
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 797516, 18 pages
doi:10.1155/2012/797516

Research Article
Regularity for Variational Evolution
Integrodifferential Inequalities

Yong Han Kang1 and Jin-Mun Jeong2

1 Institute of Liberal Education, Catholic University of Daegu, Daegue 712-702, Republic of Korea
2 Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea

Correspondence should be addressed to Jin-Mun Jeong, jmjeong@pknu.ac.kr

Received 8 May 2012; Accepted 28 June 2012

Academic Editor: Sergey Piskarev

Copyright q 2012 Y. H. Kang and J.-M. Jeong. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We deal with the regularity for solutions of nonlinear functional integrodifferential equations gov-
erned by the variational inequality in a Hilbert space. Moreover, by using the simplest definition
of interpolation spaces and the known regularity result, we also prove that the solution mapping
from the set of initial and forcing data to the state space of solutions is continuous, which very
often arises in application. Finally, an example is also given to illustrate our main result.

1. Introduction

In this paper, we deal with the regularity for solutions of nonlinear functional integrodiffer-
ential equations governed by the variational inequality in a Hilbert space H:

(
x′(t) +Ax(t), x(t) − z

)
+ φ(x(t)) − φ(z)

≤
(∫ t

0
k(t − s)g(s, x(s))ds + h(t), x(t) − z

)

, a.e., 0 < t ≤ T, z ∈ H,

x(0) = x0,

(VIP)

where A is a unbounded linear operator associated with a sesquilinear form satisfying
Gårding’s inequality and φ : H → (−∞,+∞] is a lower semicontinuous, proper convex
function. The nonlinear mapping g is a Lipschitz continuous from R×V intoH in the second
coordinate, where V is a dense subspace of H.
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The background of these problems has emerged vigorously in such applied fields as
automatic control theory, network theory, and the dynamic systems.

By using the subdifferential operator ∂φ, the control system (VIP) is represented by
the following nonlinear functional differential equation on H:

x′(t) +Ax(t) + ∂φ(x(t)) �
∫ t

0
k(t − s)g(s, x(s))ds + h(t), 0 < t ≤ T,

x(0) = x0.

(NDE)

In Section 4.3.2 of Barbu [1] (also see Section 4.3.1 in [2]) is widely developed the
existence of solutions for the case g ≡ 0. Recently, the regular problem for solutions of the
nonlinear functional differential equations with a nonlinear hemicontinuous and coercive
operator A was studied in [3]. Some results for solutions of a class of semilinear equations
with the nonlinear terms have been dealt with in [3–7]. As for nontrivial physical examples
from the field of visco-elastic materials modeled by integrodifferential equations on Banach
spaces, we refer to [8].

In this paper, we will define φε : H → H(ε > 0) such that the function φε is Fréchet
differentiable onH and its Frećhet differential ∂φε is a single valued and Lipschitz continuous
onH with Lipschitz constant ε−1, where ∂φε = ε−1(I−(I+ε∂φ)−1) as is seen in Corollary 2.2 in
[1, Chapter II]. It is also well-known results that limε→ 0φε = φ and limε→ 0∂φε(x) = (∂φ)0(x)
for every x ∈ D(∂φ), where (∂φ)0 is the minimal segment of ∂φ. Now, we introduce the
smoothing system corresponding to (NDE) as follows:

x′(t) +Ax(t) + ∂φε(x(t)) =
∫ t

0
k(t − s)g(s, x(s))ds + h(t), 0 < t ≤ T,

x(0) = x0.

(SDE 1)

First we recall some regularity results and a variation of constant formula for solutions
of the semilinear functional differential equation (in the case g ≡ 0 in (SDE 1)):

x′(t) +Ax(t) + ∂φε(x(t)) = h(t) (1.1)

in a Hilbert space H.
Next, based on the regularity results for (1.1), we intend to establish the regularity

for solutions of (NDE). Here, our approach is that results of a class of semilinear equations
as (1.1) on L2-regularity remain valid under the above formulation perturbed of nonlinear
terms. Here, we note that sine A is not bounded operator H into itself, the Lipschitz
continuity of nonlinear terms must be defined on some adjusted spaces (see Section 3).
Moreover, using the simplest definition of interpolation spaces and known regularity, we
have that the solution mapping from the set of initial and forcing data to the state space of
solutions is continuous, which very often arises in application. Finally, an example is also
given to illustrate our main result.
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2. Preliminaries

Let V andH be complex Hilbert spaces forming Gelfand triple V ⊂ H ⊂ V ∗ with pivot space
H. The norms of V , H and V ∗ are denoted by || · ||, | · |, and || · ||∗, respectively. The inner
product inH is defined by (·, ·). The embeddings

V ↪→ H ↪→ V ∗ (2.1)

are continuous. Then the following inequality easily follows:

‖u‖∗ ≤ |u| ≤ ‖u‖, ∀u ∈ V. (2.2)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying Gårding’s
inequality

Re a(u, u) ≥ ω1‖u‖2 −ω2|u|2, ω1 > 0, ω2 ≥ 0. (2.3)

Let A be the operator associated with the sesquilinear form a(·, ·):

(Au, v) = a(u, v), u, v ∈ V. (2.4)

Then A is a bounded linear operator from V to V ∗ and −A generates an analytic semigroup
in both of H and V ∗ as is seen in [9, Theorem 6.1]. The realization for the operator A in H
which is the restriction of A to

D(A) = {u ∈ V ; Au ∈ H} (2.5)

is also denoted by A. From the following inequalities:

ω1‖u‖2 ≤ Re a(u, u) +ω2|u|2 ≤ C|Au| |u| +ω2|u|2 ≤ max{C,ω2}‖u‖D(A)|u|, (2.6)

where

‖u‖D(A) =
(
|Au|2 + |u|2

)1/2
(2.7)

is the graph norm of D(A), it follows that there exists a constant C1 > 0 such that

‖u‖ ≤ C1‖u‖1/2D(A)|u|1/2. (2.8)

Thus, we have the following sequence:

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.9)

where each space is dense in the next one and continuous injection.
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Lemma 2.1. With the notations (2.8), (2.9), one has

(D(A),H)1/2,2 = V, (2.10)

where (D(A),H)1/2,2 denotes the real interpolation space between D(A) and H (Section 2.4 of [10]
or [11]).

The following abstract linear parabolic equation:

x′(t) +Ax(t) = h(t), 0 < t ≤ T,

x(0) = x0,
(LE)

has a unique solution x ∈ L2(0, T ;D(A)) ∩ W1,2(0, T,H) for each T > 0 if x0 ∈ V ≡
(D(A),H)1/2,2 and h ∈ L2(0, T ;H). Moreover, one has

‖x‖L2(0,T ;D(A))∩W1,2(0,T,H) ≤ C2

(
‖x0‖(D(A),H)1/2,2

+ ‖h‖L2(0,T ;H)

)
, (2.11)

where C2 depends on T and M (see [12, Theorem 2.3], [13]).
In order to substitute H for the intermediate space V considering A as an operator in

B(V, V ∗) instead of B(D(A),H) one proves the following result.

Lemma 2.2. Let T > 0. Then

H =

{

x ∈ V ∗ :
∫T

0

∥∥∥AetAx
∥∥∥
2

∗
dt < ∞

}

. (2.12)

Hence, it implies that H = (V, V ∗)1/2,2 in the sense of intermediate spaces generated by an analytic
semigroup.

Proof. Put u(t) = etAx for x ∈ H. From the result of Theorem 2.3 in [12] it follows

u ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗), (2.13)

hence

∫T

0

∥∥∥AetAx
∥∥∥
2

∗
dt =
∫T

0

∥∥u′(t)
∥∥2
∗dt < ∞. (2.14)

Conversely, suppose that x ∈ V ∗ and
∫T
0 ||AetAx||2∗dt < ∞. Put u(t) = etAx. Then since

A is an isomorphism from V to V ∗ there exists a constant c > 0 such that

∫T

0
‖u(t)‖2dt ≤ c

∫T

0
‖Au(t)‖2∗dt = c

∫T

0

∥∥∥AetAx
∥∥∥
2

∗
dt. (2.15)
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Thus, we have u ∈ L2(0, T ;V ) ∩ W1,2(0, T ;V ∗). By using the definition of real interpolation
spaces by trace method, it is known that the embedding L2(0, T ;V ) ∩ W1,2(0, T ;V ∗) ↪→
C([0, T];H) is continuous. Hence, it follows x = u(0) ∈ H.

In view of Lemma 2.2 we can apply (2.11) to (LE) in the space V ∗ as follows.

Proposition 2.3. Let x0 ∈ H and h ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution x of
(LE) belonging to

L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ↪→ C([0, T];H) (2.16)

and satisfying

‖x‖L2(0,T ;V )∩W1,2(0,T ;V ∗) ≤ C2

(
|x0| + ‖h‖L2(0,T ;V ∗)

)
, (2.17)

where C2 is a constant depending on T .

Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function. Then the
subdifferential operator ∂φ of φ is defined by

∂φ(x) =
{
x∗ ∈ V ∗;φ(x) ≤ φ

(
y
)
+
(
x∗, x − y

)
, y ∈ V

}
. (2.18)

First, let us concern with the following perturbation of subdifferential operator:

x′(t) +Ax(t) + ∂φ(x(t)) � h(t), 0 < t ≤ T,

x(0) = x0.
(VE)

Using the regularity for the variational inequality of parabolic type in case where φ :
V → (−∞,+∞] is a lower semicontinuous, proper convex function as is seen in [1, Section
4.3] one has the following result on (VE).

Proposition 2.4. (1) Let h ∈ L2(0, T ;V ∗) and x0 ∈ V satisfying that φ(x0) < ∞. Then (VE) has a
unique solution:

x ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ↪→ C([0, T];H), (2.19)

which satisfies

x′(t) =
(
h(t) −Ax(t) − ∂φ(x(t))

)0
,

‖x‖L2∩W1,2∩C ≤ C3

(
1 + ‖x0‖ + ‖h‖L2(0,T ;V ∗)

)
,

(2.20)

where C3 is a constant and L2 ∩W1,2 ∩ C = L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ∩ C([0, T];H).
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(2) Let A be symmetric and let us assume that there exist g ∈ H such that for every ε > 0 and
any y ∈ D(φ)

Jε
(
y + εg

) ∈ D
(
φ
)
, φ

(
Jε
(
y + εg

)) ≤ φ
(
y
)
. (2.21)

Then for h ∈ L2(0, T ;H) and x0 ∈ D(φ) ∩ V , (VE) has a unique solution:

x ∈ L2(0, T ;D(A)) ∩W1,2(0, T ;H) ↪→ C([0, T];H), (2.22)

which satisfies

‖x‖L2∩W1,2∩C ≤ C3

(
1 + ‖x0‖ + ‖h‖L2(0,T ;H)

)
. (2.23)

Remark 2.5. When the principal operator A is bounded from H to itself, we assume that φ :
H → (−∞,+∞] is a lower semicontinuous, proper convex function and g : [0, T] ×H → H
be a nonlinear mapping satisfying the following:

∣∣g(t, x1) − g(t, x2)
∣∣ ≤ L|x1 − x2|, ∀x1, x2 ∈ H. (2.24)

Then it is easily seen that the result of (2) of Proposition 2.4. is immediately obtained.

Remark 2.6. Here, we remark that if V is compactly embedded in H and x ∈ L2(0, T ;V )) (or
the semigroup operator S(t) is compact), the following embedding:

L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ↪→ L2(0, T ;H) (2.25)

is compact in view of Theorem 2 of Aubin [14]. Hence, the mapping (x0, f) �→ x is compact
from V × L2(0, T ;V ∗) to L2(0, T ;H), which is also applicable to optimal control problem.

3. Regularity for Solutions

We start with the following assumption.

Assumption (F). Let g : [0, T] × V → H be a nonlinear mapping satisfying the following:

∣∣g(t, x) − g
(
t, y
)∣∣ ≤ L

∥∥x − y
∥∥, g(t, 0) = 0 ∀x, y ∈ V (3.1)

for a positive constant L.
For x ∈ L2(0, T ;V ) we set

f(t, x) =
∫ t

0
k(t − s)g(s, x(s))ds, (3.2)

where k belongs to L2(0, T).
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Lemma 3.1. Let x ∈ L2(0, T ;V ), T > 0. Then f(·, x) ∈ L2(0, T ;H). And

∥
∥f(·, x)∥∥L2(0,T ;H) ≤ L‖k‖L2

√
T‖x‖L2(0,T ;V ). (3.3)

Moreover, if x1, x2 ∈ L2(0, T ;H), then

∥
∥f(·, x1) − f(·, x2)

∥
∥
L2(0,T ;H) ≤ L‖k‖

√
T‖x1 − x2‖L2(0,T ;V ). (3.4)

The proof is immediately obtained from Assumption (F).
For every ε > 0, define

φε(x) = inf

{
‖x − Jεx‖2∗

2ε
+ φ(Jεx) : x ∈ H

}

, (3.5)

where Jε = (I + ε∂φ)−1. Then the function φε is Frećhet differentiable on H and its Frećhet
differential ∂φε is Lipschitz continuous onH with Lipschitz constant ε−1 where ∂φε = ε−1(I −
(I + ε∂φ)−1) as is seen in Corollary 2.2 in [1, Chapter II]. It is also well-known results that
limε→ 0 φε = φ and limε→ 0 ∂φε(x) = (∂φ)0(x) for every x ∈ D(∂φ), where (∂φ)0 is the minimal
segment of ∂φ.

Now, one introduces the smoothing system corresponding to (NDE) as follows:

x′(t) +Ax(t) + ∂φε(x(t)) = f(t, x) + h(t), 0 < t ≤ T,

x(0) = x0.
(SDE 2)

Since −A generates a semigroup S(t) on H, the mild solution of (SDE 2) can be represented
by

xε(t) = S(t)x0 +
∫ t

0
S(t − s)

{
f(s, xε) + h(s) − ∂φε(xε(s))

}
ds. (3.6)

One will use a fixed point theorem and a step and step method to get the global
solution for (NDE). Then one needs the following hypothesis.

Assumption (A). (∂φ)0 is uniformly bounded, that is,

∣∣∣
(
∂φ
)0
x
∣∣∣ ≤ M1, x ∈ V. (3.7)

Lemma 3.2. For given ε, λ > 0, let xε and xλ be the solutions of (SDE 2) corresponding to ε and λ,
respectively. Then there exists a constant C independent of ε and λ such that

‖xε − xλ‖C([0,T];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T. (3.8)
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Proof. From (SDE 2)we have

x′
ε(t) − x′

λ(t) +A(xε(t) − xλ(t)) + ∂φε(xε(t)) − ∂φλ(xλ(t)) = f(t, xε) − f(t, xλ), (3.9)

and hence, from (2.3) and multiplying by xε(t) − xλ(t), it follows that

1
2
d

dt
|xε(t) − xλ(t)|2 +ω1‖xε(t) − xλ(t)‖2 +

(
∂φε(xε(t)) − ∂φλ(xλ(t)), xε(t) − xλ(t)

)

≤ (f(t, xε) − f(t, xλ), xε(t) − xλ(t)
)
+ω2|xε(t) − xλ(t)|2.

(3.10)

Here, we note

∣∣f(t, xε) − f(t, xλ)
∣∣ ≤ L‖k‖L2‖xε(·) − xλ(·)‖L2(0,t;V )

∫T

0
‖xε(·) − xλ(·)‖2L2(0,t;V )dt = T

∫T

0
‖xε(t) − xλ(t)‖2dt.

(3.11)

Thus, we have

(
f(t, xε) − f(t, xλ), xε(t) − xλ(t)

)

≤ ∣∣f(t, xε) − f(t, xλ)
∣∣ · |xε(t) − xλ(t)|

≤ ω1

2T(L‖k‖L2)2
∣∣f(t, xε) − f(t, xλ)

∣∣2 +
T(L‖k‖L2)2

2ω1
|xε(t) − xλ(t)|2

≤ ω1

2T
‖xε(·) − xλ(·)‖2L2(0,t;H) +

T(L‖k‖L2)2

2ω1
|xε(t) − xλ(t)|2.

(3.12)

Therefore, by using the monotonicity of ∂φ and integrating (3.10) over [0, T] it holds

1
2
|xε(t) − xλ(t)|2 + ω1

2

∫T

0
‖xε(t) − xλ(t)‖2dt

≤
∫T

0

(
∂φε(xε(t)) − ∂φλ(xλ(t)), λ∂φλ(xλ(t)) − ε∂φε(xε(t))

)
dt

+

{
T(L||k||L2)2

2ω1
+ω2

}∫T

0
|xε(t) − xλ(t)|2dt.

(3.13)

Here, we used that

∂φε(xε(t)) = ε−1
(
xε(t) −

(
I + ε∂φ

)−1
xε(t)
)
. (3.14)
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Since |∂φε(x)| ≤ |(∂φ)0x| for every x ∈ D(∂φ) it follows from Assumption (A) and using
Gronwall’s inequality that

‖xε − xλ‖C([0,T];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T. (3.15)

Let x ∈ L1(0, T ;V ). Then it is well known that

lim
h→ 0

h−1
∫h

0
‖x(t + s) − x(t)‖ds = 0 (3.16)

for almost all point of t ∈ (0, T).

Definition 3.3. The point t which permits (3.16) to hold is called the Lebesgue point of x.

We establish the following results on the solvability of (NDE).

Theorem 3.4. Let Assumptions (F) and (A) be satisfied. Then for every (x0, h) ∈ V × L2(0, T ;V ∗),
(NDE) has a unique solution:

x ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ∩ C([0, T];H), (3.17)

and there exists a constant C4 depending on T such that

‖x‖L2∩W1,2∩C ≤ C4

(
1 + ‖x0‖ + ‖h‖L2(0,T ;V ∗)

)
. (3.18)

Proof. Let us fix T0 > 0 such that

C1C2

(
ε−1 +
√
T0 L‖k‖L2

)( T0√
2

)1/2

< 1. (3.19)

Let y ∈ L2(0, T0;V ). Then f(·, y(·)) ∈ L2(0, T0;H) from Assumption (F). Set

(Fx)(t) = f(t, x(t)) − ∂φε(x(t)), 0 ≤ t ≤ T0. (3.20)

Then from Lemma 3.1 it follows that

|(Fx1)(t) − (Fx2)(t)| ≤
(
ε−1 +
√
T0L‖k‖L2

)
‖x1(t) − x2(t)‖. (3.21)

For i = 1, 2, we consider the following equation:

x′
i(t) +Axi(t) =

(
Fyi

)
(t) + h(t), 0 < t ≤ T0,

xi(0) = x0.
(3.22)
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Then

d

dt
(x1(t) − x2(t)) +A(x1(t) − x2(t)) =

(
Fy1
)
(t) − (Fy2

)
(t), t > 0,

x1(0) − x2(0) = 0.
(3.23)

From (2.11) it follows that

‖x1 − x2‖L2(0,T0;D(A0))∩W1,2(0,T0;H) ≤ C2
∥
∥Fy1 − Fy2

∥
∥
L2(0,T0;H). (3.24)

Using the Hölder inequality we also obtain that

‖x1 − x2‖L2(0,T0;H) =

{∫T0

0
|x1(t) − x2(t)|2dt

}1/2

=

⎧
⎨

⎩

∫T0

0

∣∣∣∣∣

∫ t

0
(ẋ1(τ) − ẋ2(τ))dτ

∣∣∣∣∣

2

dt

⎫
⎬

⎭

1/2

≤
{∫T0

0
t

∫ t

0
|ẋ1(τ) − ẋ2(τ)|2dτdt

}1/2

≤
√
T0

2
‖x1 − x2‖W1,2(0,T0;H).

(3.25)

Therefore, in terms of (2.8) and (3.25)we have

‖x1 − x2‖L2(0,T0;V ) ≤ C1‖x1 − x2‖1/2L2(0,T0;D(A0))
‖x1 − x2‖1/2L2(0,T0;H)

≤ C1‖x1 − x2‖1/2L2(0,T0;D(A0))

(
T0√
2

)1/2

‖x1 − x2‖1/2W1,2(0,T0;H)

≤ C1

(
T0√
2

)1/2

‖x1 − x2‖L2(0,T0;D(A0))∩W1,2(0,T0;H)

≤ C1C2

(
T0√
2

)1/2∥∥Fy1 − Fy2
∥∥
L2(0,T0:H)

≤ C1C2

(
ε−1 +
√
T0L‖k‖L2

)( T0√
2

)1/2∥∥y1 − y2
∥∥
L2(0,T0;V ).

(3.26)

So by virtue of the condition (3.19) the contraction principle gives that (SDE 2) has a unique
solution in [0, T0]. Thus, letting λ → 0 in Lemma 3.1 we can see that there exists a constant C
independent of ε such that

‖xε − x‖C([0,T0];H)∩L2(0,T0;V ) ≤ Cε, 0 < T0, (3.27)
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and hence, limε→ 0xε(t) = x(t) exists inH. From Assumption (F) and (3.27) it follows that

f(·, xε) −→ f(·, x), strongly in L2(0, T0;H),

Axn −→ Ax, strongly in L2(0, T0;V ∗).
(3.28)

Since ∂φε(xε) is uniformly bounded by Assumption (A), from (3.27), (3.28) we have that

d

dt
xε −→ d

dt
x, weakly in L2(0, T0;V ∗), (3.29)

therefore

∂φε(xε) −→ f(·, x) + h − x′ −Ax, weakly in L2(0, T0;V ∗). (3.30)

Since (I + ε∂φ)−1xε → x strongly and ∂φ is demiclosed, we have that

f(·, x) + h − x′ −Ax ∈ ∂φ(x) in L2(0, T0;V ∗). (3.31)

Thus we have proved that x(t) satisfies a.e. on (0, T0) the equation (NDE).
Let y be the solution of

y′(t) +Ay(t) + ∂φ
(
y(t)
) � 0, 0 < t ≤ T0,

y(0) = x0,
(3.32)

then, it implies

d

dt

(
x(t) − y(t)

)
+A
(
x(t) − y(t)

)
+ ∂φ(x(t)) − ∂φ

(
y(t)
) � f(t, x) + h(t). (3.33)

Noting that || · || ≤ | · | ≤ || · ||, by multiplying by x(t) − y(t) and using the monotonicity of ∂φ
and (2.3), we obtain

1
2
d

dt

∣∣x(t) − y(t)
∣∣2 +ω1

∥∥x(t) − y(t)
∥∥2

≤ ω2
∣∣x(t) − y(t)

∣∣2 +
∣∣f(t, x) + h(t)

∣∣ · ∥∥x(t) − y(t)
∥∥.

(3.34)

Since

∣∣f(t, x) + h(t)
∣∣ · ∥∥x(t) − y(t)

∥∥ ≤ 1
2ω1

∣∣f(t, x) + h(t))
∣∣2 +

ω1

2
∥∥x(t) − y(t)

∥∥2 (3.35)
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for every c > 0 and by integrating on (3.34) over (0, t) we have

∣
∣x(t) − y(t)

∣
∣2 +ω1

∫ t

0

∥
∥x(s) − y(s)

∥
∥2ds

≤ 1
ω1

∥
∥f(·, x) + h

∥
∥
L2(0,T0;V ∗) + 2ω2

∫ t

0

∣
∣x(s) − y(s)

∣
∣2ds

(3.36)

and by Gronwall’s inequality:

∣
∣x(t) − y(t)

∣
∣2 +ω1

∫ t

0

∥
∥x(s) − y(s)

∥
∥2ds ≤ ω−1

1 e2ω2T0
∥
∥f(·, x) + h

∥
∥2
L2(0,T0;V ∗). (3.37)

Let us fix T0 > T1 > 0 so that T1 is a Lebesgue point of x, φ(x(T1)) < ∞, and

ω−1
1 e2ω2T1

√
T1L‖k‖L2 < ω1. (3.38)

Put

N =
√
ω−2

1 eω2T1 , (3.39)

then from Assumption (F) it follows

∥∥x − y
∥∥
L2(0,T1;V ) ≤ N

∥∥f(·, x) + h
∥∥
L2(0,T1;V ∗)

≤ N
√
T1 L‖k‖L2‖x‖L2(0,T1;V ) +N‖h‖L2(0,T1:V ∗)

(3.40)

and hence, from (2.17) in Proposition 2.3, we have that

‖x‖L2(0,T1;V )

≤ 1

1 −N
√
T1L‖k‖L2

(∥∥y
∥∥
L2(0,T1;V ) +N‖h‖L2(0,T1:V ∗)

)

≤ 1

1 −N
√
T1L‖k‖L2

{
C2(1 + ‖x0‖) +N‖h‖L2(0,T1:V ∗)

}

≤ C4

(
1 + ‖x0‖ + ‖h‖L2(0,T1:V ∗)

)

(3.41)

for some positive constant C4. Since the condition (3.38) is independent of initial values,
noting the Assumption (A), the solution of (NDE) can be extended to the internal [0, nT1] for
natural number n, that is, for the initial x(nT1) in the interval [nT1, (n + 1)T1], as analogous
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estimate (3.41) holds for the solution in [0, (n+ 1)T1]. The norm estimate of x inW1,2(0, T ;H)
can be obtained by acting on both side of (NDE) by x′(t) and by using

d

dt
φ(x(t)) =

(
g(t),

d

dt
x(t)
)
, a.e., 0 < t, (3.42)

for all g(t) ∈ ∂φ(x(t)). Furthermore, the estimate (3.18) is immediately obtained from (3.41).

Theorem 3.5. Let Assumptions (F) and (A) be satisfied and (x0, h) ∈ V × L2(0, T ;V ∗), then the
solution x of (NDE) belongs to x ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) and the mapping:

V × L2(0, T ;V ∗) � (x0, h) �−→ x ∈ L2(0, T ;V ) ∩ C([0, T];H) (3.43)

is continuous.

Proof. If (x0, h) ∈ V × L2(0, T ;V ∗) then x belongs to L2(0, T ;V ) ∩ W1,2(0, T ;V ∗) form
Theorem 3.4. Let (x0i, hi) ∈ V × L2(0, T ;V ∗) and xi be the solution of (NDE) with (x0i, hi)
in place of (x0, h) for i = 1, 2. Multiplying on (NDE) by x1(t) − x2(t), we have

1
2
d

dt
|x1(t) − x2(t)|2 +ω1‖x1(t) − x2(t)‖2

≤ ω2|x1(t) − x2(t)|2 +
∣∣f(t, x1) − f(t, x2)

∣∣‖x1(t) − x2(t)‖
+ ‖h1(t) − h2(t)‖∗‖x1(t) − x2(t)‖.

(3.44)

Let us fix T1 > T2 > 0 so that T2 is a Lebesgue point of x, φ(x(T2) < ∞, and

ω1 −ω−1
1 e2ω2T2

√
T2 L‖K‖L2 > 0. (3.45)

Since

‖h1(t) − h2(t))‖∗‖x1(t) − x2(t)‖ ≤ 1
ω1

‖h1(t) − h2(t)‖2∗ +
ω1

4
‖x1(t) − x2(t)‖2, (3.46)

by integrating on (3.44) over [0, T2]where T2 < T and as is seen in (3.37), it follows

‖x1 − x2‖2C([0,T2];H) +
ω1

2
‖x1 − x2‖2L2(0,T2;V )

≤ ‖x01 − x02‖2 + 1
ω1

∥∥f(t, x1) − f(t, x2)
∥∥2
L2(0,T2;H) +

2
ω1

‖h1 − h2‖L2(0,T2;V ∗)

≤ ‖x01 − x02‖2 +ω−1
1

√
T2 L‖K‖L2‖x1 − x2‖2L2(0,T2;V ) +

2
ω1

‖h1 − h2‖L2(0,T2;V ∗).

(3.47)
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Putting that

N1 ≡ min
[
1,
{ω1

2
−ω−1

1

√
T2L‖K‖L2

}]1/2
, N2 ≡ max

{
1,

2
ω1

}
, (3.48)

we have

‖x1 − x2‖L2∩C ≤ 2N2√
1 −N1

(‖x01 − x02‖ + ‖h1 − h2‖). (3.49)

Suppose (x0n, hn) → (x0, h) in V × L2(0, T ;V ∗), and let xn and x be the solutions (SDE 2)
with (x0n, hn) and (x0, h), respectively. Then, by virtue of (3.44) and (3.49), we see that xn →
x in L2(0, T2, V ) ∩ W1,2(0, T2, V ∗) ↪→ C([0, T2];H). This implies that xn(T2) → x(T2) in H.
Therefore the same argument shows that xn → x in

L2(T2,min{2T2, T};V ) ∩ C([T2,min{2T2, T}];H). (3.50)

Repeating this process, we conclude that xn → x in L2(0, T ;V ) ∩ W1,2(0, T2, V ∗) ↪→
C([0, T2];H).

4. Example

Let Ω be bounded domain in R
n with smooth boundary ∂Ω. We define the following spaces:

H1(Ω) =
{
u : u,

∂u

∂xi
∈ L2(Ω), i = 1, 2, . . . , n

}
,

H2(Ω) =

{

u : u,
∂x

∂xi
,

∂2u

∂xi∂xj
∈ L2(Ω), i, j = 1, 2, . . . , n

}

,

H1
0(Ω) =

{
u : u ∈ H1(Ω), u|∂Ω = 0

}
= the closure of C∞

0 (Ω) in H1(Ω),

(4.1)

where ∂/∂xiu and ∂2/∂xi∂xju are the derivative of u in the distribution sense. The norm of
H1

0(Ω) is defined by

‖u‖ =

{∫

Ω

n∑

i=1

(
∂u(x)
∂xi

)2

dx

}1/2

. (4.2)

Hence H1
0(Ω) is a Hilbert space. Let H−1(Ω) = H1

0(Ω)∗ be a dual space of H1
0(Ω). For any

l ∈ H−1(Ω) and v ∈ H1
0(Ω), the notation (l, v) denotes the value l at v. In what follows, we

consider the regularity for given equations in the spaces:

V = H1
0(Ω) =

{
u ∈ H1(Ω); u = 0 on ∂Ω

}
, H = L2(Ω), V ∗ = H−1(Ω) (4.3)

as introduced in Section 2. We deal with the Dirichlet condition’s case as follows.
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Assume that aij = aji are continuous and bounded on Ω and {aij(x)} is positive
definite uniformly in Ω, that is, there exists a positive number δ such that

n∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2, ∀ξ ∈ Ω. (4.4)

Let

bi ∈ L∞(Ω), c ∈ L∞(Ω), βi =
n∑

j=1

∂aij

∂xj
+ bi. (4.5)

For each u, v ∈ H1
0(Ω), let us consider the following sesquilinear form:

a(u, v) =
∫

Ω

⎧
⎨

⎩

n∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+

n∑

j=1

βi
∂u

∂xi
v + cuv

⎫
⎬

⎭
dx. (4.6)

Since {aij} is real symmetric, by (4.4) the inequality:

n∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 (4.7)

holds for all complex vectors ξ = (ξ1, . . . , ξn). By hypothesis, there exists a constant K such
that |βi(x)| ≤ K and c(x) ≤ K hold a.e., hence

Re a(u, u) ≥
∫

Ω
δ

n∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣

2

dx −K

∫

Ω

n∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣|u|dx −K

∫

Ω
|u|2dx

≥ δ

∫

Ω

n∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣

2

dx −K

∫

Ω

n∑

i=1

(
ε

2

∣∣∣∣
∂u

∂xi

∣∣∣∣

2

+
1
2ε

|u|2
)

dx −K

∫

Ω
|u|2dx

=
(
δ − ε

2
K
) n∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣

2

dx −
(
nK

2ε
+K

)∫

Ω
|u|2dx.

(4.8)

By choosing ε = δK−1, we have

Re a(u, u) ≥ δ

2

n∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣

2

dx −
(

nK2

2δ
+K

)∫

Ω
|u|2dx

=
δ

2
‖u‖21 −

(
nK2

2δ
+K +

δ

2

)

‖u‖2.
(4.9)
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By virtue of Lax-Milgram theorem, we know that for any v ∈ V there exists f ∈ V ∗ such that

a(u, v) =
(
f, v
)
. (4.10)

Therefore, we know that the associated operator A : V → V ∗ defined by

(Au, v) = −a(u, v), u, v ∈ V (4.11)

is bounded and satisfies conditions (2.3) in Section 2.
Let g : [0, T] × V → H be a nonlinear mapping defined by

g(t, u(t, x)) =
∫ t

0

n∑

i=1

∂

∂xi
σi(s,∇u(s, x))ds. (4.12)

We assume the following.

Assumption (F1). The partial derivatives σi(s, ξ), ∂/∂t σi(s, ξ) and ∂/∂ξjσi(s, ξ), exist and
continuous for i = 1, 2, j = 1, 2, . . . , n, and σi(s, ξ) satisfies an uniform Lipschitz condition
with respect to ξ, that is, there exists a constant L > 0 such that

∣∣∣σi(s, ξ) − σi

(
s, ξ̂
)∣∣∣ ≤ L

∣∣∣ξ − ξ̂
∣∣∣, (4.13)

where | · | denotes the norm of L2(Ω).

Lemma 4.1. If Assumption (F1) is satisfied, then the mapping t �→ g(t, ·) is continuously differen-
tiable on [0, T] and u �→ g(·, u) is Lipschitz continuous on V .

Proof. Put

g1(s, u) =
n∑

i=1

∂

∂xi
σi(s,∇u), (4.14)

then we have g1(s, u) ∈ H−1(Ω). For each w ∈ H1
0(Ω), we satisfy the following that

(
g1(s, u), w

)
= −

n∑

i=1

(
σi(s,∇u),

∂

∂xi
w

)
. (4.15)

The nonlinear term is given by

g(t, u) =
∫ t

0
g1(s, u)ds. (4.16)
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For any w ∈ H1
0(Ω), if u and û belong toH1

0(Ω), by Assumption (F1) we obtain

∣
∣(g(t, u) − g(t, û)

)
, w
∣
∣ ≤ LT‖u − û‖‖w‖. (4.17)

We set

f(t, u) =
∫ t

0
k(t − s)

∫ s

0

n∑

i=1

∂

∂xi
σi(τ,∇u(τ, x))dτds, (4.18)

where k belongs to L2(0, T). Let φ : H1
0(Ω) → (−∞,+∞] be a lower semicontinuous, proper

convex function. Now in virtue of Lemma 4.1, we can apply the results of Theorem 3.4 as
follows.

Theorem 4.2. Let Assumption (F1) be satisfied. Then for any u0 ∈ H1
0(Ω) and h ∈ L2(0, T ;

H−1(Ω)), the following nonlinear problem:

(
u′(t) +Au(t), u(t) − z

)
+ φ(u(t)) − φ(z)

≤ (f(t, u) + h(t), u(t) − z
)
, a.e., 0 < t ≤ T, z ∈ L2(Ω),

u(0) = u0

(4.19)

has a unique solution:

u ∈ L2
(
0, T ;H1

0(Ω)
)
∩W1,2

(
0, T ;H−1(Ω)

)
↪→ C
(
[0, T];L2(Ω)

)
. (4.20)

Furthermore, the following energy inequality holds: there exists a constant CT depending on T
such that

‖u‖L2∩W1,2 ≤ CT

(
1 + ‖u0‖ + ‖h‖L2(0,T ;H−1(Ω))

)
. (4.21)
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