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The asymptotic behavior of nonoscillatory solutions of the superlinear dynamic equation on time

scales (r(t)x2 (i?))A +p(t)|x(o(t))"sgnx(c(t)) = 0,y > 1, is discussed under the condition that P(t) =
lim; o J‘tT p(s)As exists and P(t) > 0 for large t.

1. Introduction

Consider the second-order superlinear dynamic equation

(rhx* )" + pOIx @O sgnx(o() =0, y>1, 1)
where
P(t) = lim pr(s)As (1.2)
T — 0 t

exists and is finite. P(t) > O for large t.
When T =R, r(t) = 1, (1.1) is the second-order superlinear differential equation

xX"(t) + p(t)|x ()" sgnx(t) =0, y>1. (1.3)
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When T =N, r(n) =1, (1.1) is the second-order superlinear difference equation
A’x(n) +p(n)|x(n+1)"sgnx(n+1) =0, y>1. (1.4)

The following condition is introduced in [1].
Condition (H). We say that T satisfies Condition (H) provided one of the following holds.
(1) There exists a strictly increasing sequence {t, ;oo C T with lim, _, ,t, = oo and for each
n > 0 either o (t,) = ty1 or the real interval [t,, ty] C T;
(2) TNR = [T', o0) for some T' € T.
We note that time scales which satisfy Condition (H) include most of the important
time scales, such as R, Z, and ¢'°, where ¢ > 1 and N is the nonnegative integers and

harmonic numbers {>}/_; 1/k : n € N} [2, Example 1.45].
In [3], Naito proved the following result.

Theorem 1.1. If P(t) = ft°° p(s)ds > 0 for large t, then a nonoscillatory solution x(t) of (1.3)

satisfies exactly one of the following three asymptotic properties:

tlim x(t) = c#0,

. ox(t) .
L e (15)
tlim @ =c#0.

In this paper, we extend Theorem 1.1 to superlinear dynamic equation (1.1) on time
scale. As an application, we get the asymptotic behavior of each nonoscillation solution of
the difference equation

A’x(n) + (nic + (_1112 b>|x(n +1) sgnx(n+1)=0, y>1, (1.6)

whereb >0, ¢>1,and a/c>b/2.

2. Main Theorems

Consider the second-order nonlinear dynamic equation
A
(rx>®) " +pOlx@®) sgnx(o(®) =0, y>0, (2.1)

where r(t),p(t) € C(T,R), r(t) >0, t, € T, and f;o [r(H)]dt = oo. limy_ o f:op(s)As exists
and is finite.
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Lemma 2.1. Suppose that T satisfies Condition (H). If x(t) is a positive solution of (1.1) on [T, o),
then the integral equation

rxt® _ 0+ f‘” r(S)Y fy [x(5) + hu(s)x®(s)]" dh[x® (s)]” As (2.2)
xV(t)

t x7(s)x7(o(s))

is satisfied for t > T, where a is a nonnegative constant.

Proof. Suppose that x(t) is a positive solution of (1.1) on [T, co).
In the first place, we will prove

o 1 -1 A 2
J‘ rOfo bane)l_dhlx (o) As < oo, (2.3)

T XY (s)x7(o(s))

where xj,(t) = x(t) + hu(t)x® (t) = (1 = h)x(t) + hx(o(t)) > 0.
Multiplying both sides of (1.1) by 1/xY(o(t)), we get that

rx 1\ &)y fo [xn()] R [x (1)
< (D > BT P T 24)
Integrating from T to t,
rxd ) _rxAm Fr(s)Y Jy [xn(s)]" ' dh[x4 (s)]° .
Tl WOl Mo T e SR
If (2.3) fails to hold, that is,
= r(s)y Jy len(s)] dh[xA()]*
L TR EE) (26)
from (2.5), we have
i r(hx(t) 27)
O -

Without loss of generality, we can assume that for ¢t > T

r(T)x*(T)

t
_ 1. 2.8
X1 (T) Lp(s)As <-1 (2.8)
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Otherwise, let L = maxtzTU;p(s)AsL By (2.7), we can take a large T; > T such that
r(T1)x%(T1)/x"(T;) < =(2L + 1). So we have

T
rNRAT) _(* G as <@L+ 1) - [f p(s)As - P<S>AS]
T; T T

xV(Th) (2.9)
<-(L+1)-[-2L] =-1.
So we can replace T by T; > T such that (2.8) still holds.
From (2.5) and (2.8), we getfort > T
xS () fo ()] dh[xt ()]
(D + L TS (0(3) As < -1. (2.10)
In particular, we have
x2(t) <0, fort>T. (2.11)
Therefore, x(t) is strictly decreasing.
Assume thatt =t; 1 <t; = o(t). Then, x(c(t)) < x(t), and so
1 1
[ @ an=y [0 mx) + o) an
0 0
1 (2.12)
_ [A-h)x(s) + hx(o(s)]'], _ x7(a(s)) 27 (s)
x(o(s)) - x(s) x(o(s)) - x(s) -
If the real interval [t;_1,t;] C T, then, for s € [t;_1,t;], we have
1
[ dn =y, 213)
0
Let
)y fy [a()] dh[x? (s)]?
yt) =1+ L (&) (0()) A (2.14)
Hence, from (2.10), we get that
O . (2.15)

xY(t)
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From (2.14) and (2.15), we get that
r(OY fo Lan(H] dh[x* (1))

XV (£)x7 (o ()

¥ Jy Ben (8] dh[-x (1)]
X1 (o (D)

ya(t) =

(2.16)

>y(t)

Assume thatt = t;_; <t; = o(t). From (2.16) and (2.12), we get that

ye®) —yt) _ xM (o)) -1 () x(t) - x(o(t)
y®(e®) -1) = x(o®) -x(t) x'(o(t)[o(t)-t]

(2.17)

So,

yoh) | x)

v o) 218)

that is,

y(t) . XV (ti-1)
y(tic) — x7()

(2.19)

If the real interval [t;_1,t;] C T, then, for t € (¢;_1, ], it follows from (2.16) and (2.13) that

VRO 0] e 0)

ORI (220
that is,
(Iny(t)) > —(Inx"(t))". (2.21)
Integrating from ¢;_; to t, we get that
y® ) g (2.22)

y(ti-1) xv(t)

Let T = t,,, and let t € (T, o). Then, there is an n > ny such that t € (t,-1, t,]p. From (2.22)
and (2.19), we get that

]/(t) > xY(tn—l) y(tn—l) > xY(tn—Z) y(tno+1) > xY(tno)
y(tn—l) xY(t) ’ y(tn—Z) xY(tn—l) ,,,,, y(tno) xY(i’an)'

(2.23)
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Multiplying, we get that

y(O) | ¥ (t)

. 2.24
¥) ~ 0 229
Using (2.15) again, we get
_rHxt®) Y (b ) X" (tny)
0 > y(t) > IO (2.25)
If we set L := y(t,,)x" (tn,), we get
L
A —_——
x°(t) < 0 (2.26)
Integrating from T to t, we get that
‘L
x(t)-x(T)<-| —As— —o0o, as t — oo, 2.27
() -xn) <[ - 227)

which contradicts x(t) > 0.
In (2.5), letting t — oo, replacing T by 7, and denoting a = lim;_, ,,7(£)x* () /x" (t), we
get that

B pr(s)aﬁ F r©) fo () A O | rxte)

2.2
, , X (5)37(0(5)) () (225)
We need to show that a > 0.
Suppose that & < 0. Then, there exists a large T; such that, for t > T;, we have
rHx() _a (2.29)
xr() ~2° '
So,
A ax’ (f)
< . .
x2(t) < 2 ) (2.30)
Thus,
iy = [ TR LI o)
Yo X1 (s)x7 (0 (s))
(2.31)

o _a (=)o ()] dh[-x(s)]
- 2) 27(0(s))

S.
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Assume that t = t;_; < t; = o(t). From (2.12) and x*(t) < 0, we have

o0 y [} [axn(s)]" " dh[-x2(s)]
L X7 (0(s))
v Jo n®] MR [x® ()] (0(1) ~ 1)
X7 (o (t))
X (H) - X (o(t))
X (o(t)
() q
—d
. —[xuo(t)) Ch

IR0
~ (o)

S

(2.32)

xV (ti-1)
XV ()

If the real interval [t;_1, ;] C T, from (2.13) we have, for t € (t;_1, ],

S

I yjo [xn(s)] ' dh[-x2(s)]

x¥(o(s))
foyx” 1(;)([5)95 (S)] ds (2.33)
ti1

XV (ti1)
x¥(t)

From (2.31), (2.32), (2.33) and the additivity of the integral, it is easy to get

Y
M(Ty) > —g lim In 01

im In o (2.34)

So, for large u, we have

xN(Th) . _2M(T1)

In xV(u) ~ a

+1. (2.35)

Thus,

x¥(u) > xV(Th) exp(%(n) - 1). (2.36)
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By (2.30) and noticing that & < 0, we get that

ax? (Ty) 2M(Ty)
x®(u) < 2 w) xp( a —1>. (2.37)

Integrating (2.37), we get that x(u) — —oo, which is a contradiction.
This completes the proof of the lemma. O

Consider the second-order superlinear dynamic equation
[r(t)xA(t)]A +p)|x(o(t)] sgnx(o(t) =0, y>1, (2.38)
where r(t) > 0, [°(1/7(s))As = o
P(t) = Tlillgo J‘:p(s)As (2.39)
exists and is finite, and P(t) > 0 for ¢t > T.

Theorem 2.2. Suppose that T satisfies Condition (H) and P(t) > 0 for t > T. Then each
nonoscillatory solution x(t) of (2.38) satisfies exactly one of the following three asymptotic properties:

tlirgx(t) =c#0, (2.40)
x(t)
— =0, 1 t
% [F As/r(s) 0= 240
x(t)

——— =c#0.
R E R >

Proof. Let x(t) be a nonoscillatory solution of (2.38), say, x(t) > 0 for t > T > 0. From
Lemma 2.1, it is known that x(t) satisfies the equality

r(t)x2(t) = ax’ (t) + P(H)x" (t)

® r(s) jo x(s)+h,u(s)xA(s)]Y_ dh[xA(s)] s

(2.43)
Hyx Y(”f X (327 (0(5))

for t > T. Therefore, we have

r(t)x2(t) > P(t)x7 (1), (2.44)
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fort > T. Since P(t) > 0 for t > T, it follows that x (¢) > 0 for t > T. An integration by parts of
(2.38) gives

r(u)x® () - P(w)x" (u) +y I ' P(s)x2 (s) I 1 [x(s) + h‘u(s)xA(s)]Y_ldh As
t 0 (2.45)

=r(H)x®(t) - P(t)x" (1),

where u >t > T. Let t be fixed. Since P(s)x*(s) f; [x(s) +hu(s)x® (s)] 'dhis nonnegative, the
integral term in (2.45) has a finite limit or diverges to oo as t — oo. If the latter case occurs,
then r(u)x® (1) — P(u)x'(u) — —oo as u — oo, which is a contradiction to (2.44). Thus, the
former case occurs, that is,

I 7 p(s)x®(s) f: [x(s) + h‘u(s)xA(s)]Y_ldh As < co. (2.46)

t

Define the function ki (t) as
) 1 _
ki (f) = f P(s)x2 () f [x(s) + h/l(s)xA(s)]Y "k As < o (2.47)
t 0

and the finite constant § = lim,, _, o, [r () x* () — P(u)x? (u)]. Then, equality (2.45) yields
r()x®(t) = p+ P(H)x" (t) + yki (), (2.48)
fort > T. Observe by (2.44) that § > 0. From (2.44) and (2.46), it follows that

J‘°° P2(s)xY(s)

1 —
= f [x(s) + hﬂ(s)xA(s)]Y "dh As < Ky (f) < oo. (2.49)
t 0

Next, we define the function k;(¢) by (noticing that y > 1)

© p2 y 1 _
k2(t)=£ % O [x(s)+h/4(s)xA(s)]Y "dn As

_I‘” P2(5)x7(s) ("

- t r(s) 0

r’ P*(s)x"(s)
t r(s)

_ Ioc PZ(S)xzyfl(S) As
t r(s)

[(1-h)x(s) + hx(o(s))] " 'dh As
(2.50)

>

1
f [(1-h)x(s) + hx(s)]""dh As
0



10 Abstract and Applied Analysis

for t > T. Dividing (2.48) by r(t) and integrating from T to t, we get

p tMAs+YI k1(8) s, 2.51)

t
x(”:xm*f O L ") (s)

By Schwartz’s inequality and the fact that x2(t) > 0 for t > T, the second integral term in
(2.51) can be estimated as follows:

F P (s) FP2s) (5) x(s)
[ ASS<L o) AS) <Lr<s> S)

(2.52)
tas
<KV f Aas x1/2(#),
2 ( )< T T(S) ()
fort > T. From (2.51) and (2.52) and noticing that k; () is decreasing, we get that
LB tas\ ' As
x(t) <x(T) + —As+k1/2T J‘ — xV2(#) + yky (T J —_— (2.53)
0 <xm)+ [ <><Tr(s) )+ k(r) [

The above inequality may be regarded as a quadratic inequality in x'/2(t). Then, we have

1/2
x'/2(t) < %kg/ 2(T) <£ rA(—SS’)> + %Dm(t) (2.54)
for t > T, where
D(t) = k2 (T) f —_— +4[x(T) + (B+yki(T)) f r(s)] (2.55)

It is obvious that D(t) = O(f; As/r(s)) ast — oo, and, consequently, there exists a positive
constant m such that

' As

fort > T. Let T1 (> T) be an arbitrary number. It is clear that

OSItMASZIT1MA5+It P)X(S) (2.57)
T

r(s) T r(s) T r(s)
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for t > T7. Arguing as in (2.52), we find

J‘t P(s)xT(s)

e (2.58)

toas ]’
T r(s)

As < [kz(T])x(t)

for t > T, which when combined with (2.56) yields

172
f MASS miky (Ty) tﬁ t As
T r(s) 7 7(8) T r(s) (2.59)

s[mkﬂnﬂ”Zf{éi

r7(s)’

fort > T > T. Using (2.57) and (2.59) and noticing that f‘Tx’ As/r(s) = oo, we obtain

t Y
0 <limsup P(s)x ()

1/2
oo I;As/r(s)-[r iy L8 < k(T (2.60)

Since T is arbitary and k>(T;) — OasT; — oo, letting T7 — oo in (2.60), we get

. 1 L P(s)xY(s)
| =0. .
0< tggj; EE J.T ) As=0 (2.61)

Using L'Hospital’s rule of time scale (see Theorem 1.119 of [2]), we have

J‘T(ki(s)/r(s))As — hmk1 (t) =0. (262)
= [ As/7(s) =

In view of (2.51), (2.61), and (2.62), we find lim; _, ., x(t) / f; As/r(s) = p.
Recall that x(t) is nondecreasing for t > T. Now, there are three cases to consider:

(i) p = 0 and x(t) is bounded above,
(ii) p = 0 and x(t) is unbounded,
(iii) p > 0 (and hence x(t) is unbounded).

Case (i) implies (2.40) with ¢ = lim;_ o x(¢) > 0, while case (iii) implies (2.42) with
¢ = p>0.Itis also clear that case (ii) implies (2.41). This completes the proof. O

The following lemma is from [1].

Lemma 2.3. Suppose that T satisfies Condition (H). x(t) > 0 is a solution of (1.1). Then, one has

[ 2 gy < D=2 ), (263)
- X(0(s) y-1 y-1



12 Abstract and Applied Analysis
Using Lemma 2.1, we can prove the following corollary.

Corollary 2.4. Under the assumptions of Lemma 2.1, if x(t) is a positive solution of (1.1) on [T, o0),
then the integral equation

1 -1 A 2
r(xt(t) w 7(s) [fo ¥ (xn(s))” dh] [x2(s)]
XY(O'(t)) - D£+P(t) +f0(t) xY(s)xY(o(s)) As (264)

is satisfied for t > T, where P(t) = [[° p(s)As, xp(s) = x(s) + hpu(s)x*(s).

Proof. In the left side of (2.2), using

1 1 1 \*%
T " M) (xY(t)) #(o)

_ 1 [y Ce®) bt (1)
T Xe®) | OO o®)

(2.65)

p(t)
and using (2.2), (2.65), the additivity of the integral, and [2, Theorem 1.75], we have that

r(OxA () rOx ) | 0 fo yan®)  dh[xt 1)

T o) OGO AL
w 1) [fo yCan(s) ™ an] [x (s)]°
=a+ P+ Lm (52 (0(5)) hs

" 1 r-1 A 2
) I(t) r© [ e tan el (26)

t xV(s)x¥(a(s))

% ! 1an] [x2 (s)]
—a+P(t)+ f Ol rate) ] o) As

o) x(s)x¥(a(s))

P [y yon(6) ] [x4 ()]
X7 (Hx7(0(5)

p(t).

From (2.66), we get (2.64). O
The following theorem can be regarded as a time scale version of [4, Theorem 1].

Theorem 2.5. Suppose that T satisfies Condition (H), r(t) > 0 with f;f’ [r(H)] At = oo, and suppose

that limy_, o f;p(s)As exists and is finite. Let P(t) = [ p(s)As. Then, the superlinear dynamic
equation (1.1) is oscillatory if

t
limsup %As = 0. (2.67)

t— o0 T
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Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) on [T, o). Without loss of
generality, assume that x(t) is positive for t € [T, o0). From Corollary 2.4, x(t) satisfies the
integral equation (2.64). Dropping the last integral term in (2.64), we have the inequality

r(t)x(t)
EICOR

Dividing (2.68) by r(t), integrating from T to t, and using Lemma 2.3, we find

S.

X TT)  (F xA(s) ' p(s)
-1 >Lxr(o(s>>A ZLEA

This contradicts (2.67), and so (1.1) is oscillatory.

Consider the second-order superlinear dynamic equation with forced term
[FOx 0] + pOlx(o@) sgnxo®) =h(t),  y>1,
where r(t) >0, [;°(1/7(s))As = oo, and
P(t) = Tliir;o pr(s)As

exists and is finite.

Lemma 2.6. Suppose that
J |h(s)|As < +o0.
T

If x(t) is a positive solution of (2.70) and liminf;_, ,x(t) > 0, then

S < Qor

fm r(s)y fo [xn(s)] " dh[x2 ()]

T xY(s)xY(o(s))

rte (" h(s)
X1 (0 (D) “”L [’”‘S)‘xr(a(s)) hs

. r r(s)y [y [xn(s)] " dh[x2 ()] Al

olt) X7 (s)x7(o(s))

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

are satisfied for sufficiently large t, where x(s) = x(s) + hu(s)x*(s), a is a nonnegative constant.
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Proof. The fact that liminf,_, ,x(t) > 0 implies the existence of t; > T and m > 0 such that
x(t) > mfor t > t;. Then, using (2.72), we find

U xv?c(f()s» ‘ = f

where M is some finite positive constant.

So, lim; _, o, jtT [p(s) — h(s)/x¥(o(s))] As exists and is finite.

Similar to the proof of Lemma 2.1 and Corollary 2.4, it is easy to know that (2.73) and
(2.74) hold. O

h(s)

1 t
—_ < — As < > 2.7
(o)) S, |h(s)|[As <M, t>1t, (2.75)

For subsequent results, we define
Dy(t) = J‘ [p(s) — k|h(s)[]As, t>T, (2.76)
t

where k is a positive constant. It is noted that, if (2.71) and (2.72) hold, then ®y(¢) is finite
for any k. Assume that @y (f) > 0 for sufficiently large t. Define, for a positive integer n and a
positive constant p, the following functions:

(7 [@o(s)]*
@ult) = Lm e N

(2.77)
As.

(7 [@o(s) + pDuls)]”
q)n+1 (t) - J:;-(t) T(S)

We introduce the following condition.

Condition (A). For every p > 0, there exists a positive integer N such that @, (t) is finite for
n=1,2,...,N —1and ON(t) is infinite.

Theorem 2.7. Suppose that (2.71), (2.72), and Condition (A) hold. Then, every solution x(t) of
(2.70) is either oscillatory or satisfies

liminf x(t) = 0. (2.78)

t— oo

Proof. Suppose on the contrary that x(t) is a nonoscillatory solution of (2.70) and
liminf,, ,;[x(t)| > 0. Without loss of generality, let x(¢) be eventually positive. By Lemma 2.6,
x(t) satisfies (2.73) and (2.74). Further, there exist t; > T and m > 0 such that x(t) > m for
t> tl. Let

Dy (t) = JTO [p(s) - lhyfz_sy)'] As. (2.79)
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Then, from (2.74) we find

r(H)x2(t) © r(s)y [y [xn(s)] " dh]x2(s)]?
w0 (500 ((3)) hs (2.80)

> @y (t) >0,

for t > t;. From (2.80), we get

Do (H)x7 (o (t))
r(t)

x2(t) > >0, t>t. (2.81)

Applying (2.81) and noticing that y > 1, we find for t > t;

F r(s)y [y [xn(s)] " dh[x2 ()] N

olt) x7(s)x¥(a(s))

=y [x(s)]" 7 [@o(s)xY (0(s) ]2 .
ZLm rO0 G () (282)

o D, 2
zym’ ,[a(t) [ :((;))] As = ym! " 0u()

If N = 1in Condition (A), then the right side of (2.82) is infinite. This is a contradiction to
(2.73).
Next, it follows from (2.80) and (2.82) that

r(t)x2(t) S

T 0D) 2 Dy (t) +ym Dy (¢). (2.83)

Using a similar technique and relations (2.83), we get

F r(5)Y fo [xn(s)]dh[x%(s)]? N

) X (s)xY(o(s))
- (2.84)
> ym)! I . [(DO(S“Z';; POL s ymrian,  tx .
ot

If N = 2 in Condition (A), then the right side of (2.84) is infinite. This again contradicts (2.73).
A similar argument yields a contradiction for any integer N > 2. This completes the
proof of the theorem. O

Example 2.8. We have

A%x(n) + <% + %) lx(n+1)|"sgnx(n+1)=0, y>1, (2.85)



16 Abstract and Applied Analysis

where b >0, ¢ >1,and a/c > b/2. It is easy to see that

) >I Voo L (2.86)
k=n

k1+c - n t1+c cnt

By [5], we have X2, (-1)"/n° ~ (-1)"/2n°. So,

& (-D)* (-1"
% = [1+0(1)] o (2.87)
Using (2.86) and (2.87), we get that, for large n,
[°e) k n
Pn) = Z<kf+c . b(;) > L (a/o)+ (b/Z)E +oMIED" (2.88)
k=n

By Theorem 2.2, each nonoscillatory solution x(t) of (2.85) satisfies exactly one of the
following three asymptotic properties:

lim x(n) = c#0,
n— oo

limM=

n—ow N 0, nh_r)rgox(n) =+, (2.89)
_x(n) _
T
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