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This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential
equations using reproducing kernel Hilbert space method. The solution u(x) is represented in the
form of series in the reproducing kernel space. In the mean time, the n-term approximate solution
un(x) is obtained and it is proved to converge to the exact solution u(x). Furthermore, the proposed
method has an advantage that it is possible to pick any point in the interval of integration and
as well the approximate solution and its derivative will be applicable. Numerical examples are
included to demonstrate the accuracy and applicability of the presented technique. The results
reveal that the method is very effective and simple.

1. Introduction

In recent years, there has been a growing interest in the integrodifferential equations (IDEs)
which are a combination of differential and Fredholm-Volterra integral equations. IDEs
are often involved in the mathematical formulation of physical phenomena. IDEs can be
encountered in various fields of science such as physics, biology, and engineering. These
kinds of equations can also be found in numerous applications, such as biomechanics,
electromagnetic, elasticity, electrodynamics, fluid dynamics, heat and mass transfer, and
oscillation theory [1–4].
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The purpose of this paper is to extend the application of the reproducing kernel Hilbert
space (RKHS) method to solve the nonlinear Fredholm-Volterra IDE which is as follows:

u′(x) + f(x)N(x, u(x)) +
∫b

a

k1(x, t)G1(u(t))dt +
∫x

a

k2(x, t)G2(u(t))dt = g(x), a ≤ x, t ≤ b,
(1.1)

subject to the initial condition

u(a) = α, (1.2)

where a, b, α are real finite constants, u ∈W2
2 [a, b] is an unknown function to be determined,

f, g ∈ W1
2 [a, b], k1(x, t), k2(x, t) are continuous functions on [a, b] × [a, b], G1(w), G2(y),

N(x, z) are continuous terms inW1
2 [a, b] asw = w(x), y = y(x), z = z(x) ∈W2

2 [a, b], a ≤ x ≤
b, −∞ < w, y, z <∞ and are depending on the problem discussed, andW1

2 [a, b],W
2
2 [a, b] are

reproducing kernel spaces.
In general, nonlinear Fredholm-Volterra IDEs do not always have solutions which we

can obtain using analytical methods. In fact, many of real physical phenomena encountered
are almost impossible to solve by this technique. Due to this, some authors have proposed
numerical methods to approximate the solutions of nonlinear Fredholm-Volterra IDEs. To
mention a few, in [5] the authors have discussed the Taylor polynomial method for solving
IDEs (1.1) and (1.2) when N(x, u(x)) = 1, G1(u(t)) = u(t), and G2(u(t)) = [u(t)]q, where
q ∈ N. The triangular functions method has been applied to solve the same equations when
N(x, u(x)) = u(x), G1(u(t)) = [u(t)]p, and G2(u(t)) = [u(t)]q, where p, q ∈ N as described
in [6]. Furthermore, the operational matrix with block-pulse functions method is carried
out in [7] for the aforementioned IDEs in the case N(x, u(x)) = 1, G1(u(t)) = [u(t)]p, and
G2(u(t)) = [u(t)]q, where p, q ∈ N. Recently, the Hybrid Legendre polynomials and Block-
Pulse functions approach for solving IDEs (1.1) and (1.2) when N(x, u(x)) = 1, G1(u(t)) =
[u(t)]p, and G2(u(t)) = [u(t)]q, where p, q ∈ N are proposed in [8]. The numerical solvability
of Fredholm and Volterra IDEs and other related equations can be found in [9–11] and
references therein. However, none of previous studies propose a methodical way to solve
these equations. Moreover, previous studies require more effort to achieve the results, they
are not accurate, and usually they are developed for special types of IDEs (1.1) and (1.2).

Reproducing kernel theory has important application in numerical analysis, differen-
tial equations, integral equations, probability and statistics, and so on [12–14]. Recently, using
the RKHSmethod, the authors in [15–29] have discussed singular linear two-point boundary
value problems, singular nonlinear two-point periodic boundary value problems, nonlinear
system of boundary value problems, initial value problems, singular integral equations,
nonlinear partial differential equations, operator equations, and fourth-order IDEs.

The outline of the paper is as follows: several reproducing kernel spaces are described
in Section 2. In Section 3, a linear operator, a complete normal orthogonal system, and some
essential results are introduced. Also, a method for the existence of solutions for (1.1) and
(1.2) based on reproducing kernel space is described. In Section 4, we give an iterative
method to solve (1.1) and (1.2) numerically in RKHS. Various numerical examples are
presented in Section 5. This paper ends in Section 6 with some concluding remarks.
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2. Several Reproducing Kernel Spaces

In this section, several reproducing kernels needed are constructed in order to solve (1.1) and
(1.2) using RKHSmethod. Before the construction, we utilize the reproducing kernel concept.
Throughout this paper C is the set of complex numbers, L2[a, b] = {u | ∫ba u2(x)dx < ∞},
l2 = {A | ∑∞

i=1 (Ai)
2 < ∞}, and the superscript (n) in u(n)(t) denotes the n-th derivative of

u(t).

Definition 2.1 (see [18]). Let E be a nonempty abstract set. A function K : E × E → C is a
reproducing kernel of the Hilbert spaceH if

(1) for each t ∈ E, K(·, t) ∈ H,

(2) for each t ∈ E and ϕ ∈ H, 〈ϕ(·), K(·, t)〉 = ϕ(t).

The last condition is called “the reproducing property”: the value of the function ϕ
at the point t is reproducing by the inner product of ϕ with K(·, t). A Hilbert space which
possesses a reproducing kernel is called a RKHS [18].

Next, we first construct the spaceW2
2 [a, b] in which every function satisfies the initial

condition (1.2) and then utilize the spaceW1
2 [a, b].

Definition 2.2 (see [30]). W2
2 [a, b] = {u : u, u′ are absolutely continuous on [a, b], u, u′, u′′ ∈

L2[a, b], and u(a) = 0}. The inner product and the norm inW2
2 [a, b] are defined, respectively,

by

〈u, v〉W2
2
= u(a)v(a) + u′(a)v′(a) +

∫b

a

u′′
(
y
)
v′′(y)dy (2.1)

and ‖u‖W2
2
=
√
〈u, u〉W2

2
, where u, v ∈W2

2 [a, b].

Definition 2.3 (see [23]). W1
2 [a, b] = {u : u is absolutely continuous on [a, b] and u, u′ ∈

L2[a, b]}. The inner product and the norm inW1
2 [a, b] are defined, respectively, by 〈u, v〉W1

2
=∫b

a u(t)v(t) + u
′(t)v′(t)dt and ‖u‖W1

2
=
√
〈u, u〉W1

2
, where u, v ∈W1

2 [a, b].

In [23], the authors have proved that the space W1
2 [a, b] is a complete reproducing

kernel space and its reproducing kernel function is given by

Tx
(
y
)
=

1
2 sinh(b − a)

[
cosh

(
x + y − b − a) + cosh

(∣∣x − y∣∣ − b + a)]. (2.2)

From the definition of the reproducing kernel spaces W1
2 [a, b] and W2

2 [a, b], we get W1
2

[a, b] ⊃W2
2 [a, b].

The Hilbert space W2
2 [a, b] is called a reproducing kernel if for each fixed x ∈ [a, b]

and any u(y) ∈ W2
2 [a, b], there exist K(x, y) ∈ W2

2 [a, b] (simply Kx(y)) and y ∈ [a, b] such
that 〈u(y), Kx(y)〉W2

2
= u(x). The next theorem formulates the reproducing kernel function

Kx(y).
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Theorem 2.4. The Hilbert spaceW2
2 [a, b] is a reproducing kernel and its reproducing kernel function

Kx(y) can be written as

Kx

(
y
)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4∑
i=1

pi(x)yi−1, y ≤ x,
4∑
i=1

qi(x)yi−1, y > x,

(2.3)

where pi(x) and qi(x) are unknown coefficients of Kx(y).

Proof. Through several integrations by parts for (2.1), we obtain 〈u(y), Kx(y)〉W2
2
=

∑1
i=0

u(i)(a)(K(i)
x (a)+(−1)iK(3−i)

x (a))+
∑1

i=0(−1)1−iu(i)(b)K(3−i)
x (b)+

∫b
a u(y)K

(4)
x (y)dy. SinceKx(y) ∈

W2
2 [a, b], it follows that Kx(a) = 0. Also, since u ∈ W2

2 [a, b], one obtains u(a) = 0. Thus,
if K(i)

x (b) = 0, i = 2, 3, and K′
x(a) − K′′

x(a) = 0, then 〈u(y), Kx(y)〉W2
2
=

∫b
a u(y)K

(4)
x (y)dy.

Now, for each x ∈ [a, b], if Kx(y) also satisfies K(4)
x (y) = δ(x − y), where δ is the dirac-delta

function, then 〈u(y), Kx(y)〉W2
2
= u(x). Obviously, Kx(y) is the reproducing kernel function

of the spaceW2
2 [a, b].

Next, we give the expression of the reproducing kernel functionKx(y). The character-
istic equation of K(4)

x (y) = δ(x − y) is λ4 = 0, and their characteristic values are λ = 0 with 4
multiple roots. So, let the kernel Kx(y) be as defined in (2.3).

On the other hand, let Kx(y) satisfy K
(m)
x (x + 0) = K

(m)
x (x − 0), m = 0, 1, 2. Integrating

K
(4)
x (y) = δ(x − y) from x − ε to x + ε with respect to y and letting ε → 0, we have the jump

degree ofK(3)
x (y) at y = x given byK(3)

x (x−0)−K(3)
x (x+0) = −1. Through the last descriptions

the unknown coefficients of (2.3) can be obtained. This completes the proof.

By using Mathematica 7.0 software package, the representation of the reproducing
kernel function Kx(y) is provided by

Kx

(
y
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6
(
y − a)(2a2 − y2 + 3x

(
2 + y

) − a(6 + 3x + y
))
, y ≤ x,

1
6
(x − a)(2a2 − x2 + 3y(2 + x) − a(6 + x + 3y

))
, y > x.

(2.4)

The following corollary summarizes some important properties of the reproducing
kernel function Kx(y).

Corollary 2.5. The reproducing kernel functionKx(y) is symmetric, unique, andKx(x) ≥ 0 for any
fixed x ∈ [a, b].

Proof. By the reproducing property, we have Kx(y) = 〈Kx(ξ), Ky(ξ)〉 = 〈Ky(ξ), Kx(ξ)〉 =
Ky(x) for each x and y. Now, letK1

x(y) andK
2
x(y) be all the reproducing kernels of the space

W2
2 [a, b]; then K

1
x(y) = 〈K1

x(ξ), K
2
y(ξ)〉 = 〈K2

y(ξ), K
1
x(ξ)〉 = K2

y(x) = K2
x(y). Finally, we note

that Kx(x) = 〈Kx(ξ), Kx(ξ)〉 = ‖Kx(ξ)‖2 ≥ 0.
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3. Introduction to a Linear Operator and a Normal Orthogonal
System in W2

2 [a, b]

In this section, we construct an orthogonal function system ofW2
2 [a, b]. Also, representation

of the solution of (1.1) and (1.2) is given in the reproducing kernel spaceW2
2 [a, b].

To do this, we define a differential operator L : W2
2 [a, b] → W1

2 [a, b] such that
Lu(x) = u′(x). After homogenization of the initial condition (1.2), IDEs (1.1) and (1.2) can
be converted into the equivalent form as follows:

Lu(x) = F(x, u(x), Tu(x), Su(x)), a ≤ x ≤ b,
u(a) = 0,

(3.1)

such that F(x, u(x), Tu(x), Su(x)) = g(x) − f(x)N(x, u(x)) − Tu(x) − Su(x), Tu(x) =
∫b
a k1

(x, t)G1(u(t))dt, and Su(x) =
∫x
a k2(x, t)G2(u(t))dt, where u(x) ∈ W2

2 [a, b] and F(x,w, y, z) ∈
W1

2 [a, b] for x ∈ [a, b] and w = w(x), y = y(x), z = z(x) ∈ W2
2 [a, b], −∞ < w, y, z < ∞. It is

easy to show that L is a bounded linear operator fromW2
2 [a, b] toW

1
2 [a, b].

Now, we construct an orthogonal function system of W2
2 [a, b]. Let ϕi(x) = Txi(x) and

ψi(x) = L∗ϕi(x), where {xi}∞i=1 is dense on [a, b] and L∗ is the adjoint operator of L. From the
properties of the reproducing kernel Tx(y), we have 〈u(x), ϕi(x)〉W1

2
= 〈u(x), Txi(x)〉W1

2
=

u(xi) for every u(x) ∈ W1
2 [a, b]. In terms of the properties of Kx(y), one obtains

〈u(x), ψi(x)〉W2
2
= 〈u(x), L∗ϕi(x)〉W2

2
= 〈Lu(x), ϕi(x)〉W1

2
= Lu(xi), i = 1, 2, · · · .

It is easy to see that ψi(x) = L∗ϕi(x) = 〈L∗ϕi(x), Kx(y)〉W2
2
= 〈ϕi(x), LyKx(y)〉W1

2
=

LyKx(y)|y=xi . Thus, ψi(x) can be expressed in the form ψi(x) = LyKx(y)|y=xi , where Ly
indicates that the operator L applies to the function of y.

Theorem 3.1. For (3.1), if {xi}∞i=1 is dense on [a, b], then {ψi(x)}∞i=1 is the complete function system
of the spaceW2

2 [a, b].

Proof. Clearly, ψi(x) ∈ W2
2 [a, b]. For each fixed u(x) ∈ W2

2 [a, b], let 〈u(x), ψi(x)〉W2
2
= 0, i =

1, 2, . . ., which means that 〈u(x), ψi(x)〉W2
2
= 〈u(x), L∗ϕi(x)〉W2

2
= 〈Lu(x), ϕi(x)〉W1

2
= Lu(xi) =

0. Note that {xi}∞i=1 is dense on [a, b]; therefore, Lu(x) = 0. It follows that u(x) = 0 from the
existence of L−1. So, the proof of the theorem is complete.

The orthonormal function system {ψi(x)}∞i=1 of the spaceW2
2 [a, b] can be derived from

Gram-Schmidt orthogonalization process of {ψi(x)}∞i=1 as follows:

ψi(x) =
i∑

k=1

βikψk(x), (3.2)

where βik are orthogonalization coefficients given as β11 = 1/‖ψ1‖, βii = 1/dik, and βij =

−(1/dik)
∑i−1

k=j cikβkj for j < i in which dik =
√
‖ψi‖2 −

∑i−1
k=1 c

2
ik, cik = 〈ψi, ψk〉W2

2
, and {ψi(x)}∞i=1

is the orthonormal system in the spaceW2
2 [a, b].
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Theorem 3.2. For each u(x) ∈ W2
2 [a, b], the series

∑∞
i=1〈u(x), ψi(x)〉ψi(x) is convergent in the

norm of W2
2 [a, b]. On the other hand, if {xi}∞i=1 is dense on [a, b] and u(x) is the exact solution of

(3.1), then

u(x) =
∞∑
i=1

i∑
k=1

βikF(xk, u(xk), Tu(xk), Su(xk))ψi(x). (3.3)

Proof. Since u(x) ∈ W2
2 [a, b],

∑∞
i=1〈u(x), ψi(x)〉ψi(x) is the Fourier series expansion about

normal orthogonal system {ψi(x)}∞i=1, and W2
2 [a, b] is the Hilbert space, then the series

∑∞
i=1

〈u(x), ψi(x)〉ψi(x) is convergent in the sense of ‖ · ‖W2
2
. On the other hand, using (3.2), we

have

u(x) =
∞∑
i=1

〈
u(x), ψi(x)

〉
W2

2
ψi(x) =

∞∑
i=1

〈
u(x),

i∑
k=1

βikψk(x)

〉

W2
2

ψi(x)

=
∞∑
i=1

i∑
k=1

βik
〈
u(x), ψk(x)

〉
W2

2
ψi(x) =

∞∑
i=1

i∑
k=1

βik
〈
u(x), L∗ϕk(x)

〉
W2

2
ψi(x)

=
∞∑
i=1

i∑
k=1

βik
〈
Lu(x), ϕk(x)

〉
W1

2
ψi(x) =

∞∑
i=1

i∑
k=1

βikLu(xk)ψi(x).

(3.4)

But since u(x) is the exact solution of (3.1), then Lu(x) = F(x, u(x), Tu(x), Su(x)) and

u(x) =
∞∑
i=1

i∑
k=1

βikF(xk, u(xk), Tu(xk), Su(xk))ψi(x). (3.5)

So, the proof of the theorem is complete.

Note that we denote to the approximate solution of u(x) by

un(x) =
n∑
i=1

i∑
k=1

βikF(xk, u(xk), Tu(xk), Su(xk))ψi(x). (3.6)

Theorem 3.3. If u(x) ∈ W2
2 [a, b], then there exists M > 0 such that ||u(i)(x)||C ≤ M||u(x)||W2

2
,

i = 0, 1, where ||u(x)||C = maxa≤x≤b |u(x)|.

Proof. For any x, y ∈ [a, b], we have u(i)(x) = 〈u(y), K(i)
x (y)〉W2

2
, i = 0, 1. By the expression

of Kx(y), it follows that ‖K(i)
x (y)‖W2

2
≤ Mi, i = 0, 1. Thus, |u(i)(x)| = |〈u(x), K(i)

x (x)〉W2
2
| ≤

‖u(x)‖W2
2
‖K(i)

x (x)‖W2
2
≤ Mi‖u(x)‖W2

2
, i = 0, 1. Hence, ||u(i)(x)||C ≤ M||u(x)||W2

2
, i = 0, 1, where

M = max{M0,M1}. The proof is complete.

Corollary 3.4. The approximate solution un(x) and its derivative u′n(x) are uniformly convergent.
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Proof. By Theorems 3.2 and 3.3, for any x ∈ [a, b], we get

|un(x) − u(x)|

=
∣∣∣〈un(x) − u(x), Kx(x)〉W2

2

∣∣∣ ≤ ‖Kx(x)‖W2
2
‖un(x) − u(x)‖W2

2
≤M0‖un(x) − u(x)‖W2

2
.

(3.7)

On the other hand,

∣∣u′n(x) − u′(x)∣∣
=
∣∣∣〈un(x) − u(x), K′

x(x)
〉
W2

2

∣∣∣ ≤ ∥∥K′
x(x)

∥∥
W2

2
‖un(x) − u(x)‖W2

2
≤M1‖un(x) − u(x)‖W2

2
.

(3.8)

Hence, |u(i)n (x) − u(i)(x)| ≤ ‖u(i)n (x) − u(i)(x)‖C ≤ Mi‖un(x) − u(x)‖W2
2
, where M0 and

M1 are positive constants. Hence, if ‖un(x) − u(x)‖W2
2

→ 0 as n → ∞, the approximate
solutions un(x) and u′n(x) converge uniformly to the exact solution u(x) and its derivative,
respectively.

4. Iterative Method and Convergence Theorem

In this section, an iterative method of obtaining the solution of (3.1) is presented in the
reproducing kernel spaceW2

2 [a, b].
First of all, we will mention the following remark in order to solve (1.1) and (1.2)

numerically. If (1.1) is linear, then the exact and approximate solutions can be obtained
directly from (3.5) and (3.6), respectively. On the other hand, if (1.1) is nonlinear, then the
exact and approximate solutions can be obtained using the following iterative method.

According to (3.5), the representation of the solution of (1.1) can be denoted by

u(x) =
∞∑
i=1

Aiψi(x), (4.1)

whereAi =
∑i

k=1 βikF(xk, u(xk), Tu(xk), Su(xk)). In fact,Ai, i = 1, 2, . . ., in (4.1) are unknown,
and we will approximate Ai using known Bi. For a numerical computation, we define initial
function u0(x1) = 0 and the n-term approximation to u(x) by

un(x) =
n∑
i=1

Biψi(x), (4.2)
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where the coefficients Bi are given as

B1 = β11F(x1, u0(x1), Tu0(x1), Su0(x1)),

u1(x) = B1ψ1(x),

B2 =
2∑
k=1

β2kF(xk, uk−1(xk), Tuk−1(xk), Suk−1(xk)),

u2(x) =
2∑
i=1

Biψi(x),

...

un−1(x) =
n−1∑
i=1

Biψi(x),

Bn =
n∑
k=1

βnkF(xk, uk−1(xk), Tuk−1(xk), Suk−1(xk)).

(4.3)

We mention here the following remark: in the iterative process of (4.2), we can guar-
antee that the approximation un(x) satisfies the initial condition (1.2).

Now, the approximate solution uNn (x) can be obtained by taking finitely many terms
in the series representation of un(x) and

uNn (x) =
N∑
i=1

i∑
k=1

βikF(xk, un−1(xk), Tun−1(xk), Sun−1(xk))ψi(x). (4.4)

Next, we will prove that un(x) in the iterative formula (4.2) is convergent to the exact
solution u(x) of (1.1).

Lemma 4.1. If ‖un(x) − u(x)‖W2
2

→ 0, xn → y as n → ∞ and F(x, v,w, z) is continuous in
[a, b] with respect to x, v,w, z, for x ∈ [a, b] and v,w, z ∈ (−∞,∞), then as n → ∞, one has
F(xn, un−1(xn), Tun−1(xn), Sun−1(xn)) → F(y, u(y), Tu(y), Su(y)).

Proof. Firstly, we will prove that un−1(xn) → u(y) in the sense of ‖ · ‖W2
2
. Since

∣∣un−1(xn) − u(y)∣∣ = ∣∣un−1(xn) − un−1(y) + un−1(y) − u(y)∣∣
≤ ∣∣un−1(xn) − un−1(y)∣∣ + ∣∣un−1(y) − u(y)∣∣,

(4.5)

by reproducing kernel property ofKx(y), we have un−1(xn) = 〈un−1(x), Kxn(x)〉 and un−1 (y) =
〈un−1(x), Ky(x)〉. Thus, |un−1(xn) − un−1(y)| = |〈un−1(x), Kxn(x) −Ky(x)〉W2

2
| ≤ ‖un−1(x)‖W2

2

‖Kxn(x) −Ky(x)‖W2
2
. From the symmetry of Kx(y), it follows that ‖Kxn(x) −Ky(x)‖W2

2
→ 0

as n → ∞. Hence, |un−1(xn) − un−1(y)| → 0 as soon as xn → y.
On the other hand, by Corollary 3.4, for any y ∈ [a, b], it holds that |un−1(y) − u(y)| →

0. Therefore, un−1(xn) → u(y) in the sense of ‖ · ‖W2
2
as xn → y and n → ∞.
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Thus, bymeans of the continuation ofG1,G2, andN, it is obtained thatG1(un−1(xn)) →
G1(u(y)), G2(un−1(xn)) → G2(u(y)), and N(xn, un−1(xn)) → N(y, u(y)) as n → ∞. This
shows that Tun−1(xn) → Tu(y) and Sun−1(xn) → Su(y) as n → ∞. Hence, the continuity of
F gives the result.

Lemma 4.2. {un}∞n=1 in (4.2) is monotonically increasing in the sense of the norm ofW2
2 [a, b].

Proof. By Theorem 3.1, {ψi}∞i=1 is the complete orthonormal system in the space W2
2 [a, b].

Hence, we have ‖un‖2W2
2
= 〈un(x), un(x)〉W2

2
= 〈∑n

i=1 Biψi(x),
∑n

i=1 Biψi(x)〉W2
2
=

∑n
i=1 (Bi)

2.
Therefore, ‖un‖W2

2
is monotonically increasing.

Lemma 4.3. One has Lun(xj) = F(xj , uj−1(xj), Tuj−1(xj), Suj−1(xj)), j ≤ n.

Proof. The proof will be obtained by mathematical induction as follows: if j ≤ n, then
Lun(xj) =

∑n
i=1 BiLψi(xj) =

∑n
i=1 Bi〈Lψi(x), ϕj(x)〉W1

2
=

∑n
i=1 Bi〈ψi(x), L∗

j ϕ(x)〉W2
2

=
∑n

i=1 Bi

〈ψi(x), ψj(x)〉W2
2
. Thus,

Lun
(
xj
)
=

n∑
i=1

Bi
〈
ψi(x), ψj(x)

〉
W2

2
. (4.6)

Multiplying both sides of (4.6) by βjl, summing for l from 1 to j, and using the orthog-
onality of {ψi(x)}∞i=1 yield that

j∑
l=1

βjlLun(xl) =
n∑
i=1

Bi

〈
ψi(x),

j∑
l=1

βjlψl(x)

〉

W2
2

=
n∑
i=1

Bi
〈
ψi(x), ψj(x)

〉
W2

2

= Bj

=
j∑
l=1

βjlF(xl, ul−1(xl), Tul−1(xl), Sul−1(xl)).

(4.7)

Now, if j = 1, then Lun(x1) = F(x1, u0(x1), Tu0(x1), Su0(x1)). On the other hand, if
j = 2, then β21Lun(x1) + β22Lun(x2) = β21F(x1, u0(x1), Tu0(x1), Su0(x1)) + β22F(x2, u1(x2),
Tu1(x2), Su1(x2)). Thus, Lun(x2) = F(x2, u1(x2), Tu1(x2), Su1(x2)). It is easy to see that
Lun(xj) = F(xj , uj−1(xj), Tuj−1(xj), Suj−1(xj)) by using mathematical induction.

Lemma 4.4. One has Lun(xj) = Lu(xj), j ≤ n.

Proof. It is clear that on taking limits in (4.2) u(x) =
∑∞

i=1 Biψi(x). Therefore, un(x) =
Pnu(x), where Pn is an orthogonal projector from W2

2 [a, b] to Span{ψ1, ψ2, . . . , ψn}. Thus,
Lun(xj) = 〈Lun(x), ϕj(x)〉W1

2
= 〈un(x), L∗

j ϕ(x)〉W2
2

= 〈Pnu(x), ψj(x)〉W2
2
= 〈u(x), Pnψj(x)〉W2

2
=

〈u(x), ψj(x)〉W2
2
= 〈Lu(x), ϕj(x)〉W1

2
= Lu(xj).

Theorem 4.5. Suppose that ‖un‖W2
2
is bounded in (4.2). If {xi}∞i=1 is dense on [a, b], then the n-term

approximate solution un(x) in the iterative formula (4.2) converges to the exact solution u(x) of (3.1)
in the spaceW2

2 [a, b] and u(x) =
∑∞

i=1 Biψi(x), where Bi is given by (4.3).
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Proof. First of all, we will prove the convergence of un(x). From (4.2), we infer that un+1(x) =
un(x) + Bn+1ψn+1(x). The orthogonality of {ψi(x)}∞i=1 yields that

||un+1||2W2
2
= ||un||2W2

2
+ (Bn+1)2 = ||un−1||2W2

2
+ (Bn)2 + (Bn+1)2 = · · · = ||u0||2W2

2
+
n+1∑
i=1

(Bi)2. (4.8)

From Lemma 4.2, the sequence ‖un‖W2
2
is monotonically increasing. Due to the condi-

tion that ‖un‖W2
2
is bounded, ‖un‖W2

2
is convergent as n → ∞. Then, there exists a constant c

such that
∑∞

i=1(Bi)
2 = c. This implies that Bi =

∑i
k=1 βikF(xk, uk−1(xk), Tuk−1(xk), Suk−1(xk)) ∈

l2, i = 1, 2, . . ..
Ifm > n, using (um − um−1) ⊥ (um−1 − um−2) ⊥ · · · ⊥ (un+1 − un), then one gets

||um(x) − un(x)||2W2
2
= ||um(x) − um−1(x) + um−1(x) − · · · + un+1(x) − un(x)||2W2

2

= ||um(x) − um−1(x)||2W2
2
+ · · · + ||un+1(x) − un(x)||2W2

2
.

(4.9)

Furthermore, ||um(x) − um−1(x)||2W2
2

= (Bm)
2. Consequently, ||um(x) − un(x)||2W2

2
=

∑m
i=n+1

(Bi)
2 → 0 as n,m → ∞. Considering the completeness of the space W2

2 [a, b], there exists
a u(x) ∈W2

2 [a, b] such that un(x) → u(x) as n → ∞ in the sense of ‖ · ‖W2
2
.

Secondly, we will prove that u(x) is the solution of (3.1). Since {xi}∞i=1 is dense on
[a, b], for any x ∈ [a, b], there exists subsequence {xnj}∞j=1 such that xnj → x as j → ∞. From
Lemmas 4.3 and 4.4, it is easy to see that Lu(xnj ) = F(xnj , unj−1(xk), Tunj−1(xk), Sunj−1(xk)).
Hence, letting j → ∞, by Lemma 4.1 and the continuity of F, we have Lu(x) =
F(x, u(x), Tu(x), Su(x)). That is, u(x) is the solution of (3.1).

Since ψi(x) ∈W2
2 [a, b], clearly, u(x) satisfies the initial condition (1.2). In other words,

u(x) is the solution of (1.1) and (1.2), where u(x) =
∑∞

i=1 Biψi(x) and Bi is given by (4.3). The
proof is complete.

Theorem 4.6. Assume that u(x) is the solution of (3.1) and rn(x) is the difference between the
approximate solution un(x) and the exact solution u(x). Then, rn(x) is monotonically decreasing in
the sense of the norm ofW2

2 [a, b].

Proof. It obvious that ||rn(x)||2W2
2
= ||u(x) − un(x)||2W2

2
= ‖∑∞

i=n+1 Biψi(x)‖2W2
2
=
∑∞

i=n+1 (Bi)
2 and

||rn−1(x)||2W2
2
=
∑∞

i=n (Bi)
2. Thus, ||rn(x)||W2

2
≤ ||rn−1(x)||W2

2
; consequently, the difference rn(x) is

monotonically decreasing in the sense of ‖ · ‖W2
2
. So, the proof of the theorem is complete.

5. Numerical Examples

In this section, some numerical examples are studied to demonstrate the accuracy and
applicability of the present method. Results obtained are compared with the exact solution of
each example and are found to be in good agreement with each other. In the process of
computation, all the symbolic and numerical computations were performed by using Math-
ematica 7.0 software package.
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Table 1: Numerical results for Example 5.1.

x Exact solution Approximate solution Absolute error Relative error
0.16 0.0256 0.025600985200558 9.85201 × 10−7 3.84844 × 10−5

0.32 0.1024 0.102401995676314 1.99568 × 10−6 1.94890 × 10−5

0.48 0.2304 0.230403057350893 3.05735 × 10−6 1.32698 × 10−5

0.64 0.4096 0.409604197461425 4.19746 × 10−6 1.02477 × 10−5

0.80 0.6400 0.640005445257301 5.44526 × 10−6 8.50821 × 10−6

0.96 0.9216 0.921606832750570 6.83275 × 10−6 7.41401 × 10−6

Table 2: Numerical results of u′(x) for Example 5.1.

x Exact solution Approximate solution Absolute error Relative error
0.16 0.32 0.319999014799438 9.85201 × 10−7 3.07875 × 10−6

0.32 0.64 0.639998004323680 1.99568 × 10−6 3.11824 × 10−6

0.48 0.96 0.959996942649100 3.05735 × 10−6 3.18474 × 10−6

0.64 1.28 1.279995802538568 4.19746 × 10−6 3.27927 × 10−6

0.80 1.60 1.599994554742679 5.44526 × 10−6 3.40329 × 10−6

0.96 1.92 1.919993167249420 6.83275 × 10−6 3.55872 × 10−6

Example 5.1. Consider the nonlinear Fredholm-Volterra IDE:

u′(x) + u(x) − 1
4

∫1

0
tu3(t)dt +

1
2

∫x

0
xu2(t)dt = g(x), 0 ≤ x, t ≤ 1,

u(0) = 0,

(5.1)

where g(x) = (1/10)x6 + x2 + 2x − (1/32). The exact solution is u(x) = x2.

Using RKHS method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N, with the reproducing
kernel function Kx(y) on [0, 1], the approximate solution uNn (x) is calculated by (4.4). The
numerical results at some selected grid points forN = 26 and n = 5 are given in Table 1.

As we mention, we used the grid nodes mentioned earlier in order to obtain
approximate solutions. Moreover, it is possible to pick any point in [a, b] and as well the
approximate solution and its derivative will be applicable. Next, the numerical results for
Example 5.1 at some selected gird nodes in [0, 1] of u′(x) are given in Table 2.

Table 3 shows, a comparison between the absolute errors of our method together with
triangular functions method [6], operational matrix with block-pulse functions method [7],
and Hybrid Legendre polynomials and block-pulse functions method [8]. As it is evident
from the comparison results, it was found that our method in comparison with thementioned
methods is better with a view to accuracy and utilization.

Example 5.2. Consider the nonlinear Fredholm-Volterra IDE:

u′(x) + 2xu(x) −
∫1

0
(x − t)u(t)dt −

∫x

0
(x + t)u3(t)dt = g(x), 0 ≤ x, t ≤ 1,

u(0) = 1,

(5.2)
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Table 3: Numerical comparison of absolute error for Example 5.1.

x Method in [6] Method in [7] Method in [8] RKHS method
0.0 0 0 0 0
0.1 1.6600 × 10−4 2.1840 × 10−3 3.1000 × 10−5 6.1415 × 10−7

0.2 2.5400 × 10−4 1.4630 × 10−3 7.5000 × 10−5 1.2345 × 10−6

0.3 2.6200 × 10−4 1.6780 × 10−3 1.7100 × 10−4 1.8671 × 10−6

0.4 1.9100 × 10−4 7.2390 × 10−3 9.4000 × 10−5 2.5185 × 10−6

0.5 4.1000 × 10−5 1.6024 × 10−2 2.2800 × 10−4 3.1950 × 10−6

0.6 2.0200 × 10−4 1.1480 × 10−2 5.0200 × 10−4 3.9035 × 10−6

0.7 2.8300 × 10−4 4.5150 × 10−3 5.8300 × 10−4 4.6511 × 10−6

0.8 2.8300 × 10−4 4.8720 × 10−3 3.7400 × 10−4 5.4453 × 10−6

0.9 2.0200 × 10−4 1.6682 × 10−2 4.7000 × 10−5 6.2939 × 10−6

1.0 3.7000 × 10−5 3.0914 × 10−2 1.4000 × 10−5 7.2055 × 10−6

Table 4: Numerical results for Example 5.2.

x Exact solution Approximate solution Absolute error Relative error
0.0 1 1 0 0
0.1 1.105170918075648 1.105171575587132 6.57511 × 10−7 5.94941 × 10−7

0.2 1.221402758160170 1.221404273302208 1.51514 × 10−6 1.24049 × 10−6

0.3 1.349858807576003 1.349861385895122 2.57832 × 10−6 1.91007 × 10−6

0.4 1.491824697641270 1.491828549248914 3.85161 × 10−6 2.58181 × 10−6

0.5 1.648721270700128 1.648726613238682 5.34254 × 10−6 3.24041 × 10−6

0.6 1.822118800390509 1.822125866868782 7.06648 × 10−6 3.87817 × 10−6

0.7 2.013752707470476 2.013761760093792 9.05262 × 10−6 4.49540 × 10−6

0.8 2.225540928492467 2.225552279886237 1.13514 × 10−5 5.10051 × 10−6

0.9 2.459603111156949 2.459617154977751 1.40438 × 10−5 5.70979 × 10−6

1.0 2.718281828459045 2.718299082481196 1.72540 × 10−5 6.34740 × 10−6

where g(x) = (−(2/3)x + (1/9))e3x + (2x + 1)ex + ((4/3) − e)x + (8/9). The exact solution is
u(x) = ex.

Using RKHS method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N, with the reproducing
kernel function Kx(y) on [0, 1], the approximate solution uNn (x) is calculated by (4.4). The
numerical results at some selected grid points forN = 26 and n = 1 are given in Table 4.

The comparison among the RKHS solution besides the solutions of triangular
functions [6], operational matrix with block-pulse functions solution [7], and exact solutions
are shown in Table 5.

Example 5.3. Consider the nonlinear Fredholm-Volterra IDE:

u′(x) + u2(x) −
∫1

0
(t + 1) sinh(u(t) − 1)dt −

∫x

0
xeu(t)dt = g(x), 0 ≤ x, t ≤ 1,

u(0) = 1,

(5.3)
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Table 5: Numerical comparison of approximate solution for Example 5.2.

x Exact solution RKHS method Method in [6] Method in [7]
0.0 1.000000 1.000000 1.000000 1.000000
0.1 1.105171 1.105172 1.105223 1.115708
0.2 1.221403 1.221404 1.221494 1.225369
0.3 1.349859 1.349861 1.349971 1.345821
0.4 1.491825 1.491829 1.491933 1.478128
0.5 1.648721 1.648727 1.648795 1.675019
0.6 1.822119 1.822126 1.822484 1.839752
0.7 2.013753 2.013762 2.014465 2.020740
0.8 2.225541 2.225552 2.226719 2.219630
0.9 2.459603 2.459617 2.461507 2.438278
1.0 2.718280 2.718300 2.721505 2.678832

Table 6: Numerical results for Example 5.3.

x Exact solution Approximate solution Absolute error Relative error
0.16 1.148420005118273 1.148420410550930 4.05433 × 10−7 3.53035 × 10−7

0.32 1.277631736598280 1.277632408078983 6.71481 × 10−7 5.25567 × 10−7

0.48 1.392042087776024 1.392042943683538 8.55908 × 10−7 6.14857 × 10−7

0.64 1.494696241836107 1.494697231133553 9.89297 × 10−7 6.61872 × 10−7

0.80 1.587786664902119 1.587787753995242 1.08909 × 10−6 6.85919 × 10−7

0.96 1.672944473242426 1.672945638649806 1.16541 × 10−6 6.96620 × 10−7

where g(x) = (ln(x + 1) + 1)2 + (x + 1)−1 − (e/2)(x + 2)x2 − (2/3). The exact solution is u(x) =
1 + ln(x + 1).

Using RKHS method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N, with the reproducing
kernel function Kx(y) on [0, 1], the approximate solution uNn (x) is calculated by (4.4). The
numerical results at some selected grid points forN = 51 and n = 1 are given in Table 6.

Example 5.4. Consider the nonlinear Fredholm-Volterra IDE:

u′(x) + cos(u(x)) −
∫1

0
(t + x)u(t)dt −

∫x

0
teu(t)dt = g(x), 0 ≤ x, t ≤ 1,

u(0) = 1,

(5.4)

where g(x) = cos(1 − x) + e1−x(1 + x) − (1/2)x − (7/6) − e. The exact solution is u(x) = 1 − x.

Using RKHS method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N, with the reproducing
kernel function Kx(y) on [0, 1], the approximate solution uNn (x) is calculated by (4.4). The
numerical results at some selected grid points forN = 51 and n = 5 are given in Table 7.
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Table 7: Numerical results for Example 5.4.

x Exact solution Approximate solution Absolute error Relative error
0.16 0.84 0.840000573907808 5.73908 × 10−7 6.83224 × 10−7

0.32 0.68 0.680001166402260 1.16640 × 10−6 1.71530 × 10−6

0.48 0.52 0.520001763060855 1.76306 × 10−6 3.39050 × 10−6

0.64 0.36 0.360002349461090 2.34946 × 10−6 6.52628 × 10−6

0.80 0.20 0.200002911180463 2.91118 × 10−6 1.45559 × 10−5

0.96 0.04 0.040003433796472 3.43380 × 10−6 8.58449 × 10−5

Table 8: Numerical results for Example 5.5.

x Exact solution Approximate solution Absolute error Relative error
0.16 0.16 0.159999994448885 5.55112 × 10−9 3.46945 × 10−8

0.32 0.32 0.319999983346655 1.66533 × 10−8 5.20417 × 10−8

0.48 0.48 0.479999983346655 1.66533 × 10−8 3.46945 × 10−8

0.64 0.64 0.639999777955395 2.22045 × 10−7 3.46945 × 10−7

0.80 0.80 0.799999555910790 4.44089 × 10−7 5.55112 × 10−7

0.96 0.96 0.959999555910790 4.44089 × 10−7 4.62593 × 10−7

Example 5.5. Consider the nonlinear Fredholm-Volterra IDE:

u′(x) + xu2(x) −
∫1

0
(t + x)

(
1 + u2(t)

)
dt −

∫x

0
x cos(u(t))dt = g(x), 0 ≤ x, t ≤ 1,

u(0) = 0,

(5.5)

where g(x) = −x sin(x) + x3 − (4/3)x + (1/4). The exact solution is u(x) = x.
Using RKHS method, taking xi = (i − 1)/(N − 1), i = 1, 2, . . . ,N with the reproducing

kernel function Kx(y) on [0, 1], the approximate solution uNn (x) is calculated by (4.4). The
numerical results at some selected grid points forN = 26 and n = 5 are given in Table 8.

6. Conclusion

In this paper, the RKHSmethodwas employed to solve the nonlinear Fredholm-Volterra IDEs
(1.1) and (1.2). The solution u(x) and the approximate solution un(x) are represented in the
form of series in the space W2

2 [a, b]. Moreover, the approximate solution and its derivative
converge uniformly to the exact solution and its derivative, respectively. Meanwhile, the error
of the approximate solution is monotonically decreasing in the sense of the norm ofW2

2 [a, b].
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