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In this paper, the numerical range for two operators (both linear and nonlinear) have been studied
in semi-inner product spaces. The inclusion relations between numerical range, approximate point
spectrum, compression spectrum, eigenspectrum, and spectrum have been established for two
linear operators.We also show the inclusion relation between approximate point spectrum and clo-
sure of the numerical range for two nonlinear operators. An approximation method for solving the
operator equation involving two nonlinear operators is also established.

1. Introduction

Lumer [1] introduced the concept of semi-inner product. He defined semi-inner product as
follows.

Semi-Inner Product

LetX be a vector space over the field F of real or complex numbers. A functional [ ] : X×X →
F is called a semi-inner product if it satisfies the following conditions:

(i) [x + y, z] = [x, z] + [y, z], for all x, y, z ∈ X;
(ii) [λx, y] = λ[x, y], for all λ ∈ F and x, y ∈ X;
(iii) [x, x] > 0, for x /= 0;
(iv) |[x, y]|2 ≤ [x, x][y, y], for all x, y ∈ X.
The pair (X, [ , ]) is called a semi-inner product space.
A semi-inner product space is a normed linear space with the norm ‖x‖ = [x, x]1/2.

Every normed linear space can be made into a semi-inner product space in infinitely many
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different ways. Giles [2] had shown that if the underlying space is a uniformly convex smooth
Banach space, then it is possible to define a semi-inner product uniquely. Also the unique
semi-inner product has the following nice properties:

(i) [x, λy] = λ[x, y], for all scalars λ;

(ii) [x, y] = 0 if and only if y is orthogonal to x, that is, if and only if ‖y‖ ≤ ‖y +λx‖, for
all scalars λ;

(iii) generalized Riesz representation theorem: If f is a continuous linear functional on
X then there is a unique vector y ∈ X such that f(x) = [x, y], for all x ∈ X;

(iv) the semi-inner product is continuous.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly convex
smooth Banach spaces. So one can define semi-inner product on these spaces uniquely. Giles
[2] had shown that the functions space Lp, p > 1 are semi-inner product spaces with the semi-
inner product defined by

[
f, g

]
:=

1
∥∥g

∥∥p−2
p

∫

X

f(x)
∣∣g(x)

∣∣p−1 sgn
(
g(x)

)
dμ, ∀f, g ∈ LP(X, μ

)
. (1.1)

To study the generalized eigenvalue problem Tx = λAx, Amelin [3] introduced the
concept of numerical range for two linear operators in a Hilbert space. His purpose was to
obtain some new results on the stability of index of a Fredholm operator perturbed by a
bounded operator. Zarantonello [4] had introduced the concept of numerical range for a non-
linear operator in a Hilbert space. He proved that the numerical range contains the spectrum.
He used this concept to solve the nonlinear functional equations. A great deal of literature on
numerical range in unital normed algebras, numerical radius theorems, spatial numerical
ranges, algebra numerical ranges, essential numerical ranges, joint numerical ranges, and
matrix ranges are available in Bonsall [5, 6]. For recent work on numerical range, one may
refer Chien and Nakazato [7, 8], Chien at al. [9], Gustafson and Rao [10], and Li and Tam
[11].

In [1], Lumer discussed the numerical range for a linear operator in a Banach space.
Williams [12] studied the spectra of products of two linear operators and their numerical
ranges. The numerical range of two nonlinear operators in a semi-inner product spacewas de-
fined by Nanda [13]. For two nonlinear operators T and A, he defined the numerical range
Wnl(T,A), as

Wnl(T,A) :=

{[
Tx − Ty,Ax −Ay

]

∥∥Ax −Ay
∥∥2

: x /=y, x, y ∈ D(T) ∩D(A)

}

, (1.2)

where D(T) and D(A) denote the domains of the operators T and A, respectively. The num-
erical radius wnl(T,A) is defined as wnl(T,A) = sup{|λ| : λ ∈ Wnl(T,A)}. Wnl(T,A) may not
be convex. If T and A are continuous and D(T), D(A) are connected, then Wnl(T,A) is con-
nected. The numerical range of a nonlinear operator using the generalized Lipschitz norm
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was studied by Verma [14]. He defined the numerical range VL(T) of a nonlinear operator T ,
as

VL(T) :=

{
[Tx, x] +

[
Tx − Ty, x − y

]

‖x‖2 + ∥∥x − y
∥∥2

: x, y ∈ D(T), x /=y

}

. (1.3)

He used this concept to solve the operator equation Tx−λx = y, where T is a nonlinear oper-
ator.

This paper is concerned with the numerical range in a Banach space. Nanda [15] stud-
ied the numerical range for two linear operators and the coupled numerical range in a Hilbert
space which was initially introduced by Amelin [3]. He also introduced the concepts of spec-
trum, point spectrum, approximated point spectrum, and compression spectrum for two
linear operators. In Section 2, we generalize the results of Nanda [15] to semi-inner product
space. Verma [14] introduced the numerical range of a nonlinear operator in a Banach space
using the generalized Lipschitz norm. In Section 3, we generalize the numerical range of
Verma [14] for two nonlinear operators using the generalized Lipschitz norm. We also give
examples of operators in semi-inner product spaces and compute their numerical range and
numerical radius.

2. Numerical Range of Two Linear Operators

Let T andA be two linear operators on a uniformly convex smooth Banach spaceX. To study
the properties of the numerical range, coupled numerical range for the two operators T andA,
and to discuss the results of the classical spectral theory associated with the numerical range,
we need the following definitions in the sequel.

Numerical RangeW(T,A)

The numerical range W(T,A) of the two linear operators T and A is defined as W(T,A) :=
{[Tx,Ax] : ‖Ax‖ = 1, x ∈ D(T) ∩D(A)}, where D(T) and D(A) are denoted as the domain
of T and the domain of A, respectively. The numerical radiusw(T,A) is defined asw(T,A) =
sup{|λ| : λ ∈ W(T,A)}.

Spectrum σ(T,A)

The spectrum σ(T,A) of the two linear operators T and A is defined as

σ(T,A) := {λ ∈ C : (T − λA) is not invertible}. (2.1)

The spectral radius r(T,A) is defined as r(T,A) = sup{|λ| : λ ∈ σ(T,A)}.

Eigenspectrum e(T,A)

The eigenspectrum or point spectrum e(T,A) of two linear operators T and A is defined as

e(T,A) := {λ ∈ C : Tx = λAx, x /= 0}. (2.2)
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Approximate Point Spectrum π(T,A)

The approximate point spectrum π(T,A) of two linear operators T and A is defined as
π(T,A) := {λ ∈ C such that there exists a sequence xn in X with ‖Axn‖ = 1 and ‖Txn−λAxn‖
→ 0 as n → ∞}.

Compression Spectrum σ0(T,A)

The compression spectrum σ0(T,A) of two linear operators T and A is defined as

σ0(T,A) :=
{
λ ∈ C : Range (T − λA) is not dense in X

}
. (2.3)

Coupled Numerical RangeWA(T)

The coupled numerical range WA(T) of T with respect to A is defined as

WA(T) :=
{
[ATx, x]
[Ax, x]

: ‖x‖ = 1, [Ax, x]/= 0
}
. (2.4)

We can easily prove the following properties of the numerical range of two linear operators.

Theorem 2.1. Let T1, T2, T, and A be linear operators and α, μ, and λ be scalars. Then
(i) W(T1 + T2, A) ⊆ W(T1, A) +W(T2, A);
(ii) W(αT,A) = αW(T,A);
(iii) W(T, μA) = μW(T,A);
(iv) W(T − λA,A) = W(T,A) − {λ};
(v) w(T1 + T2, A) ≤ w(T1, A) +w(T2, A);
(vi) w(λT,A) = |λ|w(T,A).

Theorem 2.2. For the coupled numerical range we have the following properties:
(i) WA(T1 + T2) ⊆ WA(T1) +WA(T2);
(ii) WA(αT) = αWA(T);
(iii) WαA(T) = WA(T).

We establish the following theorems which generalize the classical spectral theory re-
sults.

Theorem 2.3. The approximate point spectrum π(T,A) is contained in the closure of the numerical
range W(T,A).

Proof. Let λ ∈ π(T,A). Then there exists a sequence xn in X such that [Axn,Axn] = 1 and
‖(T − λA)xn‖ → 0 as n → ∞.

Now

|[Txn,Axn] − λ| = |[(T − λA)xn,Axn]| ≤ ‖(T − λA)xn‖‖Axn‖ −→ 0 as n −→ ∞. (2.5)

This implies that [Txn,Axn] → λ as n → ∞.
Hence, λ ∈ W(T,A), and consequently π(T,A) ⊂ W(T,A).
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Theorem 2.4. Eigenspectrum e(T,A) is contained in the spectrum σ(T,A).

Proof. Let λ ∈ e(T,A). Then there exists x0 /= 0 such that (T − λA)x0 = 0. Thus (T − λA)−1 does
not exist otherwise (T − λA)−1(T − λA)x0 = (T − λA)−10 = 0.

That is Ix0 = x0 = 0, which is a contradiction to the fact that x0 /= 0. Hence λ ∈ σ(T,A)
and consequently, e(T,A) ⊂ σ(T,A).

In the following theorems, we assume that the linear operator A is invertible.

Theorem 2.5. Compression spectrum σ0(T,A) is contained in the numerical range W(T,A).

Proof. Let λ ∈ σ0(T,A), then range(T − λA) is not dense in X.
So we can find a y in X with ‖Ay‖ = 1 such that Ay is orthogonal to the range of

(T − λA).
This implies 0 = [(T − λA)y,Ay] = [Ty,Ay] − λ. So λ = [Ty,Ay] ∈ W(T,A), and con-

sequently σ0(T,A) ⊂ W(T,A).

The generalized Riesz representation theorem asserts that one can define semi-inner
product using bounded linear functionals. In the following theorem, we denote that
(x, φ(y)) = [x, y] for all x, y ∈ X and φ ∈ X∗.

Theorem 2.6. Spectrum σ(T,A) is contained in the closure of the numerical range W(T,A).

Proof. Let λ ∈ σ(T,A). To show that λ ∈ W(T,A).
Suppose that λ /∈ W(T,A), then d(λ,W(T,A)) = δ > 0.
For ‖Ax‖ = 1, we have

‖(T − λA)x‖ ≥ |[(T − λA)x,Ax]| = |[Tx,Ax] − λ| ≥ δ > 0. (2.6)

Hence (T − λA) is one-to-one with a closed range. Again for φ ∈ X∗, X∗ being the dual space
of X, we have

∥∥∥A−1
∥∥∥
∥∥(T − λA)∗φ(Ax)

∥∥ ≥ ∣∣(x, (T − λA)∗φ(Ax)
)∣∣ = |[(T − λA)x,Ax]| ≥ δ. (2.7)

Hence (T − λA)∗ is bounded below on the range of φ and since this is dense in X∗,
(T −λA)∗ is bounded below, and it is one-to-one. This implies that (T −λA) has a dense range.
By openmapping theorem (T−λA) has a bounded inverse, which is a contradiction to the fact
that λ ∈ σ(T,A).

Therefore, λ ∈ W(T,A), and consequently σ(T,A) ⊂ W(T,A).

Remark 2.7. Theorem 2.6 is a generalization of a known result for Hilbert space operators to
Banach space operators. Here, T and A are bounded linear operators on a Banach space X.
If A is invertible, then the spectrum σ(T,A) coincides with the classical spectrum σ(TA−1) of
TA−1. The numerical rangeW(T,A) coincides with the classical numerical rangeW(TA−1) of
TA−1. So the assertion of Theorem 2.6 can also be deduced from a classical result on Banach
space.
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Theorem 2.8. Let T andA be two linear operators on a semi-inner product spaceX, so thatw(T,A) <
1. If A is invertible, then A − T is invertible, and ‖A(A − T)−1‖ ≤ 1/(1 −w(T,A)).

Proof. We have r(T,A) ≤ w(T,A) < 1. For ‖Ax‖ = 1, we have

‖(A − T)x‖ =
∥∥∥A

(
I −A−1T

)
x
∥∥∥

=
∥∥∥A

(
I −A−1T

)
x
∥∥∥‖Ax‖

≥
∣∣∣
[
A
(
I −A−1T

)
x,Ax

]∣∣∣

≥ [Ax,Ax] − |[Tx,Ax]|
≥ 1 −w(T,A) > 0.

(2.8)

This implies that (A − T) is invertible in its range.
Again ‖(A − T)x‖ ≥ (1 −w(T,A))‖Ax‖. Setting x = A−1(I −A−1T)−1y with ‖y‖ = 1, we

get

1 ≥ (1 −w(T,A))
∥∥∥A(A − T)−1y

∥∥∥

⇒
∥∥∥A(A − T)−1y

∥∥∥ ≤ (1 −w(T,A))−1
∥∥y

∥∥

⇒
∥∥∥A(A − T)−1

∥∥∥ ≤ 1
1 −w(T,A)

.

(2.9)

3. Numerical Range of Two Nonlinear Operators

Let Lip(X) denote the set of all Lipschitz operators on X. Suppose that T ∈ Lip(X), and
x, y ∈ Dom(T) with x /=y. The generalized Lipschitz norm ‖T‖L of a nonlinear operator T on
a Banach space X is defined as ‖T‖L = ‖T‖ + ‖T‖l, where ‖T‖ = supx‖Tx‖/‖x‖ and ‖T‖l =
supx /=y‖Tx − Ty‖/‖x − y‖. If there exists a finite constant M such that ‖T‖L < M, then the
operator T is called the generalized Lipschitz operator (Verma [14]). Let GL(X) be the class
of all generalized Lipschitz operators.

Nowwe define the concepts of resolvent set, spectrum, eigenspectrum, and point spec-
trum for a nonlinear operator with respect to another nonlinear operator, which generalize
the concepts of the classical spectral theory.

A-Resolvent Set

A-resolvent set ρA(T) of a nonlinear operator T with respect to another operator A is defined
as

ρA(T) :=
{
λ ∈ C : (T − λA)−1 exists and is generalized Lipschitzian

}
. (3.1)
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A-Spectrum of T

A-spectrum of T , σA(T) is the complement of the A-resolvent set of T .

Numerical Range of Two Nonlinear Operators

The numerical range VL(T,A) of two nonlinear operators T and A is defined as

VL(T,A) :=

{
[Tx,Ax] +

[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

: x, y ∈ D(T) ∩D(A), x /=y

}

, (3.2)

whereD(T) andD(A) are the domains of the operators T andA, respectively. The numerical
radius wL(T,A) is defined as wL(T,A) = {sup |λ| : λ ∈ VL(T,A)}.

We give examples of two nonlinear operators in a semi-inner product space and com-
pute their numerical range and numerical radius.

Example 3.1. Consider the real sequence space lp, p > 1. Let x = (x1, x2, . . .), y = (y1, y2, . . .) ∈
lp. Consider the two nonlinear operators T,A : lp → lp defined by Tx = (‖x‖, x1, x2, . . .) and
Ax = (‖x‖, 0, 0, . . .). The semi-inner product on the real sequence space lp is defined as [x, y] =
(1/‖y‖p−2)∑∞

n=1 |yn|p−2ynxn, ∀x = {xn}, y = {yn} ∈ lp. One can easily compute that ‖Ax‖ =
‖x‖, ‖Ax − Ay‖ = |‖x‖ − ‖y‖|, [Tx,Ax] = ‖x‖2 and [Tx − Ty,Ax − Ay] = (1/‖Ax −
Ay‖p−2){|(‖x‖ − ‖y‖)|p−2(‖x‖ − ‖y‖)2} = 1/|(‖x‖ − ‖y‖)|p−2|(‖x‖ − ‖y‖)|p = |(‖x‖ − ‖y‖)|2.

We can calculate

[Tx,Ax] +
[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
‖x‖2 + ∣∣(‖x‖ − ∥∥y

∥∥)∣∣2

‖x‖2 + ∣∣(‖x‖ − ∥∥y
∥∥)∣∣2

= 1, ∀x, y ∈ lp. (3.3)

Therefore, VL(T,A) = {1}, and wL(T,A) = 1.

Example 3.2. Consider the real sequence space lp, p > 1. Let x = (x1, x2, . . .) and y = (y1, y2,
. . .) ∈ lp. Consider the two nonlinear operators T,A : lp → lp defined by Tx = (‖x‖, x1, x2, . . .)
and Ax = (α, x1, x2, . . .), where α ∈ R is any constant.

One can easily compute ‖Ax −Ay‖p =
∑∞

n=1 |xn − yn|p and

[
Tx − Ty,Ax −Ay

]
=

1
∥∥Ax −Ay

∥∥p−2

∞∑

n=1

∣∣xn − yn

∣∣p =

∥∥Ax −Ay
∥∥p

∥∥Ax −Ay
∥∥p−2 =

∥∥Ax −Ay
∥∥2

. (3.4)

For any x, y ∈ lp, we have

[
Tx − Ty,Ax −Ay

]

∥∥Ax −Ay
∥∥2

=

∥∥Ax −Ay
∥∥2

∥∥Ax −Ay
∥∥2

= 1. (3.5)

Therefore, the numerical range of two nonlinear operators T and A in the sense of Nanda
[13] isWnl(T,A) = {1} and the numerical radius wnl(T,A) = 1.
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We have the following elementary properties for the numerical range of two nonlinear
operators.

Theorem 3.3. Let X be a Banach space over C. If T,A, T1, and T2 are nonlinear operators defined on
X, and λ and μ are scalars, then

(i) VL(λT,A) = λVL(T,A);
(ii) VL(T, μA) = (1/μ)VL(T,A);
(iii) VL(T1 + T2, A) ⊆ VL(T1, A) + VL(T2, A);
(iv) VL(T − λA,A) = VL(T,A) − {λ}.

Proof. To prove (i):

[λTx,Ax] +
[
λTx − λTy,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

= λ
[Tx,Ax] +

[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2 . (3.6)

Hence, VL(λT,A) = λVL(T,A).
To show (ii):

[
Tx, μAx

]
+
[
Tx − Ty, μAx − μAy

]

∥∥μAx
∥∥2 +

∥∥μAx − μAy
∥∥2

=
μ[Tx,Ax] + μ

[
Tx − Ty,Ax −Ay

]

∣∣μ
∣∣2
(
‖Ax‖2 + ∥∥Ax −Ay

∥∥2
)

=
μ

∣∣μ
∣∣2

[Tx,Ax] +
[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
1
μ

[Tx,Ax] +
[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

.

(3.7)

Hence VL(T, μA) = (1/μ)VL(T,A).
Let x, y ∈ D(T1) ∩D(T2).
Then,

[(T1 + T2)x,Ax] +
[
(T1 + T2)x − (T1 + T2)y,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
[T1x,Ax] + [T2x,Ax] +

[
T1x − T1y,Ax −Ay

]
+
[
T2x − T2y,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
[T1x,Ax] +

[
T1x − T1y,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

+
[T2x,Ax] +

[
T2x − T2y,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

.

(3.8)

Therefore, VL(T1 + T2, A) ⊆ VL(T1, A) + VL(T2, A). Thus, (iii) is proved.
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Finally, to prove (iv):

[(T − λA)x,Ax] +
[
(T − λA)x − (T − λA)y,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
[Tx,Ax] − λ‖Ax‖2 + [

Tx − Ty,Ax −Ay
] − λ

∥∥Ax −Ay
∥∥2

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

=
[Tx,Ax] +

[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

− λ.

(3.9)

This implies that VL(T − λA,A) = VL(T,A) − {λ}.

Approximate Point Spectrum of Two Nonlinear Operators

Approximate point spectrum π(T,A) of two nonlinear operators T and A is defined as
π(T,A) := {λ ∈ C: there exist sequences {xn} and {yn} such that ‖Axn‖ = 1, ‖Axn −Ayn‖ = 1,
‖(T − λA)xn‖ → 0 and ‖(T − λA)xn − (T − λA)yn‖ → 0 as n → ∞}.

Strongly Generalized A-Monotone Operator

A nonlinear operator T : D(T) ⊂ X → X is called strongly generalized A-monotone operator
if there is a constant C > 0, such that |[Tx,Ax]+[Tx−Ty,Ax−Ay]| ≥ C(‖Ax‖2+‖Ax−Ay‖2).

Theorem 3.4. Approximate point spectrum π(T,A) of two nonlinear operators T andA is contained
in the closure of their numerical range VL(T,A).

Proof. Let λ ∈ π(T,A). Now

∣∣∣∣∣
[Txn,Axn] +

[
Txn − Tyn,Axn −Ayn

]

‖Axn‖2 +
∥∥Axn −Ayn

∥∥2
− λ

∣∣∣∣∣

=

∣∣[(T − λA)xn,Axn] +
[
(T − λA)xn − (T − λA)yn,Axn −Ayn

]∣∣

‖Axn‖2 +
∥∥Axn −Ayn

∥∥2

≤ ‖(T − λA)xn‖‖Axn‖ +
∥∥(T − λA)xn − (T − λA)yn

∥∥∥∥Axn −Ayn

∥∥

‖Axn‖2 +
∥∥Axn −Ayn

∥∥2
.

(3.10)

The right-hand side goes to 0 as n → ∞. This implies that λ ∈ VL(T,A), and hence π(T,A) ⊂
VL(T,A).

Theorem 3.5. Let μ be a complex number. Then μ is at a distance d > 0 from VL(T,A) if and only if
(T − μA) is strongly generalized A-monotone.
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Proof. We have

0 < d ≤
∣∣∣∣∣
[Tx,Ax] +

[
Tx − Ty,Ax −Ay

]

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

− μ

∣∣∣∣∣

=

∣∣[(T − μA
)
x,Ax

]
+
[(
T − μA

)
x − (

T − μA
)
y,Ax −Ay

]∣∣

‖Ax‖2 + ∥∥Ax −Ay
∥∥2

.

(3.11)

This implies that
∣∣[(T − μA

)
x,Ax

]
+
[(
T − μA

)
x − (

T − μA
)
y,Ax −Ay

]∣∣ ≥ d
(
‖Ax‖2 + ∥∥Ax −Ay

∥∥2
)
.

(3.12)

Hence, (T − μA) is a strongly generalized A-monotone operator. The converse part follows
easily and hence omitted.

The following theorem is an approximation method for solving an operator equation
involving two nonlinear operators.

Theorem 3.6. Let X be a complex Banach space, T ∈ GL(X), and ‖T‖L < 1. Also let A be another
generalized Lipschitzian and invertible operator on X. If T is A-Lipschitz with constant K/= 1, then
A−T is invertible inGL(X) and ‖(A−T)−1‖ ≤ (‖A−1‖L(2−‖A−1T‖L))/(1−‖A−1T‖)(1−‖A−1T‖l).
Again if B0 = I and Bn = I + (A−1T)Bn−1 for n = 1, 2, 3, . . ., and ‖A−1T‖l < 1, then limn→∞Bnx =
(I − A−1T)−1x for every x ∈ X, as n → ∞ and ‖(I − A−1T)−1x − Bnx‖ ≤ ‖A−1T‖n

l
‖A−1Tx‖(1 −

‖A−1T‖l)−1, for x ∈ X, n = 0, 1, 2, . . ..

Proof. For each x, y ∈ X with Ax/=Ay, we have
∥∥(A − T)x − (A − T)y

∥∥ ≥ ∥∥Ax −Ay
∥∥ − ∥∥Tx − Ty

∥∥

≥ ∥∥Ax −Ay
∥∥ −K

∥∥Ax −Ay
∥∥

= (1 −K)
∥∥Ax −Ay

∥∥ > 0,

(3.13)

since K/= 1, and Ax/=Ay. This implies that (A − T) is injective.
Next if u, v ∈ R(A − T), then

∥∥∥(A − T)−1
∥∥∥ =

∥∥∥∥A
−1
(
I −A−1T

)−1∥∥∥∥

≤
∥∥∥A−1

∥∥∥
∥∥∥∥
(
I −A−1T

)−1∥∥∥∥ ≤
∥∥∥A−1

∥∥∥
(
1 −

∥∥∥A−1T
∥∥∥
)−1

.

(3.14)

Similarly, we have ‖(A − T)−1‖l ≤ ‖A−1‖l(1 − ‖A−1T‖l)−1.
Now

∥∥∥(A − T)−1
∥∥∥ +

∥∥∥(A − T)−1
∥∥∥
l
≤

∥∥A−1∥∥

1 − ∥∥A−1T
∥∥ +

∥∥A−1∥∥
l

1 − ∥∥A−1T
∥∥
l

=

∥∥A−1∥∥(1 − ∥∥A−1T
∥∥
l

)
+
∥∥A−1∥∥(1 − ∥∥A−1T

∥∥
l

)

(
1 − ∥∥A−1T

∥∥)(1 − ∥∥A−1T
∥∥
l

)



Abstract and Applied Analysis 11

≤
∥∥A−1∥∥

L

(
1 − ∥∥A−1T

∥∥
l

)
+
∥∥A−1∥∥

L

(
1 − ∥∥A−1T

∥∥
l

)

(
1 − ∥∥A−1T

∥∥)(1 − ∥∥A−1T
∥∥
l

)

=
2
∥∥A−1∥∥

L −
∥∥A−1∥∥

L

∥∥A−1T
∥∥
l −

∥∥A−1∥∥
L

∥∥A−1T
∥∥

(
1 − ∥∥A−1T

∥∥)(1 − ∥∥A−1T
∥∥
l

)

=
2
∥∥A−1∥∥

L −
∥∥A−1∥∥

L

∥∥A−1T
∥∥
L(

1 − ∥∥A−1T
∥∥)(1 − ∥∥A−1T

∥∥
l

) ,

=⇒
∥∥∥(A − T)−1

∥∥∥
L
≤

∥∥A−1∥∥
L

(
2 − ∥∥A−1T

∥∥
L

)

(
1 − ∥∥A−1T

∥∥)(1 − ∥∥A−1T
∥∥
l

) .

(3.15)

To prove the second part, consider the sequence of approximating operators

B0 = I, Bn = I +
(
A−1T

)
Bn−1, for n = 1, 2, 3, . . . . (3.16)

We claim that

‖Bn+1x − Bnx‖ ≤
∥∥∥A−1T

∥∥∥
n

l

∥∥∥A−1Tx
∥∥∥. (3.17)

For n = 0, ‖B1x − B0x‖ = ‖(I +A−1T)Ix − Ix‖ = ‖A−1Tx‖.
For n = 1, ‖B2x − B1x‖ = ‖(I + (A−1T)B1)x − (I + (A−1T)B0)x‖ ≤ ‖A−1T‖1

l
‖A−1Tx‖.

Assume that (3.17) is true for n = k − 1, that is ‖Bkx − Bk−1x‖ ≤ ‖A−1T‖k−1
l

‖A−1Tx‖.
Now for n = k,

‖Bk+1x − Bkx‖ =
∥∥∥
(
I +

(
A−1T

)
Bk

)
x −

(
I +

(
A−1T

)
Bk−1

)
x
∥∥∥

=
∥∥∥
(
A−1T

)
Bkx −

(
A−1T

)
Bk−1x

∥∥∥

≤
∥∥∥A−1T

∥∥∥
l
‖Bkx − Bk−1x‖

≤
∥∥∥A−1T

∥∥∥
k

l

∥∥∥A−1Tx
∥∥∥.

(3.18)

Now for a positive integer p,

∥∥Bn+px − Bnx
∥∥ =

∥∥∥∥∥

p−1∑

k=0

Bn+k+1x − Bn+kx

∥∥∥∥∥

≤
p−1∑

k=0

‖Bn+k+1x − Bn+kx‖

≤
p−1∑

k=0

∥∥∥A−1T
∥∥∥
n+k

l

∥∥∥A−1Tx
∥∥∥
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=
∥∥∥A−1T

∥∥∥
n

l

∥∥∥A−1Tx
∥∥∥
{
1 +

∥∥∥A−1T
∥∥∥
l
+
∥∥∥A−1T

∥∥∥
2

l
+ · · · +

∥∥∥A−1T
∥∥∥
p−1

l

}

≤
∥∥∥A−1T

∥∥∥
n

l

∥∥∥A−1Tx
∥∥∥
(
1 −

∥∥∥A−1T
∥∥∥
l

)−1
.

(3.19)

Since ‖A−1T‖l < 1, the sequence {Bnx} is a Cauchy sequence. Again since X is complete, we
have limm→∞Bm(x) = Ex exists for all x ∈ X.

For m = n + p,

‖Ex − Bnx‖ = lim
p→∞

∥∥Bn+px − Bnx
∥∥ ≤

∥∥∥A−1T
∥∥∥
n

l

∥∥∥A−1Tx
∥∥∥
(
1 −

∥∥∥A−1T
∥∥∥
l

)−1
. (3.20)

As A−1T is continuous, we have

Ex = lim
n→∞

Bn(x) = lim
n→∞

(
I +

(
A−1T

)
Bn−1

)
x =

(
I +

(
A−1T

)
E
)
x

=⇒ Ex −
(
A−1T

)
Ex = Ix

=⇒ E =
(
I −A−1T

)−1
.

(3.21)

Now multiplying A−1 we get (A − T)−1 = A−1E.

Using this technique, one can solve an operator equation involving two nonlinear op-
erators under the condition that one of the operator is invertible.
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