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We investigate some properties and identities of Bernoulli and Euler polynomials. Further, we give
some formulae on Bernoulli and Euler polynomials by using p-adic integral on Z,.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Qp, and C, will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
the algebraic closure of Q,. Let v, be the normalized exponential valuation of C, with |p|, =
o) =1/
pr p-
For f € UD(Zy), the p-adic invariant integral on Z, in the bosonic sense is defined by

pN-1
1) = [ feodute) = lim -5 3 fdute) 1)

(see [1,2]). The fermionic p-adic integral on Z, is defined by Kim as follows:

pN-1

() = [ o = fim 3oy (12
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(see [3]). As is well known, Bernoulli polynomials are defined by

(e tn
rn 1exf =Bt = ZBn(x)ﬁ, (1.3)
n=0 :

with the usual convention about replacing B"(x) by B, (x), symbolically (see [1-19]). In the
special case x = 0, B,(0) = B, is called the nth Bernoulli number.
The Euler polynomials are also defined by the generating function as follows:

2
et +1

[e'e) tn
Xt = pE(Ot _ zé E”(x)ﬁ’ (1.4)
=

with the usual convention about replacing E"(x) by E,(x), symbolically (see [1-19]). In the
special case x = 0, E,(0) = E, is called the n-th Euler number.
By (1.3) and (1.4), we easily see that

(1.5)

E,(x)=(E+x)" = zn:<1:> x"E,

1=0

where (1) =n!/(n-Dl'=nn-1)(n-2)---(n—-1+1)/1! (see [14, 16, 19]).

The following properties of Bernoulli numbers and polynomials are well known (see
[10, 11]).

Forn e Z, =NU {0},

Z<"> B B (x+y) -y (16)
p ] ] +1 n+1

["Z/z] n n-2j Bz]'+1 (x) _ Bn+1 (x + ]/) + (_1)an+l (x _ y) (1 7)
im0 \2j 2j+1 2n+2 ’ |

[(n+1)/2]< n > p12j sz (x) _ Bt (x 4 y) n (_1)71—1Bn+1 (x _ y) _ Zy’”l 18

= \2j-1 2j 2n+2 ’

where [] is Gauss’ symbol.

First, we investigate some identities of Euler polynomials corresponding to (1.6), (1.7)
and (1.8). From those identities, we derive some interesting identities and properties by using
p-adic integral on Z,,.
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2. Some Identities of Bernoulli and Euler Polynomials

By (1.4), we get

Ex(x+y) = Z<>k’E x), foreZ,.

From (2.1), we note that

Thus, we have

Ex(x+y) = i

e Em) _Ex(x+y) -yt

i+l k

Replacing k by k + 1 in (2.3), we obtain the following proposition.

Proposition 2.1. For k € Z., one has

< > P I.Ej+1(x) _ Ek+1(X+y)_yk+l

>

j=0

j+1 k+1

Let us replace y by —y in Proposition 2.1. Then we have

k /k

Z< > (-1)

=0 \J
k /k .
Z< > -1y
=0 \J

Thus, we see that

k—jyk—j Eja(x)  Egn (x-y) - (—1)k+13/k+1.

j+1 k+1

SEn() _ (D Eka(x-y) +y*!

j+1 k+1

Therefore, adding (2.4) and (2.6), we obtain the following proposition.

Proposition 2.2. For k € Z., one has

[k/2]

j=0

5

k

2j

o

]-Ezj+1 (%)

_ Era(x+y) + (1) Exn (x - v)

2j+1

2k +2

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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From (2.2), we note that

_1)k _ ) — ok
%( >yki(—1)jEj(x)=( ) E"(’; v)-y" (2.8)
j=1

Mw

By (2.3) and (2.8), we get

[k/2]l k-1 S E (x) = Ex(x+y) + D) Ex(x —y) - Zy 29)
= 2j\2j-1 ! 2k :
Therefore, replacing k by k + 1, we obtain the following proposition.
Proposition 2.3. For k € N, one has
Ak ka2 B2 (%) _ Eknt (x+y) + D" Exn(x - y) - 2yk+1 210
i— 2j 2k +2 (2.10)
j=1 2] 1 ]
Letting v = 1 in Proposition 2.1, we have
k Eisi(x) Eq(x+1)-1
j=0 ]
kil /e +1
Ei(x+1) = Z< 1 >(E +1) ket
1=0
kel /e +1
= (2-Eo)xM = < , >szk“l (2.12)
1=1

kil /k+1
— zxk+1 _ Z( l >Elxk+1l - 2xk+1 _ Ek+1 (x)

1=0

Therefore, by (2.11) and (2.12), we obtain the following corollary.

Corollary 2.4. For k € Z,, one has

$ (KBl | _Ein() | 221 (213)
j=0 j j+1 k+1 k+1 ° .
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Replacing y by 1 and k by 2k in Proposition 2.2, we have

z": 2k Ezjir (%) Epgar(x +1) + Enger (x = 1)
] 2j +1 4k +2

_ BExn(x+1) + B (%) + Epenn (%) + Egkna (x = 1)~ 2Bk (%) (2.14)

4k +2 4k +2
_ 20 4 2(x - DX Eyea(x)
4k +2 2k+1 °

Therefore, by (2.14), we obtain the following corollary.

Corollary 2.5. For k € Z,, one has

zk: > EZ]'.+1(X) __Exn(x) . R G 1)2k+1' (2.15)
<\2j/ 2j+1 2k +1 2k +1
Replacing y by 1 and k by 2k in Proposition 2.3, we have
i( >E2,-(x) _ Exn(x+1) - Epypn(x-1) -2
j=1 2] 1 2] 4k +2
_ (B (x+1) + Exgn1 (%) = (B () + Egpn(x -1)) 1
4k +2 2k +1 (2.16)
B e Gl VA
B 4k +2 2k +1
x2k+1 _ (x _ 1)2k+1 1
B 2k +1 T2k+1

Therefore, by (2.16), we obtain the following corollary.

Corollary 2.6. For k € N, one has

zk: Ezj(x)_x2k+1—(x—1)2k+1_ 1 517
S\2j-1) 2j B 2k +1 2k +1° (2.17)

Replacing y by 1/2 and k by 2k in Proposition 2.3, we get

(2.18)

Zk] (1)2"*”" Esj(x) _ Epjr(x +1/2) = Egjen (x —1/2) =27
2j-1/\2 2j 4k +2

j=1
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Thus, we have

ﬁl( . >22,- Eaj(x) _ 2% (Eppn(x +1/2) = Eyen (x = 1/2)) - 1 (2.19)

2] 2k +1 '
Ezk+1<x+—> :E2k+1<x_—+1> = < <X——> (E+1)
2 2 % l 2

1 2k+1  2k+1 /D) + 1 1 2k+1-1
- _ = - _Z (2.20)
2(’“ 2) 2\ <x 2) &

Therefore, by (2.19) and (2.20), we obtain the following corollary.

Corollary 2.7. For k € N, we have

. . 2+l 2k+1 2k+1
Z< 2k >22].E2,(x) _ 2 Eya(x-1/2)  25(x-1/2) ! (221)

2j 2k +1 2k +1 S 2k+1°

Replacing y by 1 and k by 2k + 1 in Proposition 2.2, we get

k <2k + 1> Ezji1(x)  Epga(x +1) — Epgea(x— 1)
j=0

2j 2j+1 4k +4

_ (Eak2(x +1) + Epiia(x)) = (Eaks2(x) + Egan(x = 1)) (2.22)
B 4k + 4

~ 2 5c2k+2 _ 2(x - 1)2k+2 ~ x2k+2 _ (x - 1)2k+2

4k +4 2k +2

Therefore, by (2.22), we obtain the following corollary.

Corollary 2.8. For k € Z,, one has

i <2k + 1> Eyjii(x)  x2%*2 — (x - 1)2'”2. (2.23)

S\ 2) 2j+1 2k +2



2j+1 k+1 k+1
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Replacing k by 2k + 1 and y by 1 in Proposition 2.3, we get
52k + T\ E3j(x)  Eppaa(x +1) + Eppan(x = 1) =2
2i-1/) 2j 4k +4
_ (Exkna(x +1) + Egksn (%)) + (Eaksa(X) + Egia(x = 1)) Eagen () +1
4k +4 2k +2
X242 4 (o — 1)%*2 _ Eyn(x) +1
- 2k +2 2k +2
(2.24)
Therefore, by (2.24), we obtain the following corollary.
Corollary 2.9. For k € Z,., we have
&2k + 1\ Epj(x) a2+ (x - 1™ Epoa(x) +1 505
2i-1/) 2j 2k +2 2k +2 (2:25)
Replacing k by 2k + 1 and y by 1/2 in Proposition 2.2, we have
k <2k + 1> ( 1 >2k+12f Eyjs1(x)  Eppio(x+1/2) — Exjn(x— 1 /2) (2.26)
I\ 2j 2 2j+1 4k + 4 '
Thus, by multipling 225*1 on both sides, we get
zk: 2k +1 E2J'+1(x) 22U By (x +1/2) = Exjan(x - 1/2)} 507
< 2j+1 4k + 4 ' (2.27)
i
By (2.20) and (2.27), we see that
c 24T () 22k <2(x ~1/2)%*2 _ 2Epen(x - 1 /2))
ZO: 2j+1 2k +2
= (2.28)
_ 2% (x - 1/2)%+2 2%k, n(x -1 /2)
k+1
Therefore, by (2.28), we obtain the following corollary.
Corollary 2.10. For k € Z,, we have
k /2k+1  Eajn(x 2k _ 2k (o _ 2k+2
s < > 31 (*) | 2%Ena(x-1/2)  2(x-1/2)* (229)

7=0
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From (1.6), we can derive the following equation:

= <k> Bin® _ w1 fiken
w\j/ J+1 ke

Let us take the p-adic integral on both sides in (2.30) as follows: for k € N,

k-1 /k B]-+1(x) k j+1 ]+1 l
Il:]zz(;<]>’[zp ]+1 dﬂ(X) §< >]+1Z< > ]+1—IJZPXdy(x)

On the other hand,

1 1
P

Zp

Therefore, by (2.31) and (2.32), we obtain the following theorem.

Theorem 2.11. For k € N, one has

k-1j+1 k i+ 1

1 ] 1
> — T < > < >Bj+1—lBl By - 1
j=0 1:0] + ] I +

In (2.30), let us take the fermionic p-adic integral on both sides as follows:

1 /k\ 1
B=3 <]> — fz,, Bor (x)dp 1 (x)
k=1 k j+1 i+1
= Q <] >B]~+1_l J‘ xldp 1 (x)
z

P

k1j+l K\ /j+1
1 J
= — < > < >Bj+1—lEl-
YRRV l

On the other hand

1

1
N - =F — —
L= JZ dpu_q(x) - Tl f du_q(x) = Ex 1

p

Therefore, by (2.34) and (2.35), we obtain the following theorem.

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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Theorem 2.12. For k € N, one has

» A Bij.14E =E !
] ;§+1 g )Pt B

From (1.7), we can easily derive the following equation:

'S 2k Byja(x)  x% — (x - 1)*
<\2j/) 2j+1 2 '

j=0

;\..

Iy
o

Let us take IZ,, du(x) on both sides in (2.37). Then we have

] k- 1<2k> 1 J‘ Byroy (2)du(x)
= e i x x
3 2] 2j+1 . 2j+1 H
k=1 /2k 1 ¥l <2j + l>
- . Byj. _,f *dp(x)
G B G L
k=12j+1 4 2k 2j+1 B B
= - i+1-1D].
SE2+1\2/\ 1 )

On the other hand,

I = %< fz,, x**dp(x) - fzp (x - 1>2kdy(x>>

= %(sz - B2k(—1)) = %(sz - B2k(2))

1
= E(sz - (2k + 61,2k + BZk))/

where 6, is a Kronecker symbol.
Therefore, by (2.38) and (2.39), we obtain the following theorem.

Theorem 2.13. For k € N, one has

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Taking IZ,, dp_1(x) on both sides in (2.37), we get

170k 1 2 /2j+1
I, = - Byisi- xldu_q(x
' ]=0<2]>2]+1§< ! > 2]+1lf2 )

p

1241 72k /2 +1
= Z 571\ o Bajs1-1E;.
iz0 =0 < T 1 \2j !

4

= % <J‘ZP x*dp(x) - J‘z,, (x+ 2)2kd#—1(x)> (2.42)

= _(EZk - Ex(2)) = ! {E2k — (24 Exx —260.k) }

(2.41)

On the other hand

xFdp (x) - fz (x = 1)*dpy (x)>

=-1+ 60,1(.

Therefore, by (2.41) and (2.42), we obtain the following theorem.

Theorem 2.14. For k € N, one has

klz]zﬂ ! ><2j+1 B E 1 (2.43)
2j+1-161 = —1. .
T 2j+1\2j I I+
From (1.8), we can also derive the following equation:
k Bi(x 2k -1 2k 1
Z< > 2j ( ) _ X + (x ) _ - ) (244)
j=1 2] 1 2] 2 2k +1

Let us take the bosonic p-adic integral on both sides in (2.44). Then we get

1
71 <2] - 1> 2j fzp Bay ()au(x)
k 1 2j 2] ;
§< 2 1> Z§< l >B2]-_1 IZ x'du(x) (2.45)

P

k201 2k \ /2
=225 Bj-1B;.
11204 \2j -1 !

M»
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On the other hand,
Is = lf <x2k +(-1+ x)2k>d/4(x) - LJ‘ dp(x)
2), 2k+1 ),
P P

1[ ( 2k 2k 1

== x+ (x+2) >d/¢(x)——
2), 2k +1 246)
1 1

= §(BZk + Bk (2)) - o]

= 1(B + 2k + Bok + 612k) — 1

= 5 (B 2k +012k) = 7

Therefore, by (2.45) and (2.46), we obtain the following theorem.

Theorem 2.15. For k € N, one has

oy ] 2K 2 Byi_1B; =B k —1
;Z 2j-1/\I 2P = PR T o (2.47)

Now, let us consider the fermionic p-adic integral on both sides in (2.44):

s 12 /2j
= By;- ldp_
z_;<2]_1>2]§ l z]zfsz p1(x)

(2.48)
k2 2j
1 j
j=1 1=0 2] 1 l
On the other hand,
L=+ (ka + (x—l)z")d @) - —— [ duro)
°T2), o okt ),
_1 2%k 2% 1
2f2p<x # (2% ) () - 5y
1 1
E(Ezk +Ex(2)) - krl (249)
1(E + (2 + Exx —2602k)) — !
2 2k 2k 0,2k 2k 1
1 2k
Eaet1 =802~ 5577 = 551

Therefore, by (2.48) and (2.49), we obtain the following theorem.
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Theorem 2.16. For k € N, one has

L1 (2R (2 2k
S52 (2]' - 1> < I >BZHE1 T 2k+1 (2.50)
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