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The global exponential stability and uniform stability of the equilibrium point for high-order
delayed Hopfield neural networks with impulses are studied. By utilizing Lyapunov functional
method, the quality of negative definite matrix, and the linear matrix inequality approach, some
new stability criteria for such system are derived. The results are related to the size of delays and
impulses. Two examples are also given to illustrate the effectiveness of our results.

1. Introduction

In the last several years, Hopfield neural networks (HNNs) have received especially
considerable attention due to their extensive applications in solving optimization problem,
traveling salesman problem, and many other subjects, see [1–17]. However such neural
networks are shown to have limitations such as limited capacity when used in pattern
recognition problems, see [2, 3]. This led many researchers to use neural networks with high
order connections. The high-order neural networks have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than lower-
order neural networks. Recently, various results on stability of high-order delayed HNN
are obtained, see [11–15]. For example, Lou and Cui [13] studied the global asymptotic
stability of high-order HNN with time-varying delays by using Lyapunov method, linear
matrix inequality (LMI), and analytic technique as follows:

x′
i(t) = − cixi(t) +

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj
(
t − τj(t)

))

+
n∑

j=1

n∑

l=1

Tijlgl(xl(t − τl(t)))gj
(
xj
(
t − τj(t)

))
+ Ii, t ≥ t0, i = 1, 2, . . . , n.

(1.1)
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But the authors only obtained some global asymptotic stability criteria for the above high-
order HNN. Those results cannot ensure the global exponential stability of the equilibrium
point. It is well known that global exponential stability plays an important role in many
areas such as designs and applications of neural networks and synchronization in secure
communication [5, 17–23]. One purpose of this paper is to improve the results in [13]. We
obtain several new criteria on global exponential stability and uniform stability for the above
high-order HNN.

On the other hand, it is well known that the artificial electronic networks are subject
to instantaneous perturbations and experience change of the state abruptly, that is, do exhibit
impulsive effects. Such systems are described by impulsive differential systems which have
been used successfully in modeling many practical problems arisen in the fields of natural
sciences and technology, see [12, 24–30]. Hence, it is very important and, in fact, necessary to
investigate the issue of the stability of high-order delayed HNN with impulses. However, to
the best of the authors’ knowledge, there are few results on the stability of high-order delayed
HNNwith impulses. In [12], Liu et al. obtained some sufficient conditions for ensuring global
exponential stability of impulsive high order HNN with time-varying delays by using the
method of Lyapunov functions.

The purpose of this paper is to present some new criteria concerning the global
exponential stability and uniform stability for a class of high-order delayed HNN with
impulses by utilizing Lyapunov functional method, the quality of negative definite matrix,
and the linear matrix inequality approach. The conditions on impulses are different from that
presented in [12]. The effects of impulses and delays on the solutions are stressed here. As a
special case, several new criteria on global exponential stability and uniform stability for the
corresponding high-order HNN without impulses (see [13]) are obtained. To illustrate the
validity of those results, two examples are given to illustrate the effectiveness of the results
obtained.

2. Preliminaries

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, Z+ the set of
positive integers, and R

n the n-dimensional real space equipped with the Euclidean norm
|| · ||.

Consider the following high-order delayed HNNmodel with impulses

x′
i(t) = − cixi(t) +

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj(t − τ(t))

)

+
n∑

j=1

n∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
+ Ii, t /= tk, t ≥ t0,

Δxi|t=tk = xi(tk) − xi
(
t−k
)
, i ∈ Λ, k ∈ Z+,

(2.1)

where Λ = {1, 2, . . . , n}, n ≥ 2 corresponds to the number of units in a neural network; the
impulse times tk satisfy 0 ≤ t0 < t1 < · · · < tk < · · · , limk→+∞tk = +∞; xi corresponds to the
membrane potential of the unit i at time t; ci is positive constant; fj , gj denote, respectively,
the measures of response or activation to its incoming potentials of the unit j at time t and
t − τ(t); Tijl is the second-order synaptic weights of the neural networks; constant aij denotes
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the synaptic connection weight of the unit j on the unit i at time t; constant bij denotes the
synaptic connection weight of the unit j on the unit i at time t − τ(t); Ii is the input of the
unit i; τ(t) is the transmission delay such that 0 < τ(t) ≤ τ and τ̇(t) ≤ ρ < 1, t ≥ t0; τ , ρ are
constants.

The initial conditions associated with system (2.1) are of the form

x(s) = φ(s), s ∈ [t0 − τ, t0], (2.2)

where x(s) = (x1(s), x2(s), . . . , xn(s))
T , φ(s) = (φ1(s), φ2(s), . . . , φn(s))

T ∈ PC([−τ, 0],Rn),
PC([−τ, 0],Rn) = {ψ : [−τ, 0] → R

n is continuous everywhere except at finite number of
points tk, at which ψ(t+k) and ψ(t

−
k) exist and ψ(t

+
k) = ψ(tk)}. For ψ ∈ PC([−τ, 0],Rn), the norm

of ψ is defined by ||ψ||τ = sup−τ≤θ≤0|ψ(θ)|. For any t0 ≥ 0, let PCδ(t0) = {ψ ∈ PC([−τ, 0],Rn) :
||ψ|| < δ}.

Assume that x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)
T is an equilibrium point of system (2.1). Impulsive

operator is viewed as perturbation of the equilibrium point x∗ of such system without
impulsive effects. We assume that

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= d(i)

k

(
xi
(
t−k
) − x∗

i

)
, d

(i)
k ∈ R, i ∈ Λ, k ∈ Z+. (2.3)

Since x∗ is an equilibrium point of system (2.1), one can derive from system (2.1)-(2.2)
that the transformation yi = xi − x∗

i , i ∈ Λ transforms such system into the following system
(for more details, please see papers [12, 13]):

y′(t) = − Cy(t) +AF(y(t)) + BG(y(t − τ(t)))

+ ΓTT�G
(
y(t − τ(t))), t /= tk, t ≥ t0,

y(tk) = Dky
(
t−k
)
, k ∈ Z+,

y(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0],

(2.4)

where

ϕ(θ) = x(t0 + θ) − x∗, y(t) =
(
y1(t), y2(t), . . . , yn(t)

)T
,

y(t − τ(t)) = (y1(t − τ(t)), y2(t − τ(t)), . . . , yn(t − τ(t))
)T
,

F
(
y(t)
)
=
[
F1
(
y1(t)

)
, F2
(
y2(t)

)
, . . . , Fn

(
yn(t)

)]T
,

G
(
y(t − τ(t))) = [G1

(
y1(t − τ(t))

)
, G2
(
y2(t − τ(t))

)
, . . . , Gn

(
yn(t − τ(t))

)]T
,

Fj
(
yj(t)

)
= fj
(
x∗
j + yj(t)

)
− fj
(
x∗
j

)
, Gj

(
yj(t − τ(t))

)
= gj
(
x∗
j + yj(t − τ(t))

)
− gj
(
x∗
j

)
,

C = diag[c1, c2, . . . , cn], A =
(
aij
)
n×n, B =

(
bij
)
n×n, Ti =

(
Tijl
)
n×n,

T� =
(
T1 + TT1 , T2 + T

T
2 , . . . , Tn + T

T
n

)T
,
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Γ = diag[ς, ς, . . . , ς], ς = (ς1, ς2, . . . , ςn)T ,

Dk = diag
[
1 + d(1)

k
, 1 + d(2)

k
, . . . , 1 + d(n)

k

]
,

(2.5)

in which ςl is a real value between gl(xl(t − τ(t))) and gl(x∗
l
), l ∈ Λ.

Remark 2.1. Obviously, (0, 0, . . . , 0)T is an equilibrium point of (2.4). Therefore, there exists at
least one equilibrium point of system (2.1). So, the stability analysis of the equilibrium point
x∗ of (2.1) can now be transformed to the stability analysis of the trivial solution y = 0 of
(2.4).

In the following, the notations XT and X−1 mean the transpose of and the inverse of
a square matrix X. We will use the notation X > 0 (or X < 0, X ≥ 0, X ≤ 0) to denote that
the matrix X is a symmetric and positive definite (negative definite, positive semidefinite,
negative semidefinite) matrix. Let λmax(X), λmin(X), respectively, denote the largest and
smallest eigenvalue of matrix X.

Throughout this paper, we assume that there exist constants χi > 0,M,N ≥ 0 such that
|gi(xi)| ≤ χi, i ∈ Λ, FT (y)F(y) ≤MyTy, GT (y)G(y) ≤NyTy.

We introduce some definitions as follows.

Definition 2.2 (see [5]). Leting V : R+ × R
n → R+, for any (t, x) ∈ [tk−1, tk) × R

n, the upper
right-hand Dini derivative of V (t, x) along the solution of (2.4) is defined by

D+V (t, x) = lim sup
h→ 0+

1
h

{
V
[
t + h, x + h

(
− Cy(t) +AF(y(t)) + BG(y(t − τ(t)))

+ΓTT�G
(
y(t − τ(t)))

)]
− V (t, x)

}
.

(2.6)

Definition 2.3 (see [25]). Assume y(t) = y(t0, ϕ)(t) is the solution of (2.4) through (t0, ϕ). Then
the zero solution of (2.4) is said to be uniformly stable, if, for any ε > 0 and t0 ≥ 0, there exists
some δ = δ(ε) > 0 such that ϕ ∈ PCδ(t0) implies ||y(t)|| < ε, t ≥ t0.

Definition 2.4 (see [5]). The equilibrium point x∗ of the system (2.1) is globally exponentially
stable, if there exists constant μ > 0,M ≥ 1 such that, for any initial value φ,

∥∥x
(
t0, φ
)
(t) − x∗∥∥ < M

∥∥φ − x∗∥∥
τe

−μ(t−t0), t ≥ t0. (2.7)

Next, in order to obtain our results, we need to establish the following lemma.

Lemma 2.5 (see [13]). For any vectors a, b ∈ R
n, the inequality

±2aTb ≤ aTXa + bTX−1b (2.8)

holds, in which X is any n × n matrix with X > 0.
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Lemma 2.6 (see [31]). Let X ∈ Rn×n, then

λmin(X)aTa ≤ aTXa ≤ λmax(X)aTa (2.9)

for any a ∈ R
n if X is a symmetric matrix.

3. Main Results

In this section, some sufficient delay-dependent conditions of global exponential stability and
uniform stability for system (2.1) are obtained.

Theorem 3.1. Assume that there exist constants ε� > 0, δ� ∈ [0, ε�) and n×n symmetric and positive
definite matrices P , Q1, Q2 such that

(i)

ε�P − PC − CP + PAQ−1
1 A

TP + λmax(Q1)ME +
Nλmax

(
Q2 + T�TT�

)

1 − ρ E

+ eτε
�

PBQ−1
2 B

TP + eτε
�∥∥χ
∥∥2P 2 ≤ 0,

(3.1)

where χ = (χ1, χ2, . . . , χn)
T ,

(ii) there exists constant W ≥ 0 such that

m∑

k=1

ln max
{
ηk, 1
} − δ�(tm − t0) ≤ W ∀m ∈ Z+ holds, (3.2)

where ηk is the largest eigenvalue of P−1DkPDk, k ∈ Z+.
Then the equilibrium point of the system (2.1) is globally exponentially stable and the

approximate exponential convergent rate is (ε� − δ�)/2.

Proof. We only need to prove that the zero solution of system (2.4) is globally exponentially
stable. For any t0 ≥ 0, let y(t) = y(t0, ϕ)(t) be a solution of (2.4) through (t0, ϕ).

Consider the Lyapunov functional as follows:

V (t) = eε
�tyT (t)Py(t) +

1
1 − ρ

∫ t

t−τ(t)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds, (3.3)
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then we have

λmin(P)eε
�t
∥∥y(t)

∥∥2 < V (t)

≤ λmax(P)eε
�t
∥∥y(t)

∥∥2 +
λmax

(
Q2 + T�TT�

)
Neε

�t
(
1 − e−ε�τ(t))

ε�
(
1 − ρ)

∥∥y(t)
∥∥2
τ

≤

⎛
⎜⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)

⎞
⎟⎠eε

�t
∥∥y(t)

∥∥2
τ .

(3.4)

By Lemma 2.5, we get

2yT (t)PAF
(
y(t)
)
= 2FT

(
y(t)
)
ATPy(t)

≤ FT(y(t))Q1F
(
y(t)
)
+ yT (t)PAQ−1

1 A
TPy(t)

≤ λmax(Q1)FT
(
y(t)
)
F
(
y(t)
)
+ yT (t)PAQ−1

1 A
TPy(t)

≤ yT (t)
[
PAQ−1

1 A
TP + λmax(Q1)ME

]
y(t),

(3.5)

2yT (t)PBG
(
y(t − τ(t))) = 2GT(y(t − τ(t)))BTPy(t)

= 2
[
G
(
y(t − τ(t)))

√
e−τε�
]T(

BTPy(t)
√
eτε�
)

≤ e−τε
�

GT(y(t − τ(t)))Q2G
(
y(t − τ(t)))

+ eτε
�

yT (t)PBQ−1
2 B

TPy(t).

(3.6)

On the other hand, since ΓTΓ = ||ς||2E and ||ς|| ≤ ||χ||, then we have

yT (t)PΓTΓPy(t) ≤ ∥∥χ∥∥2yT (t)P 2y(t), (3.7)

where χ = (χ1, χ2, . . . , χn)
T .

Thus, we obtain

2yT (t)PΓTT�G
(
y(t − τ(t))) = 2GT(y(t − τ(t)))T�TΓPy(t)

= 2
[
T�G
(
y(t − τ(t)))

√
e−τε�
]T(

ΓPy(t)
√
eτε�
)

≤ e−τε�GT(y(t − τ(t)))T�TT�G(y(t − τ(t))) + eτε�yT (t)PΓTΓPy(t)

≤ e−τε�GT
(
y(t−τ(t)))T�TT�G(y(t−τ(t)))+eτε�∥∥χ∥∥2yT(t)P 2y(t).

(3.8)
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Now we consider the derivation of V along the trajectories of system (2.4), for t ∈ [tk, tk+1),
k ∈ Z+,

D+V (t)|(2.3) = eε
�tε�yT (t)Py(t) + eε

�t
{
y′T (t)Py(t) + yT (t)Py′(t)

}

+
1

1 − ρe
ε�tGT(y(t)

)(
Q2 + T�

TT�
)
G
(
y(t)
)

− 1 − τ̇(t)
1 − ρ eε

�(t−τ(t))GT(y(t − τ(t)))
(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))

≤ eε
�tε�yT (t)Py(t) + eε

�t
{
yT (t)(−CP − PC)y(t) + 2yT (t)PAF

(
y(t)
)

+ 2yT (t)PBG
(
y(t − τ(t)))

+2yT (t)PΓTT�G
(
y(t − τ(t)))

}

+
1

1 − ρe
ε�tGT(y(t)

)(
Q2 + T�

TT�
)
G
(
y(t)
)

− eε�(t−τ)GT(y(t − τ(t)))
(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))

≤ eε
�tyT (t)

⎧
⎨

⎩ε
�P − PC − CP + PAQ−1

1 A
TP + λmax(Q1)ME

+
Nλmax

(
Q2 + T�TT�

)

1 − ρ E + eτε
�

PBQ−1
2 B

TP + eτε
�∥∥χ
∥∥2P 2

⎫
⎬

⎭y(t)

≤ 0.
(3.9)

Moreover, we note

V (tk) = eε
�tkyT (tk)Py(tk) +

1
1 − ρ

∫ tk

tk−τ(tk)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

= eε
�tkyT

(
t−k
)
DkPDky

(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(t−

k
)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

≤ eε�tkηkyT
(
t−k
)
Py
(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(t−

k
)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

≤ max
{
ηk, 1
}
V
(
t−k
)
.

(3.10)
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By simple induction, considering (3.4)–(3.10), we get, for k ≥ 1,

λmin(P)eε
�t
∥∥y(t)

∥∥2 ≤ V (t) ≤ V (t0)
∏

t0<tk≤t
max
{
ηk, 1
}
. (3.11)

On the other hand, from (3.4), we get

V (t0) ≤

⎛
⎜⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)

⎞
⎟⎠eε

�t0
∥∥ϕ
∥∥2
τ . (3.12)

Substituting the above inequality into (3.11), we obtain

∥∥y(t)
∥∥2 ≤

⎛
⎜⎝
λmax(P)
λmin(P)

+
λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)λmin(P)

⎞
⎟⎠e−ε

�(t−t0)∥∥ϕ
∥∥2
τ

∏

t0<tk≤t
max
{
ηk, 1
}
.

(3.13)

In view of condition (ii), we furthermore have

∥∥y(t)
∥∥ ≤ Me−((ε

�−δ�)/2)(t−t0)∥∥ϕ
∥∥
τ , t ≥ t0, (3.14)

where

M =

√√√√√√

⎛
⎜⎝
λmax(P)
λmin(P)

+
λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)λmin(P)

⎞
⎟⎠eW ≥ 1. (3.15)

Hence, the zero solution of system (2.4) is globally exponentially stable; that is, the
equilibrium point of system (2.1) is globally exponentially stable and the approximate
exponential convergent rate is (ε�−δ�)/2. The proof of Theorem 3.1 is therefore complete.

Remark 3.2. In Theorem 3.1, we find that condition (i) can be replaced by

ε�P − PC − CP + PAQ−1
1 A

TP + λmax(Q1)ME +
Nλmax(Q2)

1 − ρ E +
Nλmax

(
T�TT�

)

1 − ρ E

+ eτε
�

PBQ−1
2 B

TP + eτε
�∥∥χ
∥∥2P 2 ≤ 0.

(3.16)

Leting P = Q1 = Q2 = E in Theorem 3.1, then we have the following.
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Corollary 3.3. Assume that there exist constants ε� > 0, δ� ∈ [0, ε�) such that

(i)

λ�max ≤ −ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2, (3.17)

where λ�max is the largest eigenvalue of −2C +AAT + eτε
�
BBT ;

(ii) there exists constant W ≥ 0 such that

m∑

k=1

ln max
{
max
i∈Λ

(
1 + d(i)

k

)2
, 1
}
− δ�(tm − t0) < W ∀m ∈ Z+ holds. (3.18)

The equilibrium point of the system (2.1) is globally exponentially stable and the approximate
exponential convergent rate is (ε� − δ�)/2.

Furthermore, if d(i)
k ∈ [−2, 0] in Corollary 3.3, then we have the following result.

Corollary 3.4. The equilibrium point of the system (2.1) is globally exponentially stable, if d(i)
k ∈

[−2, 0], and there exists constant ε� > 0 such that

−2C +AAT + eτε
�
BBT +

⎡
⎢⎣ε� +M +

N
(
1 + λmax

(
T�TT�

))

1 − ρ + eτε
�∥∥χ
∥∥2
⎤
⎥⎦E ≤ 0. (3.19)

Remark 3.5. In fact, Theorem 3.1 implies that if supk∈Z+

∏k
s=1(1 + β

(i)
s )2 < ∞, then one may

choose δ� = 0. On the other hand, Luo an Cui [13] obtained some results on global asymptotic
stability. However, those results cannot ensure the global exponential stability. Let d(i)

k
= 0

(i.e., Dk = E) in Corollary 3.4, then we can obtain the desirable result as follows.

Corollary 3.6. The equilibrium point of the system (2.1) without impulses is globally exponentially
stable, if there exist n × n symmetric and positive definite matrices P , Q1, Q2 such that

− PC − CP + PAQ−1
1 A

TP + λmax(Q1)ME +
Nλmax

(
Q2 + T�TT�

)

1 − ρ E

+ PBQ−1
2 B

TP +
∥∥χ
∥∥2P 2 < 0.

(3.20)

Furthermore, if P = Q1 = Q2 = E in Corollary 3.6, then it becomes as follows.
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Corollary 3.7. The equilibrium point of the system (2.1) without impulses is globally exponentially
stable, if the following condition holds:

−2C +AAT + BBT +
Nλmax

(
T�TT�

)

1 − ρ +
(

N

1 − ρ +M +
∥∥χ
∥∥2
)
E < 0. (3.21)

Remark 3.8. Corollaries 3.6 and 3.7 imply that if the above inequality holds, then there
exists enough small ε� > 0 such that all conditions in Corollary 3.4 are satisfied. Hence,
Corollaries 3.6 and 3.7 supplied a new criteria for global exponential stability of equilibrium
point of the system (2.1) without impulses.

Next we can establish a theorem which provide sufficient conditions for uniform
stability of system (2.1) by constructing another Lyapunov functional. Here we shall
emphasize the effects of impulses.

Theorem 3.9. Assume that there exist n×n symmetric and positive definite matrices P ,Q1,Q2 such
that the following condition

−PC − CP + PAQ−1
1 A

TP + λmax(Q1)ME +
Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)
E

+

(
k∏

s=1

ηs

)−1
PBQ−1

2 B
TP +

(
k∏

s=1

ηs

)−1∥∥χ
∥∥2P 2 ≤ 0 ∀k ∈ Z+ holds,

(3.22)

where supk∈Z+

∏k
s=1ηs <∞, ηk is the largest eigenvalue of P−1DkPDk.

Then the equilibrium point of the system (2.1) is uniformly stable.

Proof. We only prove the zero solution of system (2.4) is uniformly stable. For any ε > 0,
t0 ≥ 0, ϕ ∈ PCδ(t0), let y(t) = y(t0, ϕ)(t) be a solution of (2.4) through (t0, ϕ), t0 ≥ 0, then we
can prove that ||y(t)|| < ε, t ≥ t0,

where

δ =
ε
√
λmin(P)

√
η

√
λmax(P) +

(
λmax

(
Q2 + T�TT�

)
Nητ/

(
1 − ρ)

) , η=̇sup
k∈Z+

k∏

s=1

ηs. (3.23)

Consider the following Lyapunov functional

V (t) = yT (t)Py(t) +
1

1 − ρ
∫ t

t−τ(t)

(
∏

ts≤t
ηs

)
GT(y(s)

)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds, (3.24)
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then we have

λmin(P)
∥∥y(t)

∥∥2 < V (t)

≤ λmax(P)
∥∥y(t)

∥∥2 +
λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ
∥∥y(t)

∥∥2
τ

≤

⎛
⎜⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ

⎞
⎟⎠
∥∥y(t)

∥∥2
τ .

(3.25)

Applying the same argument as Theorem 3.1, we get

2yT (t)PAF
(
y(t)
) ≤ yT (t)

[
PAQ−1

1 A
TP + λmax(Q1)ME

]
y(t),

2yT (t)PBG
(
y(t − τ(t))) ≤

(
k∏

s=1

ηs

)
GT(y(t − τ(t)))Q2G

(
y(t − τ(t)))

+

(
k∏

s=1

ηs

)−1
yT (t)PBQ−1

2 B
TPy(t),

2yT (t)PΓTT�G
(
y(t − τ(t))) ≤

(
k∏

s=1

ηs

)
GT(y(t − τ(t)))T�TT�G(y(t − τ(t)))

+

(
k∏

s=1

ηs

)−1∥∥χ
∥∥2yT (t)P 2y(t).

(3.26)

By simple calculation, we can obtain, for t ∈ [tk, tk+1), k ∈ Z+,

D+V (t)|(2.3) = yT (t)(−CP − PC)y(t) + 2yT (t)PAF
(
y(t)
)
+ 2yT (t)PBG

(
y(t − τ(t)))

+ 2yT (t)PΓTT�G
(
y(t − τ(t))) + 1

1 − ρ

(
k∏

s=1

ηs

)
GT(y(t)

)(
Q2 + T�

TT�
)
G
(
y(t)
)

− 1 − τ̇(t)
1 − ρ

(
k∏

s=1

ηs

)
GT(y(t − τ(t)))

(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))
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≤ yT (t)

⎧
⎨

⎩− PC − CP + PAQ−1
1 A

TP + λmax(Q1)ME

+
Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)
E +

(
k∏

s=1

ηs

)−1
PBQ−1

2 B
TP

+

(
k∏

s=1

ηs

)−1∥∥χ
∥∥2P 2

⎫
⎬

⎭y(t).

≤ 0.

(3.27)

Moreover, we know

V (tk) = yT (tk)Py(tk) +
1

1 − ρ
∫ tk

tk−τ(tk)

(
∏

ts≤tk
ηs

)
ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

= yT
(
t−k
)
DkPDky

(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(tk)

(
∏

ts≤tk
ηs

)
ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

≤ ηkyT
(
t−k
)
Py
(
t−k
)
+

1
1 − ρηk

∫ t−
k

t−
k
−τ(tk)

(
∏

ts≤tk−1
ηs

)
ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

= ηkV
(
t−k
)
.

(3.28)

By simple induction, from (3.27) and (3.28) we may prove that, for k ≥ 1,

λmin(P)
∥∥y(t)

∥∥2 ≤ V (t) ≤ V (t0)
∏

t0<tk≤t
ηk. (3.29)

Employing the fact (3.25), we obtain

λmin(P)
∥∥y(t)

∥∥2 ≤

⎛
⎜⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ

⎞
⎟⎠
∥∥ϕ
∥∥2
τη, t ≥ t0, (3.30)

which implies that

∥∥y(t)
∥∥ < ε, t ≥ t0. (3.31)

Therefore, the zero solution of system (2.4) is uniformly stable, that is, the equilibrium point
of system (2.1) is uniformly stable. The proof of Theorem 3.9 is complete.
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Corollary 3.10. The equilibrium point of the system (2.1) is uniformly stable, if there exist n × n
symmetric and positive definite matrices P , Q1, Q2 such that the following condition holds:

Ξk ≤ −λmax(Q1)M −
Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)
, (3.32)

where Ξk is the largest eigenvalue of −PC−CP +PAQ−1
1 A

TP + (
∏k

s=1ηs)
−1[PBQ−1

2 B
TP + ||χ||2P 2].

If P = Q1 = Q2 = E in Theorem 3.9, then we have the following.

Corollary 3.11. The equilibrium point of the system (2.1) is uniformly stable, if the following
condition

−2C +AAT +

⎡
⎢⎣M +

Nλmax

(
E + T�TT�

)

1 − ρ

(
k∏
s=1

max
i∈Λ

(
1 + d(i)

s

)2
)⎤
⎥⎦E

+

[
k∏

s=1

max
i∈Λ

(
1 + d(i)

s

)2
]−1[

BBT +
∥∥χ
∥∥2E
]
≤ 0 ∀k ∈ Z+ holds,

(3.33)

where supk∈Z+

∏k
s=1maxi∈Λ(1 + d

(i)
s )2 <∞.

4. Examples

In this section we give two examples to demonstrate our results.

Example 4.1. Consider the following high-order delayed Hopfield-type neural network with
impulses

x′
i(t) = − cixi(t) +

3∑

j=1

aijfj
(
xj(t)

)
+

3∑

j=1

bijgj
(
xj(t − τ(t))

)

+
3∑

j=1

3∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
, t /= tk, t ≥ t0,

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= β(i)

k
xi
(
t−k
)
, i = 1, 2, 3, k ∈ Z+,

(4.1)
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where β(i)k =
√
1 + (i/k2) − 1, τ(t) = sin t/2, f1(x1) = tanh(0.5x1), f2(x2) = tanh(0.48x2),

f3(x3) = tanh(0.6x3), g1(x1) = tanh(0.3x1), g2(x2) = tanh(0.8x2), g3(x3) = tanh(0.73x3),

C = diag[c1, c2, c3]
T =

⎡

⎣
3.2 0 0
0 2.5 0
0 0 2.0

⎤

⎦, A =
(
aij
)
3×3 =

⎡

⎣
0.58 0.12 0.23
−0.08 0.36 −0.05
−0.04 0.04 −0.37

⎤

⎦,

B =
(
bij
)
3×3 =

⎡

⎣
0.06 0 0.04
0.19 −0.17 −0.02
−0.03 0.13 0.44

⎤

⎦, T1 =
(
T1jl
)
3×3 =

⎡

⎣
0.03 −0.20 −0.05
−0.06 −0.14 0.23
0.27 0.03 −0.20

⎤

⎦,

T2 =
(
T2jl
)
3×3 =

⎡

⎣
0.01 −0.05 0.08
−0.06 −0.03 −0.09
0.15 −0.04 0.11

⎤

⎦, T3 =
(
T3jl
)
3×3 =

⎡

⎣
−0.02 −0.12 −0.05
0.24 0.04 0.07
−0.02 0.08 0.01

⎤

⎦.

(4.2)

In this case, we easily observe that τ = ρ = 0.5,M = 0.36,N = 0.64, ||χ||2 = 0.64.
For Theorem 3.1, choosing P = Q1 = Q2 = E, then from

∞∏

k=1

(
1 + β(i)

k

)2
=

∞∏

k=1

(
1 +

i

k2

)
<∞, i = 1, 2, 3, (4.3)

we may choose ε� = 0.0976, δ� = 0, W =
∏∞

k=1(1 + 3/k2) <∞.
On the other hand, we can compute

−2C +AAT + eτε
�

BBT =

⎡

⎣
−5.9908 −0.0036 −0.0869
−0.0036 −4.7928 −0.0023
−0.0869 −0.0023 −3.6379

⎤

⎦ = Θ (4.4)

which implies that λmax(Θ) = −3.6347.
Also, we note that

T�TT� =
[
T1 + TT1 , T2 + T

T
2 , T3 + T

T
3

]T =

⎡

⎣
0.2059 0.0832 −0.0535
0.0832 0.2895 −0.2735
−0.0535 −0.2735 0.4220

⎤

⎦ (4.5)

implies that

−ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2 ≈ −3.2501 > −3.6347. (4.6)

By Corollary 3.3, the equilibrium point of (4.1) (0, 0, 0)T is global exponential stable with the
approximate convergence rate 0.0488.

However, the criteria in [12] are invalid here.
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Example 4.2. Consider the high-order delayed Hopfield-type neural network with impulses
[13]

x′
i(t) = − cixi(t) +

2∑

j=1

aijfj
(
xj(t)

)
+

2∑

j=1

bijgj
(
xj(t − τ(t))

)

+
2∑

j=1

2∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
+ Ii, t /= tk, t ≥ t0,

(4.7)

and with impulses

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= β(i)k

(
xi
(
t−k
) − x∗), i = 1, 2, k ∈ Z+, (4.8)

where tk = k, t0 = 0, k ∈ Z+, f1(x1) = g1(x1) = tanh(0.53x1), f2(x2) = g2(x2) = tanh(0.67x2),
ρ = 0.6, J1 = 1.5, J2 = 2,

C = diag[c1, c2]
T =
[
1.9 0
0 1.89

]
, A =

(
aij
)
2×2 =

[
0.05 0.14
0.20 0.31

]
,

B =
(
bij
)
2×2 =

[
0.09 0.25
0.21 0.45

]
, T1 =

(
T1jl
)
2×2 =

[
0.05 0.14
−0.06 0.05

]
,

T2 =
(
T2jl
)
2×2 =

[
0.29 0.10
0.23 −0.14

]
,

β
(i)
k

= e0.0625 − 1, k ∈ Z+.

(4.9)

It is obvious that M = N = L2 = 0.4489, ||χ||2 = 0.4489. Here we consider τ = 1. Choose
P = Q1 = Q2 = E, ε� = 0.25, δ� = 0.128.

Note that

m∑

k=1

ln max
{
max
i∈Λ

(
1 + d(i)

k

)2
, 1
}
− δ�(tm − t0) = 0.125m − 0.128m

= −0.003m < 0 ∀m ∈ Z+ holds.

(4.10)

On the other hand, we can compute

−2C +AAT + eτε
�

BBT =
[−3.7073 0.1848
0.1848 −3.3973

]
= Δ (4.11)

which implies that λmax(Δ) = −3.3111.
One can check that

−ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2 ≈ −2.9649 > −3.3111. (4.12)
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By Corollary 3.3, the equilibrium point of (4.1)–(4.7) x∗ is global exponential stable with the
approximate convergence rate 0.061.

In fact, for above-given impulsive condition, we only need time-delay τ which satisfies
the following condition:

λmax

(
−2C +AAT + e0.125τBBT

)
< −0.4489e0.125τ − 2.2635. (4.13)

Remark 4.3. In [13], the author obtained that the equilibrium point of (4.7) without impulses
is globally asymptotically stable. From the example, we obtain that the equilibrium point of
(4.7) without impulses is global exponential stability. In fact, if β(i)

k
= 0 in (4.7), then we can

choose δ� = 0, which implies that, for any given τ > 0, there exists corresponding ε� > 0 such
that all conditions in Corollary 3.6 are satisfied.

5. Conclusions

In this paper, a class of high-order delayedHNNwith impulses is considered.We obtain some
new criteria ensuring global exponential stability and uniform stability of the equilibrium
point for such system by using Lyapunov functional method, the quality of negative definite
matrix, and the linear matrix inequality. Our results show delays and impulsive effects on the
stability of HNN. Two examples are given to illustrate the feasibility of the results.
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