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Making use of the concept of k-uniformly bounded boundary rotation and Ruscheweyh differential
operator, we introduce some new classes of meromorphic functions in the punctured unit disc.
Convolution technique and principle of subordination are used to investigate these classes.
Inclusion results, generalized Bernardi integral operator, and rate of growth of coefficients are
studied. Some interesting consequences are also derived from the main results.

1. Introduction

Let
∑

denote the class of functions f of the form

f(z) =
1
z
+

∞∑

n=0

anz
n, (1.1)

which are analytic in punctured unit disc E∗ = {z : 0 < |z| < 1} = E\{0}. At z = 0, the function
f(z) has a simple pole.

Let, for 0 ≤ β < 1,
∑∗(β) and

∑
c(β) be well-known subclasses of

∑
consisting of

functions meromorphic starlike and meromorphic convex of order β, respectively, see [1].
Let f, g ∈ ∑

, g(z) = 1/z +
∑∞

n=0 bnz
n and f be given by (1.1). Then convolution

(Hadamard product) f ∗ g of f and g is defined by

(
f ∗ g)(z) = 1

z
+

∞∑

n=0

anbnz
n. (1.2)

Robertson [2] showed that f ∗ g also belongs to
∑
.
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Let f ∈ ∑
and define, for α > −1, z ∈ E∗, Dα :

∑ → ∑
as

Dαf(z) =
1

z(1 − z)α+1
∗ f(z). (1.3)

It can easily be seen that, for α = n ∈N0 = {0, 1, 2, . . .},

Dnf(z) =
z−1

n!
dn

dzn

(
zn+1f(z)

)
. (1.4)

We note that

D0f(z) = f(z),

D1f(z) = zf ′(z) + 2f(z),
(1.5)

and so

D1f(z) − 2D0f(z) = zf ′(z) =
2z − 1

z(1 − z)2
∗ f(z). (1.6)

Equation (1.6) can be verified as follows.
Since

f(z) =
1
z
+

∞∑

n=0

anz
n = f(z) ∗

(
1

z(1 − z)
)

, (1.7)

we have

−zf ′(z) =
1
z
−

∞∑

n=0

nanz
n

= f(z) ∗
(

1
z
− z

(1 − z)2
)

, z ∈ E∗,

= f(z) ∗
(

1 − 2z

z(1 − z)2
)

.

(1.8)

From (1.3), we can readily obtain the following identity for f ∈ ∑
and α > −1:

z
(
Dαf(z)

)′ = (α + 1)Dα+1f(z) − (α + 2)Dαf(z). (1.9)

Dα, α > 1 is known as generalized Ruscheweyh derivative for meromorphic functions.
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For k ∈ [0, 1], define the domain Ωk as follows, see [3]:

Ωk =
{

u + iv : u > k
√

(u − 1)2 + v2
}

. (1.10)

For fixed k, Ωk represents the conic region bounded successively, by the imaginary axis (k =
0), the right branch of hyperbola (0 < k < 1), and a parabola(k = 1). Related with Ωk, the
domain Ωk,γ can be defined as below, see [4]:

Ωk,γ =
(
1 − γ)Ωk + γ,

(
0 ≤ γ < 1

)
. (1.11)

The functions pk,γ(z) with pk,γ(0) = 1, p′
k,γ

(0) > 0, univalent in E = {z : |z| < 1}, map E onto
Ωk,γ and are given as in the following:

pk,γ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
(
1 − 2γ

)
z

(1 − z) , (k = 0),

1 +
2
(
1 − γ)

π2

(

log
1 +

√
z

1 − √
z

)2

, (k = 1),

1 +
2
(
1 − γ)

1 − k2 sinh2
[(

2
π
arc cos k

)

arc tanh
√
z

]

, (0 < k < 1).

(1.12)

The functions pk,γ(z) are continuous as regard to k, have real coefficients for k ∈ [0, 1],
and play the part of extremal ones for many problems related to Ωk,γ .

Let P be the class of analytic functions with positive real part, and let P(pk,γ) ⊂ P be
the class of functions p(z) which are analytic in E, p(0) = 1 such that p(z) ≺ pk,γ(z) for z ∈ E,
where “≺” denotes subordination, and pk,γ(z) are given by (1.12).

We define the following.

Definition 1.1. Let p(z) be analytic in E with p(0) = 1. Then p(z) is said to belong to the class
Pm(pk,γ), form ≥ 2, 0 ≤ γ < 1, k ≥ 0, if and only if there exist p1, p2 ∈ P(pk,γ) such that

p(z) =
(
m

4
+
1
2

)

p1(z) −
(
m

4
− 1
2

)

p2(z), z ∈ E. (1.13)

We note that

(i) k = 0, Pm(p0,γ) = Pm(γ) and with m = 2, P2(γ) coincides with P(γ) and p ∈ P(γ)
implies Re p(z) > γ in E;

(ii) when k = 0, γ = 0, we have the class Pm introduced in [5].

Definition 1.2. Let f ∈ ∑
. Then f(z) is said to belong to the class k −MRm(γ) if and only if

(−zf ′/f) ∈ Pm(pk,γ) in E.
For k = 0, m = 2, we obtain the class

∑∗(γ) of meromorphic starlike functions of
order γ .

We can define the class k −MVm(γ) by the following relation:

f ∈ k −MVm
(
γ
)

if -zf ′ ∈ k −MRm

(
γ
)
. (1.14)

When k = 0,m = 2, γ = 0, we obtain
∑

c of meromorphic convex functions.
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Definition 1.3. Let f ∈ ∑
. Then f ∈ k −MRα

m(γ) if and only if Dαf ∈ k −MRm(γ) for z ∈ E∗.
Similarly f ∈ k −MVα

m(γ) if and only if Dαf ∈ k −MVm(γ). We note that the classes
k −MRα

m(γ) and k −MVα
m(γ) are related by relation (1.14).

For k = 0, γ = 0, we have 0 −MVm(0) = MVm, the class of meromorphic functions of
bounded boundary rotation which was studied in [6]. The functions f ∈ MVm have integral
representation of the form

f ′(z) = − 1
z2

exp

{∫2π

0
log

(
1 − ze−it

)
dμ(t)

}

, (1.15)

where μ(t) is a real-valued function of bounded variation on [0, 2π] satisfying the conditions

∫2π

0
dμ(t) = 2,

∫2π

0

∣
∣dμ(t)

∣
∣ ≤ m,

∫2π

0
e−itdμ(t) = 0. (1.16)

With simple computations, it can easily be seen that the third of conditions (1.16)
guarantees that the singularity of f(z) at z = 0 is a simple pole with no logarithm term.

Also it is known that f ∈MVm if and only if f(E) is a domain containing infinity with
boundary rotation at mostmπ , see [6]. The class Vm is wellknown [1] and consists of analytic
functions with boundary rotation at most mπ . Noonan [6] established the relation between
the classes Vm andMVm as follows.

A function f ∈MVm if and only if there exists g ∈ Vm of the form g(z) = z+
∑∞

n=2 bnz
n

with b2 = 0 such that

− 1
z2f ′(z)

= g ′(z). (1.17)

It is also shown [6] that, for f ∈ MVm, m > 4, there exist φ1, φ2 ∈ ∑∗ given by
φ1(z) = 1/z +

∑∞
n=0 anz

n, φ2(z) = 1/z +
∑∞

n=0 bnz
n, such that a0 = ((m − 2)/(m + 2))b0 and

f ′(z) = − 1
z2

[
zφ1(z)

](m+2)/4

[
zφ2(z)

](m−2)/4 . (1.18)

We note that φi ∈
∑∗ and therefore 1/φi ∈ S∗ of analytic functions, i = 1, 2 in (1.18).

This give us

∣
∣zφ1(z)

∣
∣ ≤ 4,

[
zφ2(z)

]−1 ≺ (1 − z)2, (1.19)

by distortion results and subordination for the class S∗.
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We can easily extend the relations (1.17) and (1.18) by noting that f ∈ Vm(γ) implies
that there exists f1 ∈ Vm such that f ′(z) = (f1

′(z))1−γ , z ∈ E, see [7]. For f ∈ MVm(γ),
m > ((2/(1 − γ)) + 2), we can write relation (1.18) as

f ′(z) = − 1
z2

[
zφ1(z)

]((m+2)/4)(1−γ)

[
zφ2(z)

]((m−2)/4)(1−γ) , φ1, φ2 ∈
∗∑
. (1.20)

Throughout this paper, we will assume k ∈ [0, 1],m ≥ 2, γ ∈ [0, 1) and α > 1 unless otherwise
stated.

We also note that all the results proved in this paper hold for k ≥ 0 in general.

2. Preliminary Results

The following lemma is a generalized version of a result proved in [3].

Lemma 2.1 (see [4]). Let 0 ≤ k <∞ and let β, δ be any complex numbers with β /= 0 andRe(βk/(k+
1) + δ) > γ . If h(z) is analytic in E, h(0) = 1 and satisfies

{

h(z) +
zh′(z)

βh(z) + δ

}

≺ pk,γ(z), (2.1)

and qk,γ(z) is an analytic solution of

{

qk,γ(z) +
zq′k,γ(z)

βqk,γ(z) + δ

}

= pk,γ(z), (2.2)

then qk,γ(z) is univalent,

h(z) ≺ qk,γ(z) ≺ pk,γ(z), (2.3)

and qk,γ(z) is the best dominant of (2.1).

Lemma 2.2 (see [8]). Let u = u1 + iu2, v = v1 + iv2 and let ψ(u, v) be complex-valued function
satisfying the following conditions:

(i) ψ(u, v) is continuous in a domain D ⊂ C
2,

(ii) (1, 0) ∈ D and ψ(1, 0) > 0,

(iii) Reψ(iu2, v1) ≤ 0 whenever (iu2, v1) ∈ D and v1 ≤ −(1 + u22)/2.

If h(z) = 1 +
∑

n=1 cnz
n is a function analytic in E such that (h(z), zh′(z)) ∈ D, and

Re[ψ(h(z), zh′(z))] > 0 for z ∈ E, then Re(h(z)) > 0 for z ∈ E.
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Lemma 2.3 (see [9]). Let p and q be analytic in E and Re p(z) ≥ 0, q(0) = 1 and Re q(z) > 0 for
z ∈ E. Further let A/= 0 and B be complex constants such that A + B /= 0. Then

Re
{

p(z) +
zp′(z)

A + Bq(z)

}

> 0 in |z| < ρ(A,B), (2.4)

where

ρ(A,B) =
|A + B|

[
|A|2 + 2 + 4|B| + |B|2 +

√
R
]1/2 ,

R =
[

|A|2 + 2 + 4|B| + |B|2 −
∣
∣
∣A2 − B2

∣
∣
∣
2
]

.

(2.5)

This result is sharp for A real and nonnegative constant.

3. Main Results

Theorem 3.1. One has

k −MRα+1
m

(
γ
) ⊂ k −MRα

m, γ =
1

α + 2
. (3.1)

This result is best possible and sharpness follows from the best dominant property.

Proof. Let f ∈ k −MRα+1
m (γ), and set

f1(z) = z
[
zDαf(z)

]−1/(1+α)
, (3.2)

with

r1 = sup
{
r : f1(z)/= 0, 0 < |z| < r < 1

}
. (3.3)

Then f1(z) is single-valued in 0 < |z| < r1.
Using identity (1.9), it follows that

p(z) =
zf ′

1(z)
f1(z)

= −
(
Dα+1f(z)
Dαf(z)

− 2

)

, (3.4)

is analytic in |z| < r1 and p(0) = 1.
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Now, from (1.9) and (3.4), we obtain

−
(
Dα+2f(z)
Dα+1f(z)

− 2

)

=
α + 1
α + 2

[

p(z) +
zp′(z)

(α + 1)
(
2 − p(z))

]

+
1

α + 2

=
α + 1
α + 2

[

p(z) +
zp′(z)

2(α + 1) − (α + 1)p(z)
+

1
α + 1

]

.

(3.5)

With h(z) = (1 − γ)p(z) + γ , γ = 1/(α + 2), we can write (3.5) as

−
(
Dα+2f(z)
Dα+1f(z)

− 2

)

= h(z) +
zh′(z)

βh(z) + δ
, (3.6)

where β = −(α + 2), δ = 2α + 3.
Since f ∈ k −MRα+1

m (γ), it follows from (3.6) that

(

h(z) +

(
1/β

)
zh′(z)

h(z) + δ/β

)

∈ Pm
(
pk,γ

)
. (3.7)

Define

φδ,β(z) =
1

z(1 − z)1/β+1
{
1 − (β/(β + δ))z

1 − z

}

, (3.8)

and let

h(z) =
(
m

4
+
1
2

)

h1(z) −
(
m

4
− 1
2

)

h2(z),

p(z) =
(
m

4
+
1
2

)

p1(z) −
(
m

4
− 1
2

)

p2(z).

(3.9)

Then using convolution technique, we have

(

h(z) ∗ φδ,β(z)
z

)

= h(z) +
zh′(z)

βh(z) + δ

=
(
m

4
+
1
2

)(

h1(z) +
zh′1(z)

βh1(z) + δ

)

−
(
m

4
− 1
2

)(

h2(z) +
zh′2(z)

βh2(z) + δ

)

.

(3.10)

Thus, from (3.7) and (3.10), we obtain

(

hi(z) +
zh′i(z)

βhi(z) + δ

)

≺ pk,γ(z), i = 1, 2. (3.11)
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It can easily be seen that Re((βk/(k + 1)) +δ) > γ , so we apply Lemma 2.1 to have from (3.11)

hi(z) ≺ qk,γ(z) ≺ pk,γ(z), i = 1, 2, (3.12)

where qk,γ(z) is the best dominant and is given as

qk,γ(z) =

⎧
⎪⎨

⎪⎩

⎡

⎣β

∫1

0

(

tβ+δ−1 exp
∫ tz

0

pk,γ(u) − 1
u

du

)β

dt

⎤

⎦

−1

− δ

β

⎫
⎪⎬

⎪⎭
. (3.13)

Since hi(z) = pi(z) ∗ pγ(z), pγ(z) = (1 + (1 − 2γ)z)/(1 − z), i = 1, 2, we have

pi(z) ∗ pγ(z) ≺ pk(z) ∗ pγ(z), (3.14)

and from this it follows that pi(z) ≺ pk(z) for i = 1, 2.
Now from (3.4)we have p ∈ Pm(pk,0) in E and the proof is complete.

As a special case, we have the following.

Corollary 3.2. Let k = 0 in Theorem 3.1. ThenMRα+1
m (γ) ⊂MRα

m(γ1), where γ = 1/(α + 2) and

γ1 =
6

{

(2α + 9) +
√

(2α + 9)2 − 24
} . (3.15)

Proof. From (3.6), we have

−
(
Dα+2f(z)
Dα+1f(z)

− 2

)

= h(z) +
zh′(z)

βh(z) + δ
, β = −(α + 2), δ = (2α + 3). (3.16)

Proceeding as in Theorem 3.1, it follows that

(

hi(z) +
zh′i(z)

βhi(z) + δ

)

∈ P(γ), i = 1, 2, z ∈ E. (3.17)

Let hi(z) = (1 − γ1)Hi(z) + γ1, i = 1, 2.
Then

{
(
γ1 − γ

)
+
(
1 − γ1

)
Hi(z) +

(
1 − γ1

)
zH ′

i(z)

β
(
1 − γ1

)
Hi(z) + βγ1 + δ

}

∈ P. (3.18)

We construct a functional ψ(u, v) by taking u = Hi(z), v = zH ′
i(z). Then

ψ(u, v) =
(
γ1 − γ

)
+
(
1 − γ1

)
u +

(
1 − γ1

)
v

β
(
1 − γ1

)
u + βγ1 + δ

. (3.19)
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The first two conditions of Lemma 2.2 are easily verified. For condition (iii), we proceed as
follows:

Reψ(iu2, v1) =
(
γ1 − γ

)
+

(
1 − γ1

)(
βγ1 + δ

)
v1

(
βγ1 + δ

)2 + β2
(
1 − γ1

)2
u22

. (3.20)

By putting v1 ≤ −(1 + u22)/2, we have

Reψ(iu2, v1) ≤
A1 + B1u

2
2

2C
iff A1 ≤ 0, B1 ≤ 0, (3.21)

where

A1 = 2
(
γ1 − γ

)(
βγ1 + δ

)2 − (1 − γ1
)(
βγ1 + δ

)
,

B1 = 2
(
γ1 − γ

)[
β2
(
1 − γ1

)2
]
− (1 − γ1

)(
βγ1 + δ

)
,

C =
(
βγ1 + δ

)2 + β2
(
1 − γ1

)2
u22 > 0.

(3.22)

From A1 ≤ 0, we obtain γ1 as given by (3.15) and B1 ≤ 0 ensures 0 ≤ γ1 < 1.
Applying Lemma 2.2, we now have Hi ∈ P , i = 1, 2 and therefore hi ∈ P(γ1) in E,

consequently h ∈ Pm(γ1) in E and the proof is complete.

We note that, for α = 0, we have

MRm

(
1
2

)

⊂MRm

(
6

9 +
√
57

)

. (3.23)

Also, for α = 1, γ = 1/3 and γ1 ≈ 6/21.
We will now investigate the rate of growth of coefficients for f ∈ k −MVα

m(γ) and the
corresponding result for the class k −MRα

m(γ) will follow from the relation (1.14).

Theorem 3.3. Let f ∈ k − MVα
m(γ) and be given by (1.1). Then, for m > (2/(1 − σ) + 2), σ =

(k + γ)/(1 + k), n ≥ 3, one has

an = O(1)nβ1−(α+2), β1 = (1 − σ)
(m

2
− 1

)
, (3.24)

and O(1) depends only onm and σ.
The exponent {β1− (α+2)} in (3.24) is best possible for the classMVα

m(σ) as can be seen from
the function f0 ∈MVα

m(σ) given by

Dαf0(z) = − 1
z2

(
1 + z2 − 2z((m − 2)/(m + 2))

)((m+2)/4)(1−σ)

(1 − z)β1
. (3.25)
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Proof. Since k −MVα
m(γ) ⊂ MVα

m(σ), σ = (k + γ)/(1 + k) and f ∈ k −MVα
m(γ) implies Dαf ∈

MVm(σ), we use (1.20) to write

F ′(z) =
(
Dαf(z)

)′ = − 1
z2

[
zφ1(z)

]((m+2)/4)(1−σ)

[
zφ2(z)

]((m−2)/4)(1−σ) , m >

(
2

1 − σ + 2
)

, (3.26)

and φ1, φ2 ∈
∑∗.

Now, with F(z) = (1/z) +
∑∞

n=0Anz
n and z = reiθ, 0 < r < 1, we have

nAn =
1

2πrn+1

∫2π

0
z2F ′(z)e−i(n+1)θdθ. (3.27)

Pommerenke [10] has shown that

∫2π

0

1

|1 − z|λ
dθ ∼ c(λ) 1

(1 − r)λ−1
, (r −→ 1) for λ > 1. (3.28)

Thus we use (1.19), (3.26), and (3.28) to have from (3.27)

|nAn| ≤ 1
2πrn+1

∫2π

0

∣
∣
∣z2F ′(z)

∣
∣
∣dθ ≤ c(σ,m)

(
1 − γ)(1−σ)((m/2)−1)−1

. (3.29)

We take r = 1 − (1/n), An = (Γ(n + α + 2)/(Γ(α + 1)(n + 1)!))an, Γ denotes gamma function,
and have

an = O(1)nβ1−(α+2), (3.30)

where β1 is as given in (3.24) and O(1) is a constant depending only onm and σ.
This completes the proof.

Next we will show that the class k −MRα
m(γ) is preserved under an integral operator.

For Re c > 0, the generalized Bernardi operator for the class
∑

is defined in [11] as
below.

Let f ∈ Σ and be given by (1.1). Then the integral transform Fc is defined as

F(z) =
c

zc+1

∫z

0
tcf(t)dt =

[
1
z
+

∞∑

n=0

c

c + n + 1
anz

n

]

∗ f(z). (3.31)

Also

Dαf(z) =
1
z
+

∞∑

n=0

Γ(n + α + 2)
Γ(α + 1)(n + 1)!

anz
n. (3.32)
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It easily follows from (3.31) that

z(DαF(z))′ = cDαf(z) − (1 + c)DαF(z), (3.33)

and as in (1.9),

z(DαF(z))′ = (α + 1)Dα+1F(z) − (α + 2)DαF(z). (3.34)

From (3.33) and (3.34), we have

cDαf(z) = (c − α − 1)DαF(z) + (α + 1)Dα+1F(z). (3.35)

We now prove the following.

Theorem 3.4. Let f ∈ k − MRα
m(γ). Then F(z), defined by (3.31), also belong to the same class

in E∗.

Proof. We put

F1(z) = z[zDαF(z)]−1/(α+1), r1 = sup{r : F(z)/= 0, 0 < |z| < 1}. (3.36)

Then F1(z) is single valued and analytic in |z| < r1 andH(z) defined by

H(z) =
{(

m

4
+
1
2

)

H1(z) −
(
m

4
− 1
2

)

H2(z)
}

=
zF ′

1(z)
F1(z)

= −
(
Dα+1F(z)
DαF(z)

− 2

)

, (3.37)

is analytic in |z| < r1,H(0) = 1.
Form (3.33), (3.34), and (3.37), we obtain

−
(
Dα+1f(z)
Dαf(z)

− 2

)

=
{

H(z) +
zH ′(z)

(c + α + 1) − (α + 1)H(z)

}

, |z| < r1. (3.38)

Since f ∈ k −MRα
m(γ), it follows that

{

H(z) +
zH ′(z)

βH(z) + δ

}

∈ Pm
(
pk,γ

)
, β = −(α + 1), δ = (c + α + 1), (3.39)

and with the convolution technique used before, we have, for i = 1, 2

{

Hi(z) +
zH ′

i(z)
βHi(z) + δ

}

≺ pk,γ(z). (3.40)

Since Re[βk/(k + 1) + δ] > γ , we apply Lemma 2.1 to have Hi(z) ≺ qk,γ(z) ≺ pk,γ(z), where
qk,γ(z) is the best dominant. The required result now follows from (3.37).
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Corollary 3.5. Let k = 0, γ = 0. Then f ∈ MRα
m and F, defined by (3.31), belongs to MRα

m(γ2),
where γ2 is given as

γ2 =
1

2(c + α + 1)
. (3.41)

The proof follows on the similar lines of Corollary 3.2.

Remark 3.6. We note that P(pk,γ) ⊂ P((k + γ)/(1 + k)), (0 ≤ γ < 1), and therefore Pm(pk,γ) ⊂
Pm(σ), σ = (k + γ)/(1 + k), (0 ≤ σ < 1).

We prove a partial converse of Theorem 3.4 as following.

Theorem 3.7. Let F(z) be defined by (3.31) and let, for Re c > 0, F ∈MRα
m(σ), σ = (k+γ)/(1+k).

Then f ∈MRα
m(σ) for |z| < ρ, where

ρ = ρ(A,B) =
|A + B|

[
|A|2 + 2 + 4|B| + |B|2 +

√
R
]1/2 ,

A = c + (1 + α)(1 − σ),
B = −(1 + α)(1 − σ),

R =
[(

|A|2 + 2 + 4|B| + |B|2
)2 −

∣
∣
∣A2 − B2

∣
∣
∣
2
]

.

(3.42)

Proof. We write

p(z) =
1

1 − σ

[

−
(
Dα+1F(z)
DαF(z)

− 2

)

− σ
]

=
(
m

4
+
1
2

)

p1(z) −
(
m

4
− 1
2

)

p2(z).

(3.43)

Since F ∈MRα
m(σ), p ∈ Pm in E with p(0) = 1, and pi ∈ P , i = 1, 2.

Proceeding on the similar lines as before, we obtain form (3.42) and (3.43)

1
1 − σ

[

−
(
Dα+1F(z)
DαF(z)

− 2

)

− σ
]

= p(z) +
zp′(z)

{c + (α + 1)(1 − σ)} = (1 + α)(1 − σ)p(z) (3.44)

and with convolution technique as previously used, we get from (3.44)

1
1 − σ

[

−
(
Dα+1F(z)
DαF(z)

− 2

)

−σ
]

=
(
m

4
+
1
2

)[

p1(z)+
zp′1(z)

A + Bp1(z)

]

−
(
m

4
− 1
2

)[

p2(z)+
zp′2(z)

A + Bp2(z)

]

,

(3.45)

where p1, p2 ∈ P , A = c + (1 + α)(1 − σ), B = −(1 + α)(1 − σ), (A + B)/= 0.
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Then, by using, Lemma 2.3, we have

Re

{

pi(z) +
zp′i(z)

A + Bpi(z)

}

> 0 in |z| < ρ(A,B), (3.46)

where ρ(A,B) is given by (3.42).
Now, from (3.44) and (3.46), we have the required result that f ∈ MRα

m(σ) in |z| <
ρ(A,B).

From Lemma 2.3 it follows that this result is sharp for c > 0.
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