Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2012, Article ID 850104, 19 pages
doi:10.1155/2012/850104

Research Article

On the Convergence of Mann and Ishikawa
Iterative Processes for Asymptotically ¢-Strongly
Pseudocontractive Mappings

Xuewu Wang,! Giuseppe Marino,? and Luigi Muglia®

L College of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai
264005, China
2 Dipartimento di Matematica, Universitd della Calabria, 87036 Arcavacata di Rende, Italy

Correspondence should be addressed to Giuseppe Marino, gmarino@unical.it
Received 13 October 2011; Accepted 29 December 2011
Academic Editor: Ngai-Ching Wong

Copyright © 2012 Xuewu Wang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We prove the equivalence and the strong convergence of (1) the modified Mann iterative process
and (2) the modified Ishikawa iterative process for asymptotically ¢-strongly pseudocontractive
mappings in a uniformly smooth Banach space.

1. Introduction

Let X be a Banach space and X* the dual space of X. Let J denote the normalized duality
mapping from X into 2% givenby J(x) = {f € X* : (x, f) = ||x||* = || f||*} for all x € X, where
(+,-) denotes the generalized duality pairing.

In 1972, Goebel and Kirk [1] introduced the class of asymptotically nonexpansive map-
pings as follows.

Definition 1.1. Let K be a subset of a Banach space X. A mapping T : K — K is said to be
asymptotically nonexpansive if for each x, y € K

IT"x =Ty || < kullx =y |, (L.1)

where {k,}, C [1,00) is a sequence of real numbers converging to 1.

Their scope was to extend the well-known Browder fixed point theorem [2] to this
class of mappings.
This class is really more general than the class of nonexpansive mappings.



2 Abstract and Applied Analysis

Example 1.2 (see [1]). If B is the unitball of > and T : B — B is defined as
T(X1,X2,...) = (O,x%,apcz, a3x3,...>, (1.2)

where {a;};cy C (0,1) is such that []7%,a; = 1/2, it satisfies

. mx-Tryl <2 Jadlx -l 13)

i=2

ITx - Tyl <2fx -y

In 1973, the same authors [3] proved that the Browder result remains valid for the
broader class of uniformly L-Lipschitzian mappings (i.e., |T"x — T"y|| < L||x - y||, for every n):
every uniformly L-Lipschitzian self-mapping T : K — K (with L < y and y sufficiently close
to 1) defined on a closed and convex subset of a uniformly convex Banach space has a fixed
point.

Taking in to account these papers one can study (1) if a suitable iterative method
converges to a fixed point of the mapping and (2) the equivalence of two (given) iterative
methods, that is, the first one converges if and only if the second one converges.

In 1991, Schu [4] introduced the class of asymptotically pseudocontractive mappings.

Definition 1.3 (see [4]). Let X be a normed space, K C X, and {k,},, C [1,00). A mapping
T : K — K is said to be asymptotically pseudocontractive with the sequence {k,}, if and
only if lim, _, .k, = 1, and for all n € N and all x,y € K there exists j(x — y) € J(x — y) such
that

2 (1.4)

(T"x =T"y,j(x~y)) < knllx -y
where ] is the normalized duality mapping.

Obviously every asymptotically nonexpansive mapping is asymptotically pseudocon-
tractive but the converse is not valid: it is well known that T : [0,1] — [0, 1] defined by Tx =
(1-x2/3)3% s not Lipschitzian but asymptotically pseudocontractive [5].

In [4], Schu proved the following.

Theorem 1.4 (see [4]). Let H be a Hilbert space and A C H closed and convex; L > 0; T :
A — A completely continuous, uniformly L-Lipschitzian, and asymptotically pseudocontractive with
sequence {ky}, € [1,0); gu = 2k, =1 foralln € N; 3,(g% - 1) < oo; {an},, {fn}, € [0,1];
e<ay<Pn<bforallneN,somee>0andsomebe (0,L2[vV1+L2-1]);x; € A foralln € N
define

Zy = pnTn(xn) + (1 - ﬁn)xn/

Xpi1 = oy T (zn) + (1 — ay)xy.

(1.5)

Then, {x,}, converges strongly to some fixed point of T.

From 1991 to 2009 no fixed point theorem for asymptotically pseudocontractive
mappings was proved. First Zhou in [6] completed this lack in the setting of Hilbert spaces
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proving: (1) a fixed point theorem for an asymptotically pseudocontractive mapping that is
also uniformly L-Lipschitzian and uniformly asymptotically regular, (2) that the set of fixed
points of T is closed and convex, and (3) the strong convergence of a CQ-iterative method.
The literature on asymptotical-type mappings is very wide (see, [7-15]).

In 1967, Browder [16] and Kato [17], independently, introduced the accretive operators
(see, for details, Chidume [18]). Their interest was connected with the existence of results in
the theory of nonlinear equation of evolution in Banach spaces.

In 1974 Deimling [19], studying the zeros of accretive operators, introduced the class
of (-strongly accretive operators.

Definition 1.5. An operator A defined on a subset K of a Banach space X is said to be ¢-
strongly accretive if

(Ax- Ay, j(x-y)) 2 o([lx - y|)l[x -yl (1.6)

where ¢ : R* — R* is a strictly increasing function such that ¢(0) = 0 and j(x-y) € J(x-y).

Note that in the special case in which ¢(t) = kt, k € (0,1), we obtain a strongly accretive
operator.

However, it is not difficult to prove (see Osilike [20]) that Ax = x —x/(x + 1) in R* is
¢-strongly accretive with ¢(s) = (s?/(1 + s)) but not strongly accretive.

Since an operator A is a strongly accretive operator if and only if (I — A) is a strongly
pseudocontractive mapping (i.e., (I - A)x - (I - A)y, j(x — y)) < kl|x — y||>, k < 1), taking
into account Definition 1.5, it is natural to study the class of ¢-pseudocontractive mappings,
that is, the mappings such that

(Tx =Ty, j(x=y)) < lx=ylI" = o(llx = yIDllx -yl (1.7)

where ¢ : R* — R* is a strictly increasing function such that ¢(0) = 0. Of course the set of
fixed points for this mapping contains, at most, only one point.
Recently, in same papers the following has been introduced.

Definition 1.6. A mapping T is a ¢-strongly pseudocontractive mapping if

(Tx =Ty, j(x - y)) < lx =yl - d(llx - yll), (1.8)

where j(x-vy) € J(x-y) and ¢ : R* — R is a strictly increasing function such that ¢(0) = 0.
(In the literature this class is also known as generalized ¢-strongly pseudocontractive according
to (1.7). We prefer to not use the term generalized because this class is narrower than pseudo-
contractive mappings.)

Choosing ¢(t) = ¢(t)t, we obtain (1.7). In Xiang’s paper [21], it was remarked that it
is an open problem if every ¢-strongly pseudocontractive mapping is ¢-pseudocontractive
mapping. In the same paper, Xiang obtained a fixed point theorem for continuous and ¢-
strongly pseudocontractive mappings in the setting of the Banach spaces.

In this paper our attention is on the class of the asymptotically ¢-strongly pseudocontrac-
tive mappings defined as follows.
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Definition 1.7. If X is a Banach space and K is a subset of X, a mapping T : K — K is said to
be asymptotically ¢-strongly pseudocontractive if

(T =Ty, j(x =) < kallx = 9| = (Il - v, (1.9)

where j(x —y) € J(x —y), {kn},, C [1,00) is converging to one, and ¢ : [0,00) — [0, 00) is
strictly increasing such that ¢(0) = 0.

One can note that if T has fixed points, then it is unique. In fact if x, z are fixed points
for T, then, for every n € N,

Ix = 2| = (T"x - T"z,j(x,2)) < ka||lx —y||* = ¢(J|x - ¥|)). (1.10)
S0, passing n to +oo results in
Il =2l < llx =2 = p(flx - yll) = ~g([|x - y[) > 0. (111)

Since ¢ : [0,00) — [0, o0) is strictly increasing and ¢(0) = 0 then, x = z.
We now give two examples.

Example 1.8. The mapping Tx = x/(x + 1), where x € [0,1], is asymptotically ¢-strongly
pseudocontractive with k, = 1, for all n € Nand ¢(¢) = /(1 + t). However, T is not strongly
pseudocontractive, see [20].

Example 1.9. The mapping Tx = x/ (1 + 0.01x), where x € [0, 1], is asymptotically ¢-strongly
pseudocontractive with k,, = (n +100)/n, for all n € N and ¢(x) = x>/ (1 + x). However T is
not strongly pseudocontractive, nor ¢-strongly Pseudocontractive.

Proof. First we prove that T is not strongly pseudocontractive. For arbitrary k < 1, there exist
x,y € [0,1], such that

1
k.
(1+0.01x) (1 + 0.01y) (1.12)
So we have
(Tx =Ty j(x-y) = 1 Gyl klryl
(1+0.01x) (1 + 0.01y)

Next we prove that T is not ¢-strongly pseudocontractive. Taking y = 0, we have, for all
x €[0,1],

. — x2
(Tx =Ty, j(x=¥)) = 50010
) (1.14)
X
1+x’

lx = ylI* = ¢(llx - vll) =
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therefore, T is not ¢-strongly pseudocontractive. Finally, we prove that T is asymptotically
¢-strongly Pseudocontractive.

For arbitrary x, y € [0, 1], without loss of generality, let x > y. Then,

. (x-y)°
Tn _Tn 7 - = 7
(T =T (* = ¥)) = G55 01m0) (1 + 0.01my)
3
n+100 »  (x-y)
Kallx =y =@ (llx - vl) = (x-y) -~
n 1+ (x-y) 1.15)
100 (x-y) 2
=11+ —-—-— =7 —
[+ n 1+(x—y)](x v)
_ 1+(100/n) + (100/7n)(x - y) (- )2
) () -
We only need to prove that
1+x-y < (1+0.01lnx)(1+0.01ny) 1+$+$(x—y) . (1.16)
Using x > y, this is easy. O

In this paper we study the equivalence between two kinds of iterative methods involv-
ing asymptotically ¢-strongly Pseudocontractive mappings.

Moreover, we prove that, in opportune hypotheses, these methods are equivalent and
strongly convergent to the unique fixed point of the asymptotically ¢-strongly Pseudocon-
tractive T.

2. Preliminaries

Throughout this paper, we will assume that X is a uniformly smooth Banach space. It is
well known that if X is uniformly smooth, then the duality mapping ] is single-valued and
is norm-to-norm uniformly continuous on any bounded subset of X. In the sequel, we will
denote the single valued duality mapping by j.

Let us introduce the modified Mann and Ishikawa iterative processes as follows.

For any given xj € X, the sequence {x,}, defined by

Yn = (1= Pn = 6n)Xn + PuT" 2y + 6,0n, 21)
Xn+l = (1 —Qay — Yn)xn + anTnyn + Yully, N2 0,

is called the modified Ishikawa iteration sequence, where {a,},, {Yn},, {Pn},, and {6,}, are four
sequences in (0, 1) satisfying the conditions a, + y, < 1and f, + 6, < 1foralln > 0.
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In particular, if g, = 6, = 0 for all n > 0, we can define a sequence {z,}, by

zp € X,
2.2)
Zpsl = (1 L Yn)zn +a,T"z, + YnWn, N2 0,

called the modified Mann iteration sequence. In [22, 23] the methods are also called modified Mann
(Ishikawa resp.) iterative processes with errors.
These kind of iterative processes with errors were studied, as an example, in [23-26].
Equivalence theorems for Mann and Ishikawa methods are studied, among others, in [27, 28].
Huang in [29] had established the equivalence theorems of the convergence between
the modified Mann iteration process (2.2) and the modified Ishikawa iteration process (2.1)
for strongly successively ¢-pseudocontractive mappings in uniformly smooth Banach space.
In next section, we prove that, in the setting of the uniformly smooth Banach space, if T
is asymptotically ¢-strongly Pseudocontractive, then (2.1) and (2.2) are equivalent. Moreover
we prove also that (2.1) and (2.2) strongly converge to the unique fixed point of T if it exists.
For the sake of completeness, we recall some definitions and conclusions.

Definition 2.1. X is said to be a uniformly smooth Banach space if the smooth module of X

1
px(t) =sup{ 3 (Il =yl + vl =1+ Il < 1 ] <} 23)

satisfies lim; _,o(px (t)/t) = 0.

Lemma 2.2 (see [30]). Let X be a Banach space, and let | : X — 2% be the normalized duality
mapping. Then, for any x,y € X one has

lx+yl* < Il +2(y, j(x +y)),  Vi(x+y) € J(x+y). (2.4)

The following lemma is a key of our proofs.

Lemma 2.3 (see [29]). Let ¢ : [0,00) — [0, o0) be a strictly increasing function with ¢(0) = 0, and
let {an},, {bu},, {Cn}y,, and {en}, be nonnegative real sequences such that

n—oo

limb, =0, cy=0(by),  D.bu=o0, lim e, = 0. (2.5)
=1 n—oo

Suppose that there exists an integer N1 > 0 such that

a? < ai - 2bn¢(|an+l - enl) +cn, Vn2>Njy, (2.6)

n+1

then lim,, _, ,a, = 0.

Proof. The proof is the same as that in [29] but change in (2.6), (a,+1 — e,) with |a,.1 —e,]. O
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Lemma 2.4 (see [31]). Let {sn},, {cn}, C Ry, {an}, C (0,1), and {b,}, C R be sequences such
that

Sn+l < (1 - an)sn + bn + Cn, (27)

foralln > 0. Assume that 3, |c,| < co. Then, the following results hold

(1) If b, < Pay, (where p > 0), then {s,},, is a bounded sequence.
(2) If one has 3, a, = oo and limsup, (b,/a,) <0 then, s, — O0asn — co.
Remark 2.5. 1f in Lemma 2.3 choosing e, = 0, for all n, ¢(t) = kt* (k < 1) then, the inequality

(2.6) becomes,

2 2 2
a,,, < a,—2byka,  +c, =

2 < 1 a2y —
=1 4+2b,k " 14 2b,k (2.8)

<<1_M> 2, Cn
= T+20,k ) T 1420,k

a

where a, := 2b,k/(1+2b,k) and B, := ¢,/ (1+2b,k). In the hypotheses of Lemma 2.3, &, — 0
asn — o, >, a, = o, and limsup, (f,/a,) = 0. So we reobtain Lemma 2.4 in the case c¢,, = 0.

3. Main Results

The ideas of the proofs of our main Theorems take into account those contained in the papers
of Chang and Chidume et al. [22, 32, 33].

Theorem 3.1. Let X be a uniformly smooth Banach space, and let T : X — X be an asymptotically
¢-strongly Pseudocontractive mapping with fixed point x* and bounded range.

Let {x,} and {z,} be the sequences defined by (2.1) and (2.2), respectively, where {a,}, {yn},
{Bu}, and {6,} C [0, 1] satisfy

(H1) limy, -, oty = limy, oo By = limy, , 06, = 0 and y,, = 0(ay,),
(H2) 357 an = oo,

and the sequences {u,}, {v,}, and {w,} are bounded in X. Then, for any initial point zy, xy € X, the
following two assertions are equivalent.

(i) The modified Ishikawa iteration sequence (2.1) converges to x*.

(ii) The modified Mann iteration sequence (2.2) converges to x*.
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Proof. First of all we note that by boundedness of the range of T and of the sequences {w,},

{un}, {vn} and by Lemma 2.4, it and follows that {z,} and {x,} are bounded sequences. So
we can set

”Tnzn - Tnyn”/ ”Tnxn - xn”/

Ty — xu ||, | T" 2y — 24|
M = sup 17"y =l e . (3.1)
n 1zn = xull, lttn = xull, [[on = xull,

lwn = zall, llwn — tnl|-
By Lemma 2.2, we have

1Zns1 = Xl < [ (1 = @ = ¥) (20 = %) + @ (T2 = T"Y) + Y (@ — ) ||
< (L= an = 10) 1120 = 2l + 2(@a (T"20 = T"Yn) + Y (@0n = 1), (201 = Xns1))
< (1= an)l|zn = xall* + 20 (T" 20 = T"Yn, j (20 = Yu) )
+ 20, (T" 2 = T"Yn, ] (Znit = Xne1) =] (Zn = Yn) ) + 2Yn{Wn = thn, j(Zn1 — Xna1) )
< (1= a)’l|zn = %all” + 200k | 20 = Yl = 2009 ([} 20 = yul])
+ 20, || T" 20 = Ty ||| (Zni1 = %ns1) = j (20 = Yu) || + 2¥nllwn—=stulll|Zns1 =201
< (1= an)?|za = xul* + 200k || 20 = yal” ~ 2000 ([l 20 = yu)

+ 20,0, M + 2y, M?,
(3.2)

where 0, = [|j(Zn+e1 — Xn+1) — j(2Zn — Yn)||- Using (2.1) and (2.2), we have

||(Zn+l - xn+1) - (Zn - yn) || < ||xn+1 - yn” + ||Zn+1 - Zn”
= ”“n (Tnyn - xn) + Yn(un - Xp) — ﬂn(Tnxn - Xp) = Op(vp — xn)”
+ ”“n(TnZn = Zp) + Yn(Wn — Zn)”

<S2M(an +Yn +Pn+6,) — 0 (n— o).
(3.3)

In view of the uniform continuity of j we obtain that 6, — 0asn — oo. Furthermore, it
follows from the definition of {y,} that foralln >0

|zn - yn”2 = ||zn = xn + Bu(=T"xn + x5) + 6 (—vy + xn)”2

2
< [Hzn - X + ﬂn”Tnxn = Xul| + 6ullvn - xn”]



Abstract and Applied Analysis 9
< [lzn = xull + (Bu + 62) M]?
= 120 = %l + (B + 60) (22 = 2l M + (B + 6,) M?)

< |z = x>+ 3(Bn + 6,) M?,

(3.4)
”}/n - xn” < ﬂn“Tnxn = Xn|| + Onllvn — xn|| < (ﬂn + 6n)M —0 (n— o0),
(3.5)
and so
Pomer = el = 2 = 3 = () = ) + (T 20 = T700) + i = )|
<lzn = 2ull + (an + ¥u) 20 = Xull + &n || T" 20 = T"Yul| + Yurllon = wn (3.6)
< lzn = ynll + llyn = xa |l +2(an +ya) M.
< lzn = ynll + (Bn + 60) M+ 2(an + yu) M.
Therefore, we have
”Zn - yn” > ||Zn+1 - xn+1|| —€n, (37)

where e, = (f, + 6,) M + 2(ay, + ) M. In view of (H1), we have thate, — Oasn — oo.

If ||z441 — Xps1]| — €n < 0 for an infinite number of indexes we can extract a subsequence
such that ||z, — x4, || — en,—1 < 0. For this subsequence ||z, — xp, || — 0as k — oo.

We can prove that, in this case, ||z, — x,|| — 0, that is, the thesis.

Firstly we note that substituting (3.4) into (3.2) and simplifying, we have

I Zn1 = Xnet I < 120 = Xull* + a2l 20 = Xull” + 26t (ki = 1) |20 = Xl
+6anky (Bn + 6,) M? = 2a,¢ (|| 20 = Y ||) + 2040, M + 2y, M?
<120 = Xul? = 20 (|| 20 = Yu|) + @2 M2 + 261, (ki — 1) M?
+ 60,k (B + 6,) M? + 22,0, M + 2y, M?
= ||lzp — xa|* - and(||zn = yul|) + 2y M?

~au[p(l|z = yull) — @u M = 2k = 1)M* ~ 6k (B + 6,) M = 20, M|,

(3.8)
where k := sup,, (kn).
Moreover, we observe that
| Zn; = Y || < ||Zn; = Xng || + ||Yn; — Xn; || — 0 a@s j— oo (3.9)
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Thus, for every fixed € > 0, there exists j; such that, for all j > ji,

<e. (3.10)

< 2e,

Zn; = Ynj Zn; — Xn;

Since {a},, {(kn=1)},,, {(Ba+64) },., {On},, and {yn}, are real null sequences (and in particular
Yn = 0(ay,)), for the previous fixed € > 0, there exist an index N such that, forall n > N,

oy | < min{ _e_ 9/ },

16M’" 8M?
<ot ar (])E\ﬁ)r
Ik — 1] < ‘ﬁg\/fz) (311)
st con{ 2]
ol < 212,

foralln > N.
Take n* > max{N, nj } such that n* = ny for a certain k.
We prove, by induction, that ||z — X44il| <€, for everyi € N. Leti = 1.
Let us suppose that ||zy1 — Xyr41]| > €.
By (3.6), we have

€< ||Zn*+1 _xn*+1|| < “Zn* _yn*” + (ﬁn* + 6n*)M+2(“n* + Yn*)M
€ € €
<lzw =yl + M 77 +2M<W+W> (3.12)

€ € €
=Nz =yl + 5+ 5 =z -yl + 5.

Thus, ||z, — yu-|| 2 €/2. Since ¢ is strictly increasing, ¢(||z, — yu-l]) > ¢(e/2).
From (3.8), we obtain that
Iz =l < € = (e | -2M 1)
n

- & [z = yoell) = M = 2(k;, = 1) M? = 6k (B} + 6,) M? - 20,- M.
(3.13)
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One can note that

a, M2 + 2k, — 1) M? + 6k (B, + 65) M? + 20, M <

<i>(€8/2) L $e/2)  ple/2) | ¢(€/2);

8 8 8

(3.14)

hence

_ 2
(jb(”zm - Ypr ||) - ocle2 —2(ky —1)M? - 6k (fp + (Sn*)M2 -20,M > ¢<§> - ¢(€2/ ) > 0.
(3.15)
In the same manner
Ve e\ ¢(e/2)

Pl = yoel)) - 202 2 >¢(5) -5 >0. (3.16)

Thus,
| Znes1 = Xt I < €2 (3.17)

So, we have that ||z,-11 — X,=41|| < € and it denies that ||z,-+1 — Xy#41]| > €. By the same idea we
can prove (by contradiction) that ||zy++2—Xp+42|| < € and then, by inductive step, || zp+i—Xpn++i]| <
¢, for all i. This is enough to assure that ||z, — x,|| — 0.

If there are only finite indexes for which ||zy41 — Xp11|| — en < 0, then definitively ||zy.1 —

Xn+1|| — en > 0. By the strict increasing function ¢, we have definitively
$ (20 = ynll) 2 $lllzner = xwaall - en). (318)

Again substituting (3.4) and (3.18) into (3.2) and simplifying, we have

|Zne1 — xn+1||2 <llzn - xn“2 + “iHZn - xn||2 +2a,(kp = 1)||zn — xn“2

+ 60k, (Bn + 62) M? = 20, (|| 201 — Xns1|| — €4) + 20,0, M + 2y, M?
(3.19)
< lzn = xull® = 20,9 (|zns1 = X || — €n) + a3 M? + 2a, (ky, — 1) M?

+ 60, ky (B + 6,) M? + 20,0, M + 2y, M.

Suppose that a, = ||z, — x,||, and b, = ay,, ¢, = a5 M? + 2a,(k, — 1) M? + 6a,k, (B, + 6,) M? +
20,0,M + ZYnM2. Since lim,, -, .0, = 0, lim,,_, e, = 0, and lim,,_, .k, = 1 and by the hypo-
theses, we have that 3,7, b, = oo and ¢, = o(by,), e, — 0asn — oo. Inview of Lemma 2.3 we
obtain that lim,, _, a,, = 0. Hence, lim,, _, .||z, — x,|| = 0. O
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Theorem 3.2. Let X be a uniformly smooth Banach space, and let T : X — X be an asymptotically
¢-strongly Pseudocontractive mapping with fixed point x* and bounded range.
Let {v,},, be the sequences defined by

v € X,
(3.20)
Opi1 = (1 —ay)v, + 2, T"v,,, n>0,
where {ay,},, C [0,1] satisfy
(1) limnaooan =0,
(i) Doq ay = 00.
Then, for any initial point vy € X, the sequence {vy},, strongly converges to x*.

Proof. By the boundedness of the range of T and by Lemma 2.4, we have that {v,}, is
bounded.
By Lemma 2.2 we observe that

[0ns1 = x> < (1 = an)?[|vn — x| + 20, (T"0y — X*, j(Vns1 — x*))
< (1 -ap)?|vn — x*|I* + 20, (Tyvn = X*, j(Vni1 — x*) = j (v, — x¥))
+ 20, (Tyvy — x*, j (v, — x¥))

< (1= ap)?||vn = x*|* + 200 Tpvn — X*, j(Vns1 — x*) = j (05 — x¥))

. . 3.21
+ 2kl = x| = 2aup (o - 1) G20
= <1 +ad - Zun> g = %1% + 220 (Ty0n = X*, j(Ons1 — x*) = j (05 — X¥))
+2aykyl[vn = x°|* = 2an ([0, - x°[])
= llon = x| + (@2 = 200 + 2k ) [0 = X[ = 20 ([0 = %) + 2 pin,
where p,, := (T, v, — x*, j(Ups1 — X*) = j(v, —x*)). Let
M = max{sup“vn - x*|, sup||T"v, — x*|| } (3.22)
n n
We have
%12 * (12 2 *
[Ope1 = x* |7 < llom — x*|* + (zxn + 2a (kn — 1))M = 204 (|| — X°||) + 26t ptn
= [[on = x*|I” = atup(|lom — x*[)) (3.23)

—ay [d’(”vn = X)) = 2pn — (an + 2(ky - 1))M]/
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and so we can observe that

(1) pp — O0asn — oo, in fact from the inequality

one = XN = llon = X" < |Ons1 = Onll < €M — 0 as n— oo (3.24)

and since j is norm-to-norm uniformly continuous, then j(||vn1 — x*||) — j(||vn —
x*]) — 0asn — oo,

(2) inf, (|lv, — x*||) = 0O, in fact, if we suppose that o := inf,(||[v, — x*||) > 0, by the
monotonicity of ¢,

$(llon - x7|)) 2 Pp(0) > 0. (3.25)

Thus, by (1) and by the hypotheses on a,, and k;, the value —a, [¢p(||v,, —x*||) —2pn —
(ay +2(k, —1)) M] is definitively negative. In this case we conclude that there exists
N > 0 such that for every n > N

2 2
[Ons1 = 277 < flon = 277 = andp([[on = X7|1)

, (3.26)
< o = x*|° - andp(0),
and so
a,p(0) < ||vn = x| = |[0ns1 = x*|I° Vn > N. (3.27)
In the same manner we obtain that
(@) D < 3 [0 = I = llois - x|
i=N i=N (3.28)

= lon = "I = o - x|

By the hypothesis >, a, = oo, the previous is a contradiction and it follows that
inf, (|[o, - x*[|) = 0.

Then, there exists a subsequence {vy, }, of {v,}, that strongly converges to x*. This
implies that for every e > 0 there exists an index n() such that, for all j > ng), [|vn, —x*|| <e.

Now we will prove that the entire sequence {v,}, converges to x*. Since the sequences
in (3.37) are null sequences but Y, a, = oo, then for every € > 0 there exists an index 7(e)
such that for all n > n(e) it following that:

1 2 2 2
|an|<mmin{e, 4’(62/ )}, Ik, — 1] < ¢§a€1\//1)’ ™ <%' (3.29)
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So, fixing € > 0, let n* > max(nk(),n(e)) with n* = n; for a certain n;. We will prove, by
induction, that ||v,+; — x*|| < € for every i € N. Let i = 1. If not, it follows that ||, — x*|| > €.
Thus

€ < |vnes1 = x| < [|vne = X"|| + e
(3.30)

€ €
<|lop = x| + =—M = ||v, — xXF|| + =
lUn I M lon Il 5

that is, ||v,» — x*|| > (e/2). By the strict increasing of ¢, ¢(||v, — x*||) > p(e/2). By (3.37), it
follows that

2
[es1 = x|I* < € = e p(llow — x*])

(3.31)
e [Bow = 1) = 2p = @ + 200 ~1)M].
We can note that
2t + (e +2(ke — 1)) M < ¢(Z/ 2, <¢i€]\/42) N 4’55\/42) >M, (332)
and so
Blow ~ 1) =240 — (e + 20k - )M 2 9(5) - 2D 0 339
Moreover, (||vn — x*[1) > (€/2)/2 > 0, and it follows that
o =1 < €% (3349

This is absurd. Thus ||v,:+1 — x*|| < e.
In the same manner, by induction, one obtains that, for every i > 1, [|v,+.; — x*|| < €. So
[[o, = x*|| — O. O

Corollary 3.3. Let X be a uniformly smooth Banach space, and let T : X — X be an asymptotically
¢-strongly Pseudocontractive mapping with fixed point x* and bounded range.
Let {z,},, be the sequences defined by (2.2), where {a,},, and {y,}, C [0, 1] satisfy

(i) im, e, =lim, ooy, =0,
(ii) 301 an = 00, 35571 ¥n < 0,

and the sequence {w,}, is bounded on X. Then, for any initial point zg € X, the sequence {z,},
strongly converges to x*.

Proof. Following the idea of the proof of Theorem 3.2, by the boundedness of the range of
T and by the boundedness of the sequence {w,}, and by Lemma 2.4, we have that {z,},, is
bounded.
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By Lemma 2.2 we observe that

zn1 = 21 < (1= ctn = ) *ll2n = 2|7 + 220 (T" 2 = X*, (201 — X))
+ 2Yn(wn — x*, j(Zp1 — x¥))
< (1= an)l|zn — X*|17 + 20 (Tuzn — x*, j (zna1 = x°) = j(zn — 7))
+ 20, (Tpzn — X*, (20 = X)) + 2yn(wn = X*, j(2Zni1 — 7))
< (1= an)?llzn = x| + 200 (Tuzn = %", j(Zns1 = X*) = (20 - X))
+ 2kl zn — x| = 22 (||zn — x*|))
+ 2Yn(wn — x*, j(Zn1 — X)) (3.35)
= (1 +a’ - 2(1,,) 1z — x*||> + 20, (Tyzy — x*, j(Zna1 — x*) = j(zn — x¥))
+ 2kl zn — x| = 22 (||zn — x*|))
+ 2Yn(wn — x*, j(Zp1 — X¥))

= llzw =21 + (@2 = 2000 + 2k ) 120 = "2 = 20120~ x° ) + 2etupt

+ 2y (wn — X7, j(zn — X7)),

where p, := (Tpzy — x*, j(Zpa1 — x*) — j(zn — x¥)). Let

M = max{sup”zn - x*||,sup||T"z, — x*||, sup|lwy — x*||, sup{wn — x*, j(zps1 — X)) }
n n n n

(3.36)
We have
lznen =21 < llz = x| + (@2 + 20t (= 1)) M = 2, (12 = 2°[) + 2ty + 2y, M
= llza = x*|1* = anp(|zn — x||) + 2y M (3.37)
—an [Pllzn = x*||) = 210 — (@n + 2(ky, — 1)) M],
and so we can observe that
(1) g — Oasn — oo, in fact from the inequality

1zner = x*|| = |z = X*||| < |zns1 = zall (@ +y2) M —0asn— oo (3.38)

and since j is norm-to-norm uniformly continuous, then j(||zu1 — x*||) — j(/zn —
x*||) - 0asn — oo,
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(2) inf,(||zn — x*|]) = O, in fact, if we suppose that o := inf,(||z, — x*||) > 0, by the
monotonicity of ¢,

¢(llzn = x*[|) = ¢(0) > 0. (3.39)

Thus, by (1) and by the hypotheses on a,, and k,, the value —a,[¢(||z, —x*||) —2pn —
(an+2(k,—1)) M] is definitively negative. In this case, we conclude that there exists
N > 0 such that for every n > N

2 2
Zne1 = X7 < 120 = X7N1° = @n@(llzn = x7(]) + 2y M

(3.40)
<lzn = x*|* = anp(0) +2yu M,
and so
a4, p(0) < |1zn = X*|I° = ||2ns1 = X** +2yuM  Vn > N. (3.41)
In the same manner we obtain that
$©@) i < D[l - I = Iz - 2] +2X 1M
i=N i=N i=N
(3.42)

m
= lzn = x| = l|zm — X" +2M 3 .

i=N

By the hypotheses >, y» < o0 and };, a, = oo, the previous is a contradiction and it
follows that inf,(||z, — x*||) = 0.

Then, there exists a subsequence {z,, }; of {z,}, that strongly converges to x*. This
implies that for every € > 0 there exists an index n() such that, for all j > nx(e), [|zn; —x*[| <e.

Now we will prove that the entire sequence {z,}, converges to x*. Since the sequences
in (3.37) are null sequences and >, v, < oo but >, a, = oo, then for every e > 0 there exists
an index 7n1(e) such that for all n > n(e) it follows that:

€ Yn|  Ple/2)
|Yn|<mr x, < M .
(e/2) '
|k, = 1] < 8M
P(e/2)

|#”| < 8
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So, fixing € > 0, let n* > max(nk(),n(e)) with n* = n; for a certain n;. We will prove, by

induction, that ||z-.; — x*|| < € for every i € N. Let i = 1. If not, it follows that ||z, — x*|| > €.
Thus,

€ < |lzws1 = x*| £ |z — x| + A M + ¥ M

<z =X+ M+ - M = ||z — x| + & (34
" aM™T T aMm T T 2’
that is, ||z,» — x*|| > €/2. By the strict increasing of ¢, ¢(||z,- — x*||) > P(€/2).
By (3.37), it follows that
o1 = x"|* < € = e <¢(||Zn* -y -2m - >
A (3.45)
— Qe [(i)(”ZH* - X*”) - 2.“71* - (“n* + 2(kn* - 1))M]
We can note that
P(e/2) Pe/2) ¢(e/2)
X N . — < .
2y + (aye +2(kpr —1))M < "o T M, (3.46)
and so
3 2
Bz 1) = 20— (e + 20k~ )M 2 p(5) - 22 5 (3.47)
Moreover, ¢(||z — x*||) = 2M (Yu=/ an+) > ¢p(€/2) /2 > 0 so it follows that
| Zwes1 — x*|)* < €2. (3.48)

This is absurd. Thus, ||z,-+1 — x*|| < €.
In the same manner, by induction, one obtains that, for every i > 1, ||z, — x*|| < €. So
|z, — x*|| — 0. O

Corollary 3.4. Let X be a uniformly smooth Banach space, and let T : X — X be asymptotically
¢-strongly Pseudocontractive mapping with bounded range and fixed point x*. The sequences {x,},,,
{zn},, and {2}, defined by (2.1) and (2.2), respectively, where the sequences {an},, {Pn}n {¥n}n
and {6,}, C [0,1] satisfy

(1) limy, 0, = limy, oo B, = lim,, . 0,6, = 0,
(i) Dorq dn = 00, Dipry Yn < 0,

and the sequences {uy,},, {vn},, and {wy},, are bounded in X. Then, for any initial point xo, zg € X,
the following two assertions are equivalents, and true.

(i) The modified Ishikawa iteration sequence (2.1) converges to the fixed point x*.

(ii) The modified Mann iteration sequence (2.2) converges to the fixed point x*.
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Example 3.5. Let us consider the mapping in Example 1.9, Tx = x/(1+0.01x), where x € [0, 1],
that is asymptotically ¢-strongly Pseudocontractive with k, = (n + 100) /n, for all n € N and
$(x) = x*/(1 + x). The unique fixed point of T is x = 0. Let zg € (0,1] and, for all n € N,
a, =1/n, and y, = 1/n?. Then the sequence generated by the scheme

1 1 1 1
Zp1=(1-—=-—= )z +-T"z, + —w,, n>0, (3.49)
n n? n n?

converges to 0.

Remark 3.6. Our results are similar to those of Schu’s [4, Theorem 1.4] However, our results
hold in a more general setting of uniformly smooth Banach spaces, while Schu’s result
holds for completely continuous, uniformly Lipschitzian mappings, which are asymptotically
pseudocontractive.
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