1v(s), Iμn−1−μ1v(s), . . . , Iμn−1−μn−2v(s), v(s)

)
ds

= (Tv)(t).

(3.19)

Noticing that

u(s) − v(s) ≤ d(u, v),

Iμn−1u(s) − Iμn−1v(s) ≤
∫ t

0

(t − s)μn−1−1|u(s) − v(s)|
Γ
(
μn−1

) ds ≤ d(u, v)
Γ
(
μn−1

) ,

Iμn−1−μiu(s) − Iμn−1−μiv(s) ≤
∫ t

0

(t − s)μn−1−μi−1|u(s) − v(s)|
Γ
(
μn−1 − μi

) ds

≤ d(u, v)
Γ
(
μn−1 − μi

) , i = 1, 2, . . . , n − 2,

(3.20)

and take

θ = max

{
θ1

Γ
(
μn−1

) ,
θ2

Γ
(
μn−1 − μ1

) , . . . ,
θn−1

Γ
(
μn−1 − μn−2

) , θn

}

. (3.21)
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Thus, for any u ≥ v, we have

d(Tu, Tv) = max
t∈[0,1]

|Tu(t) − Tv(t)|

≤ η

∫1

0

∣
∣f
(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds

−f(s, Iμn−1v(s), Iμn−1−μ1v(s), . . . , Iμn−1−μn−2v(s), v(s)
)∣∣

≤ η

∫1

0

[
ρ1φ(θ1(Iμn−1u(s) − Iμn−1v(s))) + ρ2φ

(
θ2
(
Iμn−1−μ1u(s) − Iμn−1−μ1v(s)

))

+ · · · + ρn−1φ
(
θn−1

(
Iμn−1−μn−2u(s) − Iμn−1−μn−2v(s)

))
+ ρnφ(θn(u(s) − v(s)))

]
ds

≤ nηmax
{
ρ1, ρ2, . . . , ρn

}
φ(θd(u, v)) ≤ φ(θd(u, v)).

(3.22)

For u/=v, we have

d(Tu, Tv) ≤ φ(θd(u, v))
θd(u, v)

θd(u, v) = β(θd(u, v))θd(u, v), (3.23)

and this inequality is obviously satisfied for u = v. Thus, we have

d(Tu, Tv) ≤ φ(θd(u, v))
θd(u, v)

θd(u, v) = β(θd(u, v))θd(u, v), for any u, v ∈ P with u ≥ v.

(3.24)

Finally, since the zero function satisfies 0 ≤ T0, Theorem 2.2 tells us that the operator
T has a unique fixed point in P , or, equivalently, the BVP (3.1) has a unique nonnegative
solution x in C[0, 1].

Theorem 3.7. If the assumptions of Theorem 3.6 are satisfied, and there exists t0 ∈ [0, 1] such that
f(t0, 0, . . . , 0)/= 0, then the unique solution of (3.1) is positive (a positive solution means a solution
satisfying x(t) > 0 for t ∈ (0, 1)).

Proof. By Theorem 3.6, the problem (3.1) has a unique nonnegative solution. We prove the
nonnegative solution is also positive.

Otherwise, there exists 0 < t∗ < 1 such that x(t∗) = 0, and

x(t∗) =
∫1

0
H(t∗, s)f

(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds = 0. (3.25)
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Then

0 = x(t∗) =
∫1

0
H(t∗, s)f

(
s, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds

≥
∫1

0
H(t∗, s)f(s, 0, . . . , 0)ds ≥ 0.

(3.26)

Consequently,

∫1

0
H(t∗, s)f(s, 0, . . . , 0)ds = 0, (3.27)

this yields

H(t∗, s)f(s, 0, . . . , 0) = 0, a.e. s ∈ [0, 1]. (3.28)

Note that H(t∗, s) > 0, s ∈ (0, 1), then we have

f(s, 0, . . . , 0) = 0, a.e. s ∈ [0, 1]. (3.29)

But on the other hand, since f(t0, 0, . . . , 0)/= 0, t0 ∈ [0, 1], we have f(t0, 0, . . . , 0) > 0, by
the continuity of f , we can find a set Ω ⊂ [0, 1] satisfying t0 ∈ Ω and the Lebesgue measure
μ(Ω) > 0 such that f(t, 0, . . . , 0) > 0 for any t ∈ Ω. This contradicts to (3.29). Therefore,
x(t) > 0, that is, x(t) is positive solution of (3.1).

Example 3.8. Consider the following fractional boundary value problem:

−D5/2x(t) = et +
1
10

x(t) +
1
2
sin2

(
D1/8x(t)

)
+
1
3
cos2

(
D1/4x(t)

)
, 0 < t < 1,

D1/4x(0) = D5/4x(0) = 0, D1/4x(1) =
1
4
D1/4x

(
1
4

)
+
1
2
D1/4x

(
3
4

)
.

(3.30)

Then the BVP (3.30) has a unique positive solution.

Proof. Since

m−2∑

j=1

ajξ
α−μn−1−1
j =

1
4

(
1
4

)5/4

+
1
2

(
3
4

)5/4

= 0.39316 < 1,

η =
1

Γ
(
α − μn−1

)

⎛

⎝1 +

∑m−2
j=1 aj

1 −∑m−2
j=1 ajξ

α−μn−1−1
j

⎞

⎠ = 0.10964.

(3.31)
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Thus,

(
nη

)−1 = 3.0405. (3.32)

Let K = 15 and φ(x) = 15x, and take

f(t, x1, x2, x3) = et +
1
10

x1 +
1
2
sin2x2 +

1
3
cos2x3, (t, x1, x2, x3) ∈ [0, 1] × [0,+∞)3. (3.33)

Then, for any x1 ≥ y1, x2 ≥ y2, x3 ≥ y3,

∣
∣f(t, x1, x2, x3) − f

(
t, y1, y2, y3

)∣∣ =

∣
∣∣
∣
∣
x1 − y1

10
+
sin2x2 − sin2y2

2
+
cos2x3 − cos2y3

3

∣
∣∣
∣
∣

≤ x1 − y1

10
+
x2 − y2

2
+
x3 − y3

3

=
2
75

× 15 × 1
4
(
x1 − y1

)
+

1
10

× 15 × 1
3
(
x2 − y3

)

+
4
9
× 15 × 1

20
(
x3 − y3

)

=
2
75

φ

(
1
4
(
x1 − y1

)
)
+

1
10

φ

(
1
3
(
x2 − y3

)
)

+
4
9
φ

(
1
20

(
x3 − y3

)
)

=
3∑

i=1

ρiφ
(
θi
(
xi − yi

))
,

(3.34)

where

ρ1 =
2
75

, ρ2 =
1
10

, ρ3 =
4
9
, θ1 =

1
4
, θ2 =

1
3
, θ3 =

1
20

. (3.35)

Thus, φ ∈ B and all of the conditions of Theorem 3.6 are satisfied.
On the other hand, f(0, 0, . . . , 0) = 4/3/= 0, by Theorems 3.6 and 3.7, the BVP (19) has

a unique positive solution.

Remark 3.9. In Example 3.8, β(x) = φ(x)/x = K = 15 which does not possess property β :
[0,+∞) → [0, 1) and

β(tn) −→ 1 implies tn −→ 0. (3.36)

Thus, the unique positive solution of BVP (3.30) cannot be obtained via Theorem 1.2, but
we obtain the unique positive solution of BVP (3.30) by using the generalized fixed point
Theorem 2.2, which implies that Theorem 2.2 is an essential promotion of Theorem 1.2.
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