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We consider a control system described by a class of fractional semilinear evolution equations
in a separable reflexive Banach space. The constraint on the control is a multivalued map with
nonconvex values which is lower semicontinuous with respect to the state variable. Along with
the original system we also consider the system in which the constraint on the control is the upper
semicontinuous convex-valued regularization of the original constraint. We obtain the existence
results for the control systems and the relaxation property between the solution sets of these
systems.

1. Introduction

Let J = [0, b] and 0 < α < 1. We consider the following control system described by a class of
fractional semilinear evolution equations of the form:

CD
α
t x(t) = Ax(t) + h(t, x(t)) + g(t, x(t))u(t), t ∈ J,

x(0) = x0,
(1.1)

with the mixed nonconvex constraint on the control

u(t) ∈ U(t, x(t)) a.e. on J. (1.2)
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Here CDα
t is the Caputo fractional derivative of order α, b > 0 is a finite real number, A is

the infinitesimal generator of a strongly continuous semigroup {T(t), t ≥ 0} in a separable
reflexive Banach space X, g : J × X → L(Y,X) (L(Y,X) is the space of continuous linear
operators from Y into X), h : J × X → X is a nonlinear function, and U : J × X → 2Y \ {∅}
is a multivalued mapping with closed values that is not necessarily convex. The space Y is a
separable, reflexive Banach space modeling the control space.

We denote by C(J,X) the space of all continuous functions from J into X with the
supremum norm given by ‖x‖C = supt∈J‖x(t)‖X for x ∈ C(J,X). Let BX ⊆ X be the open unit
ball centered at zero. Consider the multivalued map

Uδ(t, x) = co
{⋃

U(t, z) : z ∈ x + δBX
}
, δ > 0, (1.3)

V (t, x) =
⋂
δ↓0
Uδ(t, x), (1.4)

here co stands for the closed convex hull of a set. The map (1.4) is usually called the convex
upper semicontinuous regularization ofU(t, x).

Along with the constraint (1.2) on the control we also consider the constraint

u(t) ∈ V (t, x(t)) a.e. on J (1.5)

on the control. Note that usually we have coU(t, x) ⊆ V (t, x).

Definition 1.1. A solution of the control system (1.1), (1.2) is defined to be a pair (x(·), u(·))
consisting of a trajectory x ∈ C(J,X) and a control u ∈ L1(J, Y ) satisfying (1.1) and the
inclusion (1.2) a.e.

A solution of the control system (1.1), (1.5) is defined similarly. We denote by RU, TrU
(RV , TrV ) the sets of all solutions, all admissible trajectories of the control system (1.1) and
(1.2) (the control system (1.1) and (1.5)).

Relaxation property [1] has important ramifications in control theory. There are many
papers dealing with the verification of the relaxation property for various classes of control
systems. For example, we refer to [2–5] for nonlinear evolution inclusions or equations,
[6, 7] for control problems of subdifferential type and the references therein. In this paper,
we investigate this property for control systems described by fractional semilinear evolution
equations. We will prove that TrV is a compact set in C(J,X) and

TrV = TrU, (1.6)

where the bar stands for the closure in C(J,X).
Fractional calculus has recently gained much attentions due to its numerous

applications in science and engineering. Examples can be found in various disciplines such
as mechanics, electrophysics, signal and image processing, thermodynamics, biophysics,
aerodynamics, and economics, (see [8–12] for instance). For some recent results on fractional
differential equations, we can refer to [13–17]. As for the study of fractional semilinear
differential equations, we can refer to Zhou and Jiao [18, 19], Wang and Zhou [20] for the
existence results. The issue of approximate controllability was considered by Kumar and
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Sukavanam [21], Sakthivel et al. [22]. Wang and Zhou in [23] were concerned with the
optimal control settings.

2. Preliminaries and Assumptions

Let J = [0, b] be a closed interval of the real line with the Lebesgue measure μ and the σ-
algebra Σ of μ measurable sets. The norm of the space X (or Y ) will be denoted by ‖ · ‖X (or
‖·‖Y ). For any Banach space V the symbolω−V stands for V equippedwith the weak σ(V, V ∗)
topology. The same notation will be used for subsets of V . In all other cases we assume that
V and its subsets are equipped with the strong (normed) topology.

We first recall the following known definitions from fractional differential theory. For
more details, please see [11, 12].

Definition 2.1. The fractional integral of order α with the lower limit zero for a function f is
defined as

Iαf(t) =
1

Γ(α)

∫ t
0

f(s)

(t − s)1−α
ds, t > 0, α > 0 (2.1)

provided the right hand side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order α with the lower limit zero for a
function f is defined as

LDαf(t) =
1

Γ(n − α)
dn

dtn

∫ t
0

f(s)

(t − s)α+1−n
ds, t > 0, n − 1 < α < n. (2.2)

Definition 2.3. The Caputo derivative of order α with the lower limit zero for a function f is
defined as

CDαf(t) = LD
α

(
f(t) −

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n − 1 < α < n. (2.3)

If f is an abstract function with values inX, then integrals which appear in Definitions
2.1 and 2.2 are taken in Bochner’s sense.

We now proceed to some basic definitions and results from multivalued analysis. For
more details on multivalued analysis, see the books [24, 25].

We use the following notations: Pf(Y ) is the set of all nonempty closed subsets of Y ,
Pfb(Y ) is the set of all nonempty, closed and bounded subsets of Y , and Pfc(Y ) is the set of all
nonempty, closed, and convex subsets of Y .

On Pbf(Y ), we have a metric known as the “Hausdorff metric” and defined by

h(A,B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}
, (2.4)
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where d(x,C) is the distance from a point x to a set C. We say a multivalued map is h-
continuous if it is continuous in the Hausdorff metric h(·, ·).

We say that a multivalued map F : J → Pf(Y ) is measurable if F−1(E) = {t ∈ J :
F(t) ∩ E/= ∅} ∈ Σ for every closed set E ⊆ Y . If F : J × X → Pf(Y ), then measurability of F
means that F−1(E) ∈ Σ ⊗ BX , where Σ ⊗ BX is the σ-algebra of subsets in J × X generated by
the sets A × B, A ∈ Σ, B ∈ BX , and BX is the σ-algebra of the Borel sets in X.

Suppose V, Z are two Hausdorff topological spaces and F : V → 2Z \{∅}. We say that
F is lower semicontinuous in the sense of Vietoris (l.s.c. for short) at a point x0 ∈ V if for any
open setW ⊆ Z, F(x0)∩W /= ∅, there is a neighborhoodO(x0) of x0 such that F(x)∩W /= ∅ for
all x ∈ O(x0). F is said to be upper semicontinuous in the sense of Vietoris (u.s.c. for short)
at a point x0 ∈ V if for any open setW ⊆ Z, F(x0) ⊆ W , there is a neighborhood O(x0) of x0
such that F(x) ⊆W for all x ∈ O(x0). For the properties of l.s.c and u.s.c, see the book [24].

Besides the standard norm on Lq(J, Y ) (here Y is a separable, reflexive Banach space),
1 < q <∞, we also consider the so called weak norm:

‖u(·)‖ω = sup
0≤t1≤t2≤b

∥∥∥∥∥
∫ t2
t1

u(s)ds

∥∥∥∥∥
Y

, for u ∈ Lq(J, Y ). (2.5)

The space Lq(J, Y ) furnished with this normwill be denoted by Lqω(J, Y ). The following result
establishes a relation between convergence in ω − Lq(J, Y ) and convergence in Lqω(J, Y ).

Lemma 2.4 (see [5]). If a sequence {un}n≥1 ⊆ Lq(J, Y ) is bounded and converges to u in Lqω(J, Y ),
then it converges to u in ω − Lq(J, Y ).

We assume the following assumptions on the data of our problems in the whole paper.

H(A) : The operator A generates a strongly continuous semigroup T(t), t ≥ 0 in X, and
there exists a constantMA ≥ 1 such that supt∈[0,∞)‖T(t)‖ ≤ MA. For any t > 0, T(t)
is compact.

Remark 2.5. Let us take X = L2[0, π] and define the operator A by Aω = ω′′ with the domain
D(A) = {ω ∈ X: ω, ω′ are absolutely continuous, ω′′ ∈ X, and ω(0) = ω(π) = 0}. Then
Aω = −

∑∞
n=1 n

2〈ω, en〉en, ω ∈ D(A), where en(z) = (2/π)1/2 sinnz, 0 ≤ z ≤ π , n = 1, 2, . . ..
Clearly A generates a compact semigroup {T(t) : t > 0} in X and it is given by T(t)ω =∑∞

n=1 e
−n2t〈ω, en〉en, ω ∈ X. In such a case, it is easy to see that H(A) holds [22].

H(g) : The operator g : J ×X → L(Y,X) is such that

(1) the map t → g(t, x)u is measurable for all x ∈ X and u ∈ Y ;
(2) for a.e. t ∈ J , the map x → g∗(t, x)h is continuous for all h ∈ X∗, where g∗(t, x)

is the adjoint operator to g(t, x);
(3) for a.e. t ∈ J and x ∈ X

∥∥g(t, x)∥∥L(Y,X) ≤ d, with d > 0. (2.6)

H(h) : The function h : J × X → X of Carathéodory type satisfies: there exists a constant
0 < β < α such that for a.e. t ∈ J and all x ∈ X, ‖h(t, x)‖X ≤ a1(t) + c1‖x‖X , where
a1 ∈ L1/β(J,R+) and c1 > 0.
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H(U) : The multivalued mapU : J ×X → Pf(Y ) is such that:

(1) (t, x) → U(t, x) is Σ ⊗ BX measurable;
(2) for a.e. t ∈ J , the map x → U(t, x) is l.s.c.;
(3) for a.e. t ∈ J and all x ∈ X, ‖U(t, x)‖Y = sup{‖v‖Y : v ∈ U(t, x)} ≤ a2(t) +

c2‖x‖X , where a2 ∈ L1/β(J,R+) and c2 > 0.

H(M) : For anyM > 0, there exists a function lM ∈ L∞(J,R+) such that for a.e. t ∈ J and for
any x1, x2 ∈ X, ‖x1‖X ≤ M, ‖x2‖X ≤ M and u1 ∈ U(t, x1), there is a u2 ∈ U(t, x2)
such that

∥∥g(t, x1)u1 + h(t, x1) − g(t, x2)u2 − h(t, x2)
∥∥
X ≤ lM(t)‖x1 − x2‖X. (2.7)

We note that the condition similar to H(M) was also assumed in [6, 7].

From the Definitions 2.1 and 2.2 and the results obtained in [18, 19], Definition 1.1 can
be rewritten in the following form.

Definition 2.6. A function x ∈ C(J,X) is a (mild) solution of the system (1.1), (1.2) if x(0) = x0
and there exists u ∈ L1(J, Y ) such that u(t) ∈ U(t, x(t)) a.e. on t ∈ J and

x(t) = Pα(t)x0 +
∫ t
0
(t − s)α−1Qα(t − s)

(
g(s, x(s))u(s) + h(s, x(s))

)
ds. (2.8)

A similar definition can be introduced for the system (1.1) and (1.5). Here

Pα(t) =
∫∞
0
ξα(θ)T(tαθ)dθ, Qα(t) = α

∫∞
0
θξα(θ)T(tαθ)dθ,

ξα(θ) =
1
α
θ−1−(1/α)
α

(
θ−(1/α)

)
≥ 0,


α(θ) =
1
π

∞∑
n=1

(−1)(n−1)(θ)(−nα−1) Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,∞),

(2.9)

and ξα is a probability density function defined on (0,∞) [26], that is

ξα(θ) ≥ 0, θ ∈ (0,∞),
∫∞
0
ξα(θ)dθ = 1. (2.10)

It is not difficult to verify that

∫∞
0
θξα(θ)dθ =

1
Γ(1 + α)

. (2.11)
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Lemma 2.7 (see [18, 19]). Let H(A) hold, then the operators Pα andQα have the following properties.

(1) For any fixed t ≥ 0, Pα(t) and Qα(t) are linear and bounded operators, that is, for any
x ∈ X,

‖Pα(t)x‖X ≤MA‖x‖X, ‖Qα(t)x‖X ≤ αMA

Γ(1 + α)
‖x‖X. (2.12)

(2) {Pα(t), t ≥ 0} and {Qα(t), t ≥ 0} are strongly continuous.

(3) For every t > 0, Pα(t) and Qα(t) are compact operators.

Lemma 2.8 (see [27, Theorem 3.1]). Let x(t) be continuous and nonnegative on [0, b]. If

x(t) ≤ ψ(t) +M
∫ t
0

x(s)
(t − s)γ

ds, 0 ≤ t ≤ b, (2.13)

where 0 ≤ γ < 1, ψ(t) is a non-negative, monotonic increasing continuous function on [0, b] andM
is a positive constant, then

x(t) ≤ ψ(t)E1−γ
(
MΓ
(
1 − γ
)
t1−γ
)
, 0 ≤ t ≤ b, (2.14)

where E1−γ(z) is the Mittag-Leffler function defined for all γ < 1 by

E1−γ(z) =
∞∑
n=0

zn

Γ
(
n
(
1 − γ
)
+ 1
) . (2.15)

3. Auxiliary Results

In this section, we will give some auxiliary results needed in the proof of the main results. We
begin with the a priori estimation of the trajectory of the control systems.

Lemma 3.1. For any admissible trajectory x of the control system (1.1) and (1.5), that is, x ∈ TrV ,
there is a constant L such that

‖x‖C ≤ L. (3.1)

Proof. Let any x ∈ TrV , from Definition 2.6, we know that there exists a u with u(t) ∈
V (t, x(t)) a.e. and

x(t) = Pα(t)x0 +
∫ t
0
(t − s)α−1Qα(t − s)

(
g(s, x(s))u(s) + h(s, x(s))

)
ds. (3.2)
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Then by Lemma 2.7, we get

‖x(t)‖X ≤MA‖x0‖X +
αMA

Γ(1 + α)

∫ t
0
(t − s)α−1‖h(s, x(s))‖Xds

+
αMA

Γ(1 + α)

∫ t
0
(t − s)α−1

∥∥g(s, x(s))u(s)∥∥Xds.
(3.3)

From H(h) and Hölder inequality, we have

∫ t
0
(t − s)α−1‖h(s, x(s))‖Xds ≤

∫ t
0
(t − s)α−1(a1(s) + c1‖x(s)‖X)ds

≤
[ (

1 − β
)

(
α − β

)b(α−β)/(1−β)
]1−β

‖a1‖L1/β(J)

+ c1

∫ t
0
(t − s)α−1‖x(s)‖Xds.

(3.4)

Similarly, by H(g)(3) and H(U)(3),

∫ t
0
(t − s)α−1

∥∥g(s, x(s))u(s)∥∥Xds ≤ d

∫ t
0
(t − s)α−1(a2(s) + c2‖x(s)‖X)ds

≤ d

[ (
1 − β
)

(
α − β

)b(α−β)/(1−β)
]1−β

‖a2‖L1/β(J)

+ dc2

∫ t
0
(t − s)α−1‖x(s)‖Xds.

(3.5)

Combining (3.4), (3.5)with (3.3), we obtain

‖x(t)‖X ≤ MA‖x0‖X +
αMA

Γ(1 + α)
(dc2 + c1)

∫ t
0
(t − s)α−1‖x(s)‖Xds

+
αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)b(α−β)/(1−β)
]1−β(

‖a1‖L1/β(J) + d‖a2‖L1/β(J)

)
.

(3.6)

From the above inequality, using the well-known singular version of the Gronwall inequality
(see Lemma 2.8), we can deduce that there exists a constant L > 0 such that ‖x‖C ≤ L.

Let Q = {h ∈ X : ‖h‖X ≤ L}. Let prL : X → X be the L-radial retraction, that is,

prL(x) =

⎧
⎨
⎩
x, ‖x‖X ≤ L,
Lx

‖x‖X
, ‖x‖X > L.

(3.7)
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This map is Lipschitz continuous. We define U1(t, x) = U(t,prLx). Obviously, U1 satisfies
H(U)(1) and H(U)(2). Moreover, by the properties of prL, we have for a.e. t ∈ J , all x ∈ X
and all u ∈ U1(t, x) the estimates

‖u‖Y ≤ a2(t) + c2L, ‖u‖Y ≤ a2(t) + c2‖x‖X. (3.8)

Hence, Lemma 3.1 is still valid with U(t, x) substituted by U1(t, x). Therefore, we assume
without any loss of generality that for a.e. t ∈ J , and all x ∈ X

sup{‖v‖Y : v ∈ U(t, x)} ≤ ϕ(t) = a2(t) + c2L, with ϕ ∈ L1/β(J,R+). (3.9)

Similarly, we can assume that for a.e. t ∈ J and all x ∈ X

‖h(t, x)‖X ≤ γ(t) = a1(t) + c1L, with γ ∈ L1/β(J,R+). (3.10)

Let

Yϕ =
{
u ∈ L1/β(J, Y ) : ‖u(t)‖Y ≤ ϕ(t) a.e. t ∈ J

}
, (3.11)

Xϕ =
{
f ∈ L1/β(J,X) :

∥∥f(t)∥∥X ≤ dϕ(t) + γ(t) a.e. t ∈ J
}
. (3.12)

It follows from assumption H(g) that for any h ∈ X∗, the function 〈h, g(t, x)u〉 = 〈g∗(t, x)h, u〉
is measurable in t and continuous in (x, u) almost everywhere. Hence, for any measurable
functions x : J → X and u : J → Y , the function t → g(t, x(t))u(t) is scalarly
measurable [28]. The separability of the spaceX implies that the function t → g(t, x(t))u(t) is
measurable. Therefore, according to H(g) and H(h), for any x ∈ L1/β(J,X) and u ∈ L1/β(J, Y ),
the function t → g(t, x(t))u(t) + h(t, x(t)) is an element of the space L1/β(J,X). Hence we can
consider the operator A : L1/β(J,X) × L1/β(J, Y ) → L1/β(J,X) defined by the rule

A(x, u)(t) = g(t, x(t))u(t) + h(t, x(t)). (3.13)

Lemma 3.2. The operator (x, u) → A(x, u) is sequentially continuous as an operator from
L1/β(J,X) ×ω − L1/β(J, Y ) into ω − L1/β(J,X).

Proof. Suppose that xn → x in L1/β(J,X) and un → u in ω − L1/β(J, Y ). Take an arbitrary
u ∈ Y and any h ∈ L1/(1−β)(J,X∗). H(g) and the equality

〈
h(t), g(t, xn(t))u

〉
=
〈
g∗(t, xn(t))h(t), u

〉
(3.14)
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imply that t → g∗(t, xn(t))h(t) is a scalarly measurable function from J to Y ∗. Hence it is
measurable. Consider a subsequence xnk , k ≥ 1, of the sequence xn, n ≥ 1, converging to x
a.e. in t ∈ J . By H(g), H(h), and (3.10), we have

g∗(t, xnk(t))h(t) −→ g∗(t, x(t))h(t) a.e. t ∈ J in Y ∗,
∥∥g∗(t, xnk(t))h(t)

∥∥
Y ∗ ≤ d‖h(t)‖X∗ a.e. t ∈ J,

h(t, xnk(t)) −→ h(t, x(t)) a.e. t ∈ J in X,

‖h(t, xnk(t))‖X ≤ γ(t).

(3.15)

Using the preceding four formulae and Lebesgue’s theorem of dominated convergence, we
obtain

g∗(t, xnk(t))h(t) −→ g∗(t, x(t))h(t) in L1/(1−β)(J, Y ∗), (3.16)

h(t, xnk(t)) −→ h(t, x(t)) in L1/β(J,X). (3.17)

Then it follows from (3.16) that

∫

J

〈
g∗(t, xnk(t))h(t), unk(t)

〉
dt −→

∫

J

〈
g∗(t, x(t))h(t), u(t)

〉
dt. (3.18)

Since 〈h(t), g(t, x(t))u(t)〉 = 〈g∗(t, x(t))h(t), u(t)〉 and h ∈ L1/(1−β)(J,X∗) is arbitrary, by (3.17)
and (3.18), we deduce that

A(xnk , unk) −→ A(x, u) in ω − L1/β(J,X). (3.19)

It follows from (3.9), (3.10), and (3.12) that {A(xn, un)}n≥1 is a subset of Xϕ which is a
metrizable compact set in ω − L1/β(J,X). If the sequence A(xn, un), n ≥ 1, does not converge
to A(x, u) in ω − L1/β(J,X), then it has a subsequence A(xni , uni), i ≥ 1, such that none of its
subsequences converges to A(x, u) in ω − L1/β(J,X). Applying the above arguments to this
very subsequence (xni , uni), i ≥ 1, we obtain a contradiction. The lemma is proved.

Lemma 3.3. For a.e. t ∈ J , the multivalued map x → V (t, x) defined by (1.4) from X to 2Y is u.s.c.
with convex closed values.

Proof. From the definition of V (t, x), it is clear that V (t, x) is closed convex valued. Since
δ → Uδ(t, x) is increasing (in the sense of inclusion), and letting

U1/n(t, x) = co
{⋃

U(t, z) : z ∈ x +
1
n
BX

}
, (3.20)

we obtain

V (t, x) =
⋂
n≥1
U1/n(t, x). (3.21)
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Let x0 ∈ X andW be an open set in Y such that V (t, x0) ⊆W . By (3.21), we can find an n0 ≥ 1
such that

U1/n0(t, x0) ⊆W. (3.22)

For an arbitrary y ∈ x0 + (1/n0)BX , we can find a δ > 0 such that y + δBX ⊆ x0 + (1/n0)BX .
Therefore we obtain

Uδ

(
t, y
)
⊆ U1/n0(t, x0) ⊆W. (3.23)

Then it is clear that V (t, y) ⊆ W , for all y ∈ x0 + (1/n0)BX . This means that x → V (t, x) is
u.s.c.

Let CX = {zk}k≥1 be a dense countable subset of the ball BX . We put

Uk
1/n(t, x) = U

(
t, x +

1
n
zk

)
, zk ∈ CX. (3.24)

Lemma 3.4. For a.e. t ∈ J , letU1/n(t, x) be defined by (3.20), then we have

U1/n(t, x) = co

{
∞⋃
k=1

Uk
1/n(t, x)

}
, (3.25)

where the closure is taken in Y .

Proof. We recall that coA = coA for any subset A ⊆ Y . Hence it is sufficient to prove that for
a.e. t ∈ J ,

∞⋃
k=1

Uk
1/n(t, x) =

{⋃
U(t, z) : z ∈ x +

1
n
BX

}
. (3.26)

That the left hand side of (3.26) is contained in its right hand side is obvious. Let w ∈
{
⋃
U(t, z) : z ∈ x + (1/n)BX}, then w ∈ U(t, x + (1/n)z∗) for some z∗ ∈ BX . Now

let zm → z∗, {zm}m≥1 ⊆ CX . Since a.e. t ∈ J , x → U(t, x) is l.s.c. at x + (1/n)z∗ and
x + (1/n)zm → x + (1/n)z∗, there is a sequence wm ∈ U(t, x + (1/n)zm), m ≥ 1 converging

to w (Proposition 1.2.6 [24]). Due to {wm}m≥1 ⊆
⋃∞
k=1U

k
1/n(t, x), we have w ∈

⋃∞
k=1U

k
1/n(t, x).

Since w is arbitrary, we can get {
⋃
U(t, z) : z ∈ x + (1/n)BX} ⊆

⋃∞
k=1U

k
1/n(t, x). Therefore

(3.26) holds. The lemma is proved.

Now we consider the following auxiliary problem:

CD
α
t x(t) = Ax(t) + f(t), t ∈ J = [0, b],

x(0) = x0.
(3.27)
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It is clear that for every f ∈ L1/β(J,X), (3.27) has a unique (mild) solution S(f) ∈ C(J,X)
which is given by

S
(
f
)
(t) = Pα(t)x0 +

∫ t
0
(t − s)α−1Qα(t − s)f(s)ds. (3.28)

The following lemma describes a property of the solution map S which is crucial in
our investigation.

Lemma 3.5. The solution map S : Xϕ → C(J,X) is continuous from ω −Xϕ to C(J,X).

Proof. Consider the operatorH : L1/β(J,X) → C(J,X) defined by

H
(
f
)
(t) =

∫ t
0
(t − s)α−1Qα(t − s)f(s)ds. (3.29)

We knowH is linear. From simple calculation, one has

∥∥H(f)
∥∥
C ≤ αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)b(α−β)/(1−β)
]1−β∥∥f∥∥L1/β(J,X), (3.30)

that is, the operatorH is continuous from L1/β(J,X) into C(J,X), henceH is also continuous
from ω − L1/β(J,X) into ω − C(J,X).

Let any B ∈ Pb(L1/β(J,X)) and suppose that for any f ∈ B, ‖f‖L1/β(J,X) ≤ K (K > 0 is a
constant). Next we will show thatH is completely continuous.

(a) From (3.30), we know that ‖H(f)(t)‖X is uniformly bounded for any t ∈ J and
f ∈ B.

(b) H is equicontinuous on B. Let 0 ≤ t1 < t2 ≤ b and any f ∈ B, we get

∥∥H(f)(t2) −H(f)(t1)
∥∥
X

=

∥∥∥∥∥
∫ t2
0
(t2 − s)α−1Qα(t2 − s)f(s)ds −

∫ t1
0
(t1 − s)α−1Qα(t1 − s)f(s)ds

∥∥∥∥∥
X

≤
∥∥∥∥∥
∫ t2
t1

(t2 − s)α−1Qα(t2 − s)f(s)ds
∥∥∥∥∥
X

· · ·denoted by I1

+

∥∥∥∥∥
∫ t1
0
((t2 − s)α−1 − (t1 − s)α−1)Qα(t2 − s)f(s)ds

∥∥∥∥∥
X

· · ·denoted by I2

+

∥∥∥∥∥
∫ t1
0
(t1 − s)α−1(Qα(t2 − s) −Qα(t1 − s))f(s)ds

∥∥∥∥∥
X

· · ·denoted by I3.

(3.31)
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By using analogous arguments as in Lemma 3.1, we find

I1 ≤
αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)
]1−β

K(t2 − t1)α−β,

I2 ≤
αMA

Γ(1 + α)

(∫ t1
0

(
(t1 − s)α−1 − (t2 − s)α−1

)1/(1−β)
ds

)1−β

K

≤ αMA

Γ(1 + α)

(∫ t1
0

(
(t1 − s)(α−1)/(1−β) − (t2 − s)(α−1)/(1−β)

)
ds

)1−β

K

=
αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)
]1−β(

t
(α−β)/(1−β)
1 − t(α−β)/(1−β)2 + (t2 − t1)(α−β)/(1−β)

)1−β
K

≤ 2αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)
]1−β

(t2 − t1)α−βK.

(3.32)

For t1 = 0, 0 < t2 ≤ b, it is easy to see that I3 = 0. For t1 > 0 and ε > 0 be enough
small, we have

I3 ≤
∥∥∥∥∥
∫ t1−ε
0

(t1 − s)α−1(Qα(t2 − s) −Qα(t1 − s))f(s)ds
∥∥∥∥∥
X

+

∥∥∥∥∥
∫ t1
t1−ε

(t1 − s)α−1(Qα(t2 − s) −Qα(t1 − s))f(s)ds
∥∥∥∥∥
X

≤ sup
s∈[0,t1−ε]

‖Qα(t2 − s) −Qα(t1 − s)‖
[ (

1 − β
)

(
α − β

)
]1−β

×
(
t
(α−β)/(1−β)
1 − ε(α−β)/(1−β)

)1−β
K

+
2αMA

Γ(1 + α)

[ (
1 − β
)

(
α − β

)
]1−β

εα−βK.

(3.33)

Combining the estimations for I1, I2, and I3, and letting t2 → t1 and ε → 0 in I3,
we obtain thatH is equicontinuous. For more details, please see [19].

(c) The set Π(t) = {H(f)(t) : f ∈ B} is relatively compact in X. Clearly, Π(0) = {0}
is compact, and hence, it is only necessary to consider t > 0. For each h ∈ (0, t),
t ∈ (0, b], f ∈ B and δ > 0 be arbitrary, we define

Πh,δ(t) =
{
Hh,δ

(
f
)
(t) : f ∈ B

}
, (3.34)
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where

Hh,δ

(
f
)
(t) = α

∫ t−h
0

∫∞
δ

θ(t − s)α−1ξα(θ)T
(
(t − s)αθ

)
f(s)dθ ds

= α

∫ t−h
0

∫∞
δ

θ(t − s)α−1ξα(θ)T(hαδ)T
(
(t − s)αθ − hαδ

)
f(s)dθ ds

= αT(hαδ)
∫ t−h
0

∫∞
δ

θ(t − s)α−1ξα(θ)T
(
(t − s)αθ − hαδ

)
f(s)dθ ds.

(3.35)

From the compactness of T(hαδ) (hαδ > 0), we obtain that the setΠh,δ(t) is relatively compact
in X for any h ∈ (0, t) and δ > 0. Moreover, we have

∥∥H(f)(t) −Hh,δ

(
f
)
(t)
∥∥
X

= α

∥∥∥∥∥
∫ t
0

∫δ
0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s)dθ ds

+
∫ t
0

∫∞
δ

θ(t − s)α−1ξα(θ)T
(
(t − s)αθ

)
f(s)dθ ds

−
∫ t−h
0

∫∞
δ

θ(t − s)α−1ξα(θ)T
(
(t − s)αθ

)
f(s)dθ ds

∥∥∥∥∥
X

≤ α
∥∥∥∥∥
∫ t
0

∫δ
0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s)dθ ds

∥∥∥∥∥
X

+ α

∥∥∥∥∥
∫ t
t−h

∫∞
δ

θ(t − s)α−1ξα(θ)T((t − s)αθ)f(s)dθ ds
∥∥∥∥∥
X

≤MAα

(∫ t
0
(t − s)(α−1)/(1−β)ds

)1−β∥∥f∥∥L1/β(J,X)

∫δ
0
θξα(θ)dθ

+MAα

(∫ t
t−h

(t − s)(α−1)/(1−β)ds
)1−β∥∥f∥∥L1/β(J,X)

∫∞
δ

θξα(θ)dθ

≤MAKα

[ (
1 − β
)

(
α − β

)
]1−β(

bα−β
∫δ
0
θξα(θ)dθ +

1
Γ(1 + α)

hα−β
)
.

(3.36)

In virtue of (2.11), the last term of the preceding inequality tends to zero as h → 0 and δ → 0.
Therefore, there exist relatively compact sets arbitrarily close to the set Π(t), t > 0. Hence the
set Π(t), t > 0 is also relatively compact in X.

Since Xϕ is a convex compact metrizable subset of ω − L1/β(J,X), it suffices to prove
the sequential continuity of the map S. Now let {fn}n≥1 ⊆ Xϕ such that

fn −→ f in ω − L1/β(J,X), f ∈ Xϕ. (3.37)
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By the property of the operator H, we have H(fn) → H(f) in ω − C(J,X). Since
{fn}n≥1 is bounded, there is a subsequence {fnk}k≥1 of the sequence {fn}n≥1 such that
H(fnk) → z in C(J,X) for some z ∈ C(J,X). From the facts that

H
(
fn
)
−→ H

(
f
)

in ω − C(J,X), H
(
fnk
)
−→ z in C(J,X), (3.38)

we obtain that z = H(f) andH(fn) → H(f) in C(J,X).
From the definitions of the operators S and H, we have that S(f)(t) = Pα(t)x0 +

H(f)(t). Then due to the arguments above, we have S(fn) → S(f) inC(J,X). This completes
the proof of the lemma.

4. Existence Results for the Control Systems

In the present section, we are interested in the existence results for the control systems (1.1),
(1.2) and (1.1), (1.5).

Let Λ = S(Xϕ), from Lemma 3.5, we have that Λ is a compact subset of C(J,X). It
follows from formulae (3.9), (3.10), and (3.12) that TrU ⊆ TrV ⊆ Λ. Let U : C(J,X) →
2L

1/β(J,Y ) be defined by

U(x) = {h : J −→ Y measurable : h(t) ∈ U(t, x(t)) a.e.}, x ∈ C(J,X). (4.1)

Theorem 4.1. The set RU is nonempty and the set RV is a compact subset of the space C(J,X) ×ω −
L1/β(J, Y ).

Proof. By the hypothesis H(U)(1), we have that for any measurable function x : J → X,
the map t → U(t, x(t)) is measurable and has closed values. Therefore it has measurable
selectors [29]. So the operator U is well defined and its values are closed decomposable
subsets of L1/β(J, Y ). We claim that x → U(x) is l.s.c. Let x∗ ∈ C(J,X), h∗ ∈ U(x∗) and
let {xn}n≥1 ⊆ C(J,X) be a sequence converging to x∗. It follows from Lemma 3.2 in [30] that
there exists a sequence hn ∈ U(xn) such that

‖h∗(t) − hn(t)‖Y ≤ dY (h∗(t), U(t, xn(t))) +
1
n
, a.e. t ∈ J. (4.2)

Since the map y → U(t, y) is l.s.c., by the Proposition 1.2.26 in [24], the function y →
dY (h∗(t), U(t, y)) is u.s.c. for a.e. t ∈ J . It follows from (4.2) that for a.e. t ∈ J

lim
n→∞

‖h∗(t) − hn(t)‖Y ≤ limn→∞dY (h∗(t), U(t, xn(t)))

≤ dY (h∗(t), U(t, x∗(t))) = 0.
(4.3)

This together with (3.9) implies that hn → h∗ in L1/β(J, Y ). Therefore the map x → U(x) is
l.s.c. By Proposition 2.2 in [31], there is a continuous functionm : Λ → L1/β(J, Y ) such that

m(x) ∈ U(x), ∀x ∈ Λ. (4.4)
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Consider the map P : L1/β(J,X) → L1/β(J, Y ) defined by P(f) = m(S(f)). Due to Lemma 3.5
and the continuity of m, the map P is continuous from ω − Xϕ into L1/β(J, Y ). Then by
Lemma 3.2, we deduce that the map f → A(S(f),P(f)) is continuous from ω − Xϕ into
ω − L1/β(J,X). It follows from (3.9), (3.10), (3.12), and (3.13) that A(S(f),P(f)) ∈ Xϕ for
every f ∈ Xϕ. Therefore, the map f → A(S(f),P(f)) is continuous from ω −Xϕ into ω −Xϕ.
Since ω − Xϕ is a convex metrizable compact set in ω − L1/β(J,X), Schauder’s fixed point
theorem implies that this map has a fixed point f∗ ∈ Xϕ, that is, f∗ = A(S(f∗),P(f∗)). Let
u∗ = P(f∗) and x∗ = S(f∗), then we have u∗ = m(x∗) and f∗ = A(x∗, u∗). That means

x∗(t) = Pα(t)x0 +
∫ t
0
(t − s)α−1Qα(t − s)

(
g(s, x∗(s))u∗(s) + h(s, x∗(s))

)
ds,

u∗(t) ∈ U(t, x∗(t)), a.e. t ∈ J,
(4.5)

which implies that (x∗(·), u∗(·)) is a solution of the control system (1.1) and (1.2). Hence RU

is nonempty.
It is easy to see that RV ⊆ Λ × Yϕ. Since Λ is compact in C(J,X) and Yϕ is metrizable

convex compact in ω − L1/β(J, Y ), we have that RV is relatively compact in C(J,X) × ω −
L1/β(J, Y ). Hence to complete the proof of this theorem, it is sufficient to prove that RV is
sequentially closed in C(J,X) ×ω − L1/β(J, Y ).

Let {(xn(·), un(·))}n≥1 ⊆ RV be a sequence converging to (x(·), u(·)) in C(J,X) × ω −
L1/β(J, Y ). Denote

fn(t) = g(t, xn(t))un(t) + h(t, xn(t)),

f(t) = g(t, x(t))u(t) + h(t, x(t)).
(4.6)

According to Lemma 3.2, fn → f in ω − L1/β(J,X). Since fn ∈ Xϕ and xn = S(fn), n ≥ 1,
Lemma 3.5 implies that

x = S
(
f
)
. (4.7)

Hence, to prove that (x(·), u(·)) ∈ RV , we only need to verify that u(t) ∈ V (t, x(t)) a.e. t ∈ J .
Since un → u in ω − L1/β(J, Y ), by Mazur’s theorem we have

u(t) ∈
∞⋂
n=1

co

(
∞⋃
k=n

uk(t)

)
, for a.e. t ∈ J. (4.8)

From Lemma 3.3, we have that for a.e. t ∈ J , the map x → V (t, x) ∈ Pfc(Y ) is u.s.c., then
by Proposition 1.2.61 in [24], the map x → V (t, x) ∈ Pfc(Y ) is h-upper semicontinuous.
Therefore from assertion (b) of Proposition 1.2.86 in [24], the map x → V (t, x) has property
Q. Hence we have

∞⋂
n=1

co

(
∞⋃
k=n

V (t, xk(t))

)
⊆ V (t, x(t)), for a.e. t ∈ J. (4.9)
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In virtue of (4.8) and (4.9), and for a.e. t ∈ J , un(t) ∈ V (t, xn(t)), n ≥ 1, we obtain that
u(t) ∈ V (t, x(t)) a.e. t ∈ J . This means that RV is compact in C(J,X)×ω−L1/β(J, Y ). The proof
is complete.

5. Main Results

In this section, we will prove the relaxation result. But first, we give a lemma which is
important in the proof of our relaxation theorem.

Lemma 5.1. For any pair (x∗(·), u∗(·)) ∈ RV , there exists a sequence of simple functions yn : J → X
and a sequence vn ∈ L1/β(J, Y ), n ≥ 1, such that

∥∥yn(t)
∥∥
X ≤ 1

n
, t ∈ J, n ≥ 1, (5.1)

vn(t) ∈ U
(
t, x∗(t) + yn(t)

)
, t ∈ J, (5.2)

vn −→ u∗ in ω − L1/β(J, Y ). (5.3)

Proof. Let (x∗(·), u∗(·)) ∈ RV . From Lemma 3.4, we have that for a.e. t ∈ J , n ≥ 1

u∗(t) ∈ V (t, x∗(t)) ⊆ U1/n(t, x∗(t)) = co

{
∞⋃
k=1

Uk
1/n(t, x∗(t))

}
. (5.4)

The map t →
⋃∞
k=1U

k
1/n(t, x∗(t)) is measurable (see Propositions 2.3 and 2.6 in [29]) and, by

(3.9), is integrally bounded. Therefore, from (5.4) and Theorem 2.2 in [32], we have that there
exists an fn ∈ L1/β(J, Y ) such that

fn(t) ∈
∞⋃
k=1

Uk
1/n(t, x∗(t)) a.e. t ∈ J,

∥∥u∗ − fn
∥∥
ω ≤ 1

n
. (5.5)

We know that the map t → Uk
1/n(t, x∗(t)) is measurable and its value are closed, then

following Theorem 5.6 in [29] (also Proposition 2.2.3 in [24]), there exists a sequence of
measurable selectors fmk (t) ∈ Uk

1/n(t, x∗(t)), t ∈ J ,m ≥ 1 such that

Uk
1/n(t, x∗(t)) = U

(
t, x∗(t) +

1
n
zk

)
=

∞⋃
m=1

fmk (t), for t ∈ J, k ≥ 1. (5.6)

Therefore we have

∞⋃
k=1

Uk
1/n(t, x∗(t)) =

∞⋃
k=1

U

(
t, x∗(t) +

1
n
zk

)
=

∞⋃
k=1

∞⋃
m=1

fm
k
(t), for t ∈ T. (5.7)
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From (5.5) and (5.7), according to Lemma 1.3 in [33] (also see Proposition 2.3.6 [24]), there is
a finite measurable partition J1, J2, . . . , Jl(n) of J such that

⎛
⎝
∫

J

∥∥∥∥∥fn(t) −
l(n)∑
i=1

χ(Ji)f
mi

ki
(t)

∥∥∥∥∥
1/β

Y

dt

⎞
⎠

β

≤ 1
n
, (5.8)

where χ(Ji) is the characteristic function of the set Ji. Now let

vn(t) =
l(n)∑
i=1

χ(Ji)f
mi

ki
(t), yn(t) =

l(n)∑
i=1

χ(Ji)
1
n
zki . (5.9)

Formula (5.9) implies that yn is a simple function, vn ∈ L1/β(J, Y ) and (5.1), (5.2) hold. By
Lemma 2.4, (5.5) and (5.8), we obtain that (5.3) holds. The lemma is proved.

Now we are ready to present our main result.

Theorem 5.2. The set TrV is compact in C(J,X) and the following relation holds

TrV = TrU, (5.10)

where the bar stands for the closure in C(J,X).

Proof. Let (x∗(·), u∗(·)) ∈ RV and {vn}n≥1, {yn}n≥1 be given as in Lemma 5.1. Put Q = {h ∈ X :
‖h‖X ≤ L}, for fixed n ≥ 1, we consider the function defined by

rn(t, x, u) =
∥∥g(t, x∗(t) + yn(t)

)
vn(t) + h

(
t, x∗(t) + yn(t)

)

−g(t, x)u − h(t, x)
∥∥
X − lL+1(t)

∥∥x∗(t) + yn(t) − x
∥∥
X.

(5.11)

It is clear that the function t → rn(t, x, u) is measurable and the function (x, u) → rn(t, x, u) is
continuous (in view of H(g) and the fact that if x : J → X is a measurable function, ‖x(t)‖X
is a measurable real-valued function). According to the Theorem 2.4 in [34], there exists a
sequence of nested (in the sense of inclusion) closed sets Jk ⊆ J , k ≥ 1, μ(J \ ∪∞

k=1Jk) = 0 such
that the map (t, x) → U(t, x) is l.s.c. on Jk ×Q and rn(t, x, u) is continuous on Jk ×Q × Y . Let
the multivalued mapHn : J ×Q → Y be defined by

Hn(t, x) =
{
u ∈ Y : rn(t, x, u) −

1
n
< 0
}
. (5.12)

For every k ≥ 1 the graph of the map Hn(t, x) is an open subset of Jk × Q × Y . Let the map
Un : J ×Q → Y be defined by

Un(t, x) = Hn(t, x) ∩U(t, x). (5.13)
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Hypothesis H(M) together with (5.12) implies that Un(t, x) is nonempty for a.e. t ∈ J and all
x ∈ Q. Since the map U(t, x) is l.s.c. on Jk × Q, k ≥ 1, and the graph of the map Hn(t, x) is
an open subset of Jk × Q × Y , k ≥ 1, then according to Proposition 1.2.47 in [24], we obtain
that the map Un(t, x) is l.s.c. on Jk × Q, k ≥ 1. Hence the map Un(t, x) = Un(t, x) is l.s.c. on
Jk ×Q, k ≥ 1. Therefore, for every continuous function x : J → Q the map t → Un(t, x(t)) is
measurable and the map x → Un(t, x) is l.s.c. on Q for a.e. t ∈ J .

It is clear that Un(t, x) ⊆ U(t, x). Consider the system (1.1) with the constraint
Un(t, x(t)) on the control. The arguments used in the proof of the Theorem 4.1 enable us
to obtain the existence of a solution (xn(·), un(·)) ∈ RU and

∥∥g(t, x∗(t) + yn(t)
)
vn(t) + h

(
t, x∗(t) + yn(t)

)
− g(t, xn(t))un(t)

−h(t, xn(t))‖X − lL+1(t)
∥∥x∗(t) + yn(t) − xn(t)

∥∥
X − 1

n
≤ 0.

(5.14)

Now by (x∗(·), u∗(·)) ∈ RV and (xn(·), un(·)) ∈ RU, n ≥ 1, we have

x∗(t) = Pα(t)x0 +
∫ t
0
(t − s)α−1Qα(t − s)

(
g(s, x∗(s))u∗(s) + h(s, x∗(s))

)
ds, (5.15)

xn(t) = Pα(t)x0 +
∫ t
0
(t − s)α−1Qα(t − s)

(
g(s, xn(s))un(s) + h(s, xn(s))

)
ds. (5.16)

Theorem 4.1 and RU ⊆ RV imply that we can assume, possibly up to a subsequence, that the
sequence (xn(·), un(·)) → (x(·), u(·)) ∈ RV in C(J,X) ×ω −L1/β(J, Y ). Subtracting (5.15) from
(5.16), we have

‖xn(t) − x∗(t)‖X =
∥∥H(g(·, xn(·))un(·) + h(·, xn(·))

)
(t)

−H
(
g(·, x∗(·))u∗(·) − h(·, x∗(·))

)
(t)
∥∥
X

≤
∥∥H(g(·, x∗(·) + yn(·)

)
vn(·) + h

(
·, x∗(·) + yn(·)

)
− g(·, x∗(·))u∗(·)

−h(·, x∗(·)))(t)‖X · · ·denoted by D1

+
∥∥H(g(·, xn(·))un(·) + h(·, xn(·)) − g

(
·, x∗(·) + yn(·)

)
vn(·)

−h
(
·, x∗(·) + yn(·)

))
(t)
∥∥
X · · ·denoted by D2.

(5.17)

Here the linear operator H is defined by (3.29). In virtue of (5.1), we have x∗ + yn → x∗ in
L1/β(J,X). Since vn → u∗ in ω − L1/β(J, Y ) (see (5.3)), from Lemma 3.2 we have that A(x∗ +
yn, vn) → A(x∗, u∗) in ω − L1/β(J,X). By the property of the operator H in Lemma 3.5, we
obtain

D1 −→ 0 for every t ∈ J. (5.18)
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Due to (5.14), we have

D2 ≤
αMA

Γ(1 + α)

∫ t
0
(t − s)α−1

(
lL+1(s)

∥∥x∗(s) + yn(s) − xn(s)
∥∥
X +

1
n

)
ds

≤
αMA‖lL+1‖L∞(J)

Γ(1 + α)

∫ t
0
(t − s)α−1Qα(t − s)

∥∥x∗(s) + yn(s) − xn(s)
∥∥
Xds

+
αMAb

α

nαΓ(1 + α)
.

(5.19)

Note that ‖x∗(t)‖X ≤ L, ‖xn(t)‖X ≤ L for any n ≥ 1, t ∈ J . Combining (5.18), (5.19)with (5.17),
let n → ∞, we get

‖x(t) − x∗(t)‖X ≤
αMA‖lL+1‖L∞(J)

Γ(1 + α)

∫ t
0
(t − s)α−1Qα(t − s)‖x∗(s) − x(s)‖Xds. (5.20)

This together with Lemma 2.8 implies that x∗ = x. Hence we have that the sequence xn ∈ TrU,
n ≥ 1, converges to x∗ ∈ TrV in C(J,X). From Theorem 4.1, we know that TrV is compact in
C(J,X). Now it follows from TrU ⊆ TrV and the proof above that the relation (5.10) holds.
The proof is complete.
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