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We study a fractional differential equation dynamics model arising from the analysis of real estate
asset securitization by using the generalized fixed point theorem for weakly contractive mappings
in partially ordered sets. Based on the analysis for the existence and uniqueness of the solution
and scientific numerical calculation of the solution, in further study, some optimization schemes
for traditional risk control process will be obtained, and then the main results of this paper can be
applied to the forefront of research of real estate asset securitization.

1. Introduction

Real estate asset securitization is a kind of important financial derivatives in the world.
In the international capital market, by combining with different development pattern of
the financial industry and real estate industry, real estate asset securitization has become a
class of financial products with rapid development and great vitality. Recently, by SWOT
analysis method, one has found that many mathematical models arising from real estate
asset securitization can be interpreted by fractional-order differential or difference equations,
under suitable initial conditions or boundary conditions, the existence and uniqueness of
solution of the fractional-order mechanical model are important and useful. Especially, by
examining the numerical simulation and analysis of solution, one can undertake macroscopi-
cal analysis and comparative research for real estate securitization process advantages and
disadvantages, and find real estate asset securitizationmay exist problems and risks, and then
one can put forward to optimize the views on traditional risk control process. In recent years,
fractional-order models have been proved to be more accurate than integer order models;



2 Abstract and Applied Analysis

that is, there are more degrees of freedom in the fractional-order models, see [1, 2]. For recent
works about fractional-order models, we refer the reader to [3–9] and the references therein.

In this paper, we discuss the existence and uniqueness of positive solutions for the
following fractional differential equation with nonlocal Riemann-Stieltjes integral condition
arising from the real estate asset securitization

−Dt
αx(t) = f

(
t, x(t),−Dt

βx(t)
)
, t ∈ (0, 1),

Dt
βx(0) = Dt

β+1x(0) = 0, Dt
βx(1) =

∫1

0
Dt

βx(s)dA(s),
(1.1)

where 2 < α ≤ 3, 0 < β < 1, and α − β > 2, Dt is the standard Riemann-Liouville derivative.
In (1.1),

∫1
0 Dt

βx(s)dA(s) denotes the Riemann-Stieltjes integral, and A is a function of
bounded variation, which implies dA can be a signedmeasure. Thus the BVP (1.1) reveal that
positive or negative values of the linear functionals

∫1
0 x(s)dA(s) are viable in some cases. But

if A(s) = s or dA(s) = h(s)ds, the BVP become a multipoint boundary value problems or the
integral boundary value problems, some kind of positivity on the functionals

∫1
0 x(s)dA(s) is

often required, for example, in
∫1
0 x(s)dA(s) =

∑m−2
i=1 μiu(ηi), μi > 0 is often required. Thus the

BVP (1.1) include more generalized boundary value conditions. For a detailed description of
multipoint and integral boundary conditions on fractional differential equation, we refer the
reader to some recent papers (see [10–15]).

Note that the problem (1.1) has been considered by Wang and Li [16], and the authors
obtained the existence of one positive solution for (1.1) by using Krasnoselskii’s fixed point
theorem on a cone under semipositone case, but the uniqueness of the solution is not treated.

The paper is organized as follows. In Section 2, we extend and improve some fixed
point theorems for weakly contractive mappings in partially ordered sets by Harjani and
Sadarangani [17], we omit many redundant conditions of Theorems 2 and 3 in [17] and
obtain better results than those of [17]. In Section 3, the existence and uniqueness of a positive
solution for the problem (1.1) are obtained by using a fixed point theorem in partially ordered
sets. An example is also given to illuminate the application of the main result.

2. Preliminaries and Lemmas

Definition 2.1 (see [18, 19]). The Riemann-Liouville fractional integral of order α > 0 of a
function x : (0,+∞) → R is given by

Iαx(t) =
1

Γ(α)

∫ t
0
(t − s)α−1x(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 (see [18, 19]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by

Dt
αx(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t
0
(t − s)n−α−1x(s)ds, (2.2)

where n = [α]+1, [α] denotes the integer part of number α, provided that the right-hand side
is pointwise defined on (0,+∞).



Abstract and Applied Analysis 3

Remark 2.3. If x, y : (0,+∞) → R with order α > 0, then

Dt
α(x(t) + y(t)) = Dt

αx(t) +Dt
αy(t). (2.3)

Proposition 2.4 (see [18, 19]). (1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dt
σIνx(t) = Iν−σx(t), Dt

σIσx(t) = x(t). (2.4)

(2) If ν > 0, σ > 0, then

Dt
νtσ−1 =

Γ(σ)
Γ(σ − ν) t

σ−ν−1. (2.5)

Proposition 2.5 (see [18, 19]). Let α > 0, and f(x) is integrable, then

IαDt
αf(x) = f(x) + c1xα−1 + c2xα−2 + · · · + cnxα−n, (2.6)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Let x(t) = Iβy(t), y(t) ∈ C[0, 1], by standard discuss, we easily reduce the BVP (1.1) to
the following modified problems:

−Dt
α−βy(t) = f

(
t, Iβy(t),−y(t)

)
,

y(0) = y′(0) = 0, y(1) =
∫1

0
y(s)dA(s),

(2.7)

and the BVP (2.7) is equivalent to the BVP (1.1).

Lemma 2.6 (see [3]). Given y ∈ L1(0, 1), then the problem

Dt
α−βx(t) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) = 0,
(2.8)

has the unique solution

x(t) =
∫1

0
G(t, s)y(s)ds, (2.9)

where G(t, s) is given by

G(t, s) =
1

Γ
(
α − β)

⎧
⎨
⎩
[t(1 − s)]α−β−1, 0 ≤ t ≤ s ≤ 1,

[t(1 − s)]α−β−1 − (t − s)α−β−1, 0 ≤ s ≤ t ≤ 1,
(2.10)

which is the Green function of the BVP (2.8).
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Lemma 2.7 (see [3]). For any t, s ∈ [0, 1], G(t, s) satisfies

tα−β−1(1 − t)s(1 − s)α−β−1
Γ
(
α − β) ≤ G(t, s) ≤ s(1 − s)α−β−1

Γ
(
α − β − 1

) . (2.11)

By Lemma 2.6, the unique solution of the problem

Dt
αx(t) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) = 1,
(2.12)

is tα−β−1. Let

C =
∫1

0
tα−β−1dA(t), (2.13)

and define

GA(s) =
∫1

0
G(t, s)dA(t), (2.14)

as in [4], we can get that the Green function for the nonlocal BVP (2.7) is given by

H(t, s) =
tα−β−1

1 − C GA(s) +G(t, s). (2.15)

Throughout the paper, we always assume the following holds.

(H0) A is a increasing function of bounded variation such that GA(s) ≥ 0 for s ∈
[0, 1] and 0 ≤ C < 1, where C is defined by (2.13).

Lemma 2.8. Let 1 < α − β ≤ 2 and (H0) hold, thenH(t, s) satisfies

0 ≤ H(t, s) ≤ 1
(1 − C)Γ(α − β − 1

) . (2.16)

Proof. By (2.11) and that A(t) is a increasing function of bounded variation, we have

GA(s) =
∫1

0
G(t, s)dA(t) ≤

∫1

0

tα−β−1

Γ
(
α − β − 1

)dA(t) =
C

Γ
(
α − β − 1

) . (2.17)

Consequently,

H(t, s) ≤ GA(s)
1 − C +

s(1 − s)α−β−1
Γ
(
α − β − 1

) ≤ 1
(1 − C)Γ(α − β − 1

) . (2.18)
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Now, we present a result about the fixed point theorems which is improvement of [17].

Theorem 2.9. Let (X,≥) be a partially ordered set and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Assume that X satisfies the following condition: if xn is
a nondecreasing sequence in X such that xn → x then xn ≤ x for all n ∈ N. Let T : X → X be a
nondecreasing mapping, and there exists a constant λ ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ λd(x, y) − ψ(λd(x, y)), for x ≥ y, (2.19)

where ψ : [0,+∞) → [0,+∞) is a nondecreasing function. If there exists x ∈ X with x0 ≤ Tx0, then
T has a fixed point.

Proof. If T(x0) = x0, then the proof is finished. Suppose that x0 < T(x0). Since T is a nonde-
creasing mapping, we obtain by induction that

x0 < T(x0) ≤ T2(x0) ≤ T3(x0) ≤ · · · ≤ Tn(x0) ≤ · · · . (2.20)

Put xn+1 = Tn(x0) = Txn. Then for each integer n ≥ 1, from (2.20), the elements xn and xn+1
are comparable, we get

d(xn+1, xn) = d(Txn, Txn−1) ≤ λd(xn, xn−1) − ψ(λd(xn, xn−1)) ≤ λd(xn, xn−1). (2.21)

If there exists n0 ∈ N such that d(xn0 , xn0−1) = 0 then xn0 = Tn0−1(x0) = xn0−1 and xn0−1
is a fixed point and the proof is finished. In other case, suppose that d(xn0 , xn0−1)/= 0 for all
n ∈ N. Then by (2.21), we have

d(xn+1, xn) ≤ λd(xn, xn−1) ≤ · · · ≤ λn−n0+1d(xn0 , xn0−1) −→ 0, as n −→ +∞, (2.22)

that is,

ρn = d(xn+1, xn) −→ 0, as n −→ +∞. (2.23)

Similar to [17], xn is a Cauchy sequence and then there exists z ∈ X such that limn→+∞xn = z
since (X, d) is a complete metric space.

We claim that T(z) = z. In fact,

d(Tz, z) ≤ d(Tz, Txn) + d(Txn, z) ≤ λd(z, xn) − ψ(λd(z, xn)) + d(xn+1, z)
≤ λd(z, xn) + d(xn+1, z)

(2.24)

and taking limit as n → +∞, d(Tz, z) ≤ 0, this proves that d(Tz, z) = 0, consequently, T(z) =
z.

Remark 2.10. In Theorem 2.9, We do not require that ψ is continuous and ψ is positive in
(0,+∞), ψ(0) = 0 and limt→+∞ψ(t) = +∞. This in essence improve and generalize the corre-
sponding results of Theorem 2 and Theorem 3 in paper [17].
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If we consider that (X,≤) satisfies the following condition:

for x, y ∈ X, there exists z ∈ X which is comparable to x and y, (2.25)

then we have the following theorem, see [17].

Theorem 2.11. Adding condition (2.25) to the hypotheses of Theorem 2.9, one obtains uniqueness of
the fixed point of T .

In our considerations, we will work in the Banach space C[0, 1] = {x : [0, 1] →
R is continuous}with the standard norm ||x|| = max0≤t≤1|x(t)|.

Note that this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ [0, 1]. (2.26)

In [20, 21], it is proved that (C[0, 1],≤) with the classic metric given by

d
(
x, y
)
= max

0≤t≤1
{∣∣x(t) − y(t)∣∣} (2.27)

satisfies the following condition.
If xn is a nondecreasing sequence in X such that xn → x then xn ≤ x for all n ∈ N.

Moreover, for x, y ∈ C[0, 1], as the function max{x, y} is continuous in [0, 1], and (C[0, 1],≤)
satisfies condition (2.25).

3. Main Results

Define the class of function A, if φ ∈ A, then φ : [0,+∞) → [0,+∞) is nondecreasing, and
ψ(x) = x − φ(x) satisfies ψ : [0,+∞) → [0,+∞) is nondecreasing.

The standard functions φ ∈ A, for example, φ(x) = arctanx, φ(x) = ln(1 + x) and
φ(x) = x/(1 + x), and so forth.

Theorem 3.1. Suppose (H0) holds, f : [0, 1] × [0,+∞) × (−∞, 0, ] → [0,+∞) is continuous,
and for any fixed t ∈ [0, 1], f(t, x, y) is nondecreasing in x on [0,+∞) and nonincreasing in y on
(−∞, 0]; moreover, there exist two positive constants ρ1, ρ2 that satisfy

ρ1 + ρ2 ≤ Γ
(
α − β − 1

)
(1 − C), (3.1)

and there exist a function φ ∈ A and constants 0 < θ1 < 1/(Γ(β + 1)), 0 < θ2 < 1 such that

f
(
t, x1, y1

) − f(t, x2, y2
) ≤ ρ1φ(θ1(x1 − x2)) + ρ2φ

(
θ2
(
y2 − y1

))
(3.2)

for xi, yi ∈ [0,+∞), i = 1, 2 with x1 ≥ x2, y1 ≤ y2 and t ∈ [0, 1].
Then problem (1.1) has a unique nonnegative solution.

Proof. Consider the cone

P =
{
y ∈ C[0, 1] : y(t) ≥ 0

}
. (3.3)

Note that, as P is a closed set of C[0, 1], P is a complete metric space.
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Now, for y ∈ P , we define the operator T by

(
Ty
)
(t) =

∫1

0
H(t, s)f

(
s, Iβy(s),−y(s)

)
ds. (3.4)

Then from the assumption on f and Lemma 2.8, we have

T(P) ⊂ P. (3.5)

In what follows, we check that hypotheses in Theorems 2.9 and 2.11 are satisfied.
Firstly, the operator T is nondecreasing since, by hypothesis, for any u ≥ v

(Tu)(t) =
∫1

0
H(t, s)f

(
s, Iβu(s),−u(s)

)
ds ≥

∫1

0
H(t, s)f

(
s, Iβv(s),−v(s)

)
ds = (Tv)(t).

(3.6)

Besides, for u ≥ v

d(Tu, Tv) = max
t∈[0,1]

|u(t) − v(t)|

= max
t∈[0,1]

[∫1

0
H(t, s)

(
f
(
s, Iβu(s),−u(s)

)
− f
(
s, Iβv(s),−v(s)

))
ds

]

≤ max
t∈[0,1]

{∫1

0
H(t, s)

[
ρ1φ
(
θ1
(
Iβu(s) − Iβv(s)

))
+ ρ2φ(θ2(u(s) − v(s)))

]
ds

}
.

(3.7)

Since

Iβu(s) − Iβv(s) = 1
Γ
(
β
)
∫ t
0
(t − s)β−1(u(s) − v(s))ds

≤ d(u, v)
Γ
(
β
)
∫ t
0
(t − s)β−1ds ≤ d(u, v)

Γ
(
β + 1

) ,
(3.8)

and φ is nondecreasing, for u ≥ v, we have

ρ1φ
(
θ1
(
Iβu(s) − Iβv(s)

))
+ ρ2φ(θ2(u(s) − v(s)))

≤ ρ1φ
(

θ1

Γ
(
β + 1

)d(u, v)
)

+ ρ2φ(θ2d(u, v))

≤ (ρ1 + ρ2
)
φ(θd(u, v)),

(3.9)
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where

θ = max

{
θ1

Γ
(
β + 1

) , θ2
}

∈ (0, 1). (3.10)

Note that φ ∈ A, then ψ(x) = x − φ(x), and ψ : [0,+∞) → [0,+∞) is nondecreasing. Thus by
Lemma 2.8, for u ≥ v, we have

d(Tu, Tv) ≤ (ρ1 + ρ2
)
φ(θd(u, v))max

t∈[0,1]

∫1

0
H(t, s)ds

≤ φ(θd(u, v)) = θd(u, v) − (θd(u, v) − φ(θd(u, v)))

= θd(u, v) − ψ(θd(u, v)).

(3.11)

Finally, taking into account that the zero function, 0 ≤ T0, by Theorem 2.11, problem
(1.1) has a unique nonnegative solution.

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied, and there exists t0 ∈ [0, 1] such
that f(t0, 0, 0)/= 0, then the unique solution of (1.1) is positive. (Positive solution means a solution
satisfying x(t) > 0 for t ∈ (0, 1).)

Proof. By Theorem 3.1, the problem (1.1) has a unique nonnegative solution, which also is
positive.

In fact, otherwise, there exists 0 < t∗ < 1 such that x(t∗) = 0, and

x(t∗) =
∫1

0
H(t∗, s)f

(
s, Iβx(s),−x(s)

)
ds = 0. (3.12)

Then

0 = x(t∗) =
∫1

0
H(t∗, s)f

(
s, Iβx(s),−x(s)

)
ds ≥

∫1

0
H(t∗, s)f(s, 0, 0)ds ≥ 0. (3.13)

Consequently,

∫1

0
H(t∗, s)f(s, 0, 0)ds = 0, (3.14)

this yields

H(t∗, s)f(s, 0, 0) = 0, a.e. (3.15)

Note thatH(t∗, s) > 0, s ∈ (0, 1), then we have

f(s, 0, 0) = 0, a.e. (3.16)
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But on the other hand, since f(t0, 0, 0)/= 0, t0 ∈ [0, 1], we have f(t0, 0, 0) > 0, by the
continuity of f , we can find a set Ω ⊂ [0, 1] satisfying t0 ∈ Ω and the Lebesgue measure
μ(Ω) > 0 such that f(t, 0) > 0 for any t ∈ Ω. This contradicts (3.16). Therefore, x(t) > 0, that
is, x(t) is positive solution of (1.1).

Example 3.3. Consider the following boundary value problem with fractional order α = 21/8:

−D21/8x(t) = et +
x(t)

100(1 + x(t))
+

D1/8x(t)
300
(
1 +D1/8x(t)

) , 0 < t < 1,

D1/8x(0) = D9/8x(0) = 0, D1/8x(1) =
∫1

0
D1/8x(s)dA(s),

(3.17)

where

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
4

)
,

1, t ∈
[
1
4
,
3
4

)
,

2, t ∈
[
3
4
, 1
]
.

(3.18)

Thus the BVP (3.17) becomes the 4-Point BVP with coefficients

−D21/8x(t) = et +
x(t)

100(1 + x(t))
+

D1/8x(t)
300
(
1 +D1/8x(t)

) , 0 < t < 1,

D1/8x(0) = D9/8x(0) = 0, D1/8x(1) = D1/8x

(
1
4

)
+D1/8x

(
3
4

)
.

(3.19)

Then the BVP (3.17) has a unique positive solution.

Proof. Obviously, α = 21/8, β = 1/8, and

0 ≤ C =
∫1

0
t3/2dA(t) =

(
1
4

)3/2

+
(
3
4

)3/2

≈ 0.7745 < 1, Γ
(
α − β − 1

)
(1 − C) = 0.2014.

(3.20)

On the other hand, we have

G(t, s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G1(t, s) =
[t(1 − s)]3/2

Γ(5/2)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
[t(1 − s)]3/2 − (t − s)3/2

Γ(5/2)
, 0 ≤ s ≤ t ≤ 1,
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GA(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G2

(
1
4
, s

)
+ 2G2

(
3
4
, s

)
, 0 ≤ s < 1

4
,

G1

(
1
4
, s

)
+ 2G2

(
3
4
, s

)
,

1
4
≤ s < 3

4
,

G1

(
1
4
, s

)
+ 2G1

(
3
4
, s

)
,

3
4
≤ s ≤ 1.

(3.21)

Thus GA(s) ≥ 0, 0 ≤ C < 1 and A(s) is increasing. So (H0) holds.
Take

f(t, u, v) = et +
u

100(1 + u)
− v

300(1 − v) , (t, u, v) ∈ [0, 1] × [0,+∞) × (−∞, 0]. (3.22)

Then

f
(
t, x(t),−Dt

1/8x(t)
)
= et +

x(t)
100(1 + x(t))

+
D1/8x(t)

300
(
1 +D1/8x(t)

) , (3.23)

and for any x1 ≥ x2, y1 ≤ y2,

f
(
t, x1, y1

) − f(t, x2, y2
)

=
x1

100(1 + x1)
− y1

300
(
1 − y1

) − x2
100(1 + x2)

+
y2

300
(
1 − y2

)

=
x1 − x2

100(1 + x1)(1 + x2)
+

y2 − y1
300
(
1 − y1

)(
1 − y2

) ≤ x1 − x2
100(1 + x1 − x2) +

y2 − y1
300
(
1 + y2 − y1

)

≤ 1
100

× x1 − x2
1 + 1/2(x1 − x2) +

1
300

× y2 − y1
1 + 1/3

(
y2 − y1

)

=
1
50

× (1/2) (x1 − x2)
1 + (1/2)(x1 − x2) +

1
100

× (1/3)
(
y2 − y1

)

1 + (1/3)
(
y2 − y1

)

=
1
50
φ

(
1
2
(x1 − x2)

)
+

1
100

φ

(
1
3
(
y2 − y1

))
,

(3.24)

where

φ(x) =
x

1 + x
, ρ1 + ρ2 =

1
50

+
1
100

= 0.03 < 0.2014,

θ1 =
1
2
<

1
Γ
(
β + 1

) =
1
Γ

(
9
8

)
= 1.0619, θ2 =

1
3
.

(3.25)

Thus φ ∈ A and all of condition of Theorem 3.1 are satisfied.
On the other hand, f(t, 0, 0) = et /= 0 for any t ∈ [0, 1], by Theorem 3.2, the BVP (3.17)

has a unique positive solution.
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In the end, we claim this process and conclusion of paper can be applied to the fore-
front of research of the real estate asset securitization.
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