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We study the singular fractional-order boundary-value problem with a sign-changing nonlinear
term −Dαx(t) = p(t)f(t, x(t),Dμ1x(t),Dμ2x(t), . . . ,Dμn−1x(t)), 0 < t < 1, Dμix(0) = 0, 1 ≤ i ≤ n −
1,Dμn−1+1x(0) = 0,Dμn−1x(1) =

∑p−2
j=1 ajDμn−1x(ξj), where n − 1 < α ≤ n, n ∈ N and n ≥ 3 with

0 < μ1 < μ2 < · · · < μn−2 < μn−1 and n − 3 < μn−1 < α − 2, aj ∈ R, 0 < ξ1 < ξ2 < · · · < ξp−2 < 1 satisfying

0 <
∑p−2

j=1 ajξ
α−μn−1−1
j < 1, Dα is the standard Riemann-Liouville derivative, f : [0, 1] × R

n → R is
a sign-changing continuous function and may be unbounded from below with respect to xi, and
p : (0, 1) → [0,∞) is continuous. Some new results on the existence of nontrivial solutions for
the above problem are obtained by computing the topological degree of a completely continuous
field.

1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines, and
particularly in the mathematical modeling of systems and processes in physics, chemistry,
aerodynamics, electrodynamics of complexmedium, and polymer rheology [1–6]. Fractional-
order models have proved to be more accurate than integer-order models, that is, there
are more degrees of freedom in the fractional-order models. Hence fractional differential
equations have attracted great research interest in recent years, and for more details we refer
the reader to [7–16] and the references cited therein.
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In this paper, we consider the existence of nontrivial solutions for the following
singular fractional-order boundary-value problem with a sign-changing nonlinear term and
fractional derivatives:

−Dαx(t) = p(t)f(t, x(t),Dμ1x(t),Dμ2x(t), . . . ,Dμn−1x(t)), 0 < t < 1,

Dμix(0) = 0, 1 ≤ i ≤ n − 1, Dμn−1+1x(0) = 0, Dμn−1x(1) =
p−2∑

j=1

ajDμn−1x
(
ξj
)
,

(1.1)

where n − 1 < α ≤ n, n ∈ N and n ≥ 3 with 0 < μ1 < μ2 < · · · < μn−2 < μn−1 and n − 3 < μn−1 <
α − 2, aj ∈ R, 0 < ξ1 < ξ2 < · · · < ξp−2 < 1 satisfying 0 <

∑p−2
j=1 ajξ

α−μn−1−1
j < 1, Dα is the standard

Riemann-Liouville derivative, f : [0, 1]×R
n → R is a sign-changing continuous function and

may be unbounded from below with respect to xi, and p : (0, 1) → [0,∞) is continuous.
In this paper, we assume that f : [0, 1] × R

n → R, which implies that the problem
(1.1) is changing sign (or semipositone particularly). Differential equations with changing-
sign arguments are found to be important mathematical tools for the better understanding of
several real-world problems in physics, chemistry, mechanics, engineering, and economics
[17–19]. In general, the cone theory is difficult to handle this type of problems since the
operator generated by f is not a cone mapping. So to find a new method to solve changing-
sign problems is an interesting, important, and difficult work. An effective approach to this
problem was recently suggested by Sun [20] based on the topological degree of a completely
continuous field. Then, Han andWu [21, 22] obtained a new Leray-Schauder degree theorem
by improving the results of Sun [20]. In [22], Han et al. also investigated a kind of singular
two-point boundary-value problems with sign-changing nonlinear terms by applying the
new Leray-Schauder degree theorem obtained in [22].

To our knowledge, very few results have been established when f is changing sign
[20–24]. In [20, 21, 23], f permits sign changing but required to be bounded from below. In
[22, Theorem 1.1], f may be a sign-changing and unbounded function, but the Green function
must be symmetric and f is controlled by a special function h(u) = −b−c|u|μ, where b > 0, c >
0 and μ ∈ (0, 1). Recently, by improving and generalizing the main results of Sun [20] and
Han et al. [21, 22], Liu et al. [24] established a generalized Leray-Schauder degree theorem
of a completely continuous field for solving m-point boundary-value problems for singular
second-order differential equations.

Motivated by [20–24], we established some new results on the existence of nontrivial
solutions for the problem (1.1) by computing the topological degree of a completely
continuous field. The conditions used in the present paper are weaker than the conditions
given in previous works [20–24], and particularly we drop the assumption of even function
in [24]. The new features of this paper mainly include the following aspects. Firstly, the
nonlinear term f(t, x1, x2, . . . , xn) in the BVP (1.1) is allowed to be sign changing and
unbounded from below with respect to xi. Secondly, the nonlinear term f involves fractional
derivatives of unknown functions. Thirdly, the boundary conditions involve fractional
derivatives of unknown functions which is a more general case, and include the two-point,
three-point, multipoint, and some nonlocal problems as special cases of (1.1).

2. Preliminaries and Lemmas

In this section, we give some preliminaries and lemmas.
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Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a
cone of E if it satisfies the following two conditions:

(1) x ∈ P, σ > 0 implies σx ∈ P ;
(2) x ∈ P,−x ∈ P implies x = θ.

Definition 2.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Let E be a real Banach space, E∗ the dual space of E, P a total cone in E, that is, E =
P − P, and P ∗ the dual cone of P .

Lemma 2.3 (Deimling [25]). Let L : E → E be a continuous linear operator, P a total cone, and
L(P) ⊂ P . If there exist ψ ∈ E \ (−P) and a positive constant c such that cL(ψ) ≥ ψ, then the spectral
radius r(L)/= 0 and has a positive eigenfunction corresponding to its first eigenvalue λ = r(L)−1.

Lemma 2.4 (see [25]). Let P be a cone of the real Banach space E, and Ω a bounded open subsets of
E. Suppose that T : Ω ∩ P → P is a completely continuous operator. If there exists x0 ∈ P \ {θ} such
that x − Tx /=μx0, ∀x ∈ ∂Ω ∩ P, μ ≥ 0, then the fixed-point index i(T,Ω ∩ P, P) = 0.

Let L : E → E be a completely continuous linear positive operator with the spectral radius
r1 /= 0. On account of Lemma 2.3, there exist ϕ1 ∈ P \ {θ} and g1 ∈ P ∗ \ {θ} such that

Lϕ1 = r1ϕ1,

r1L
∗g1 = g1,

(2.1)

where L∗ is the dual operator of L. Choose a number δ > 0 and let

P
(
g1, δ

)
=
{
u ∈ P : g1(u) ≥ δ||u||

}
, (2.2)

then P(g1, δ) is a cone in E.

Lemma 2.5 (see [24]). Suppose that the following conditions are satisfied.

(A1) T : E → P is a continuous operator satisfying

lim
‖u‖→+∞

‖Tu‖
‖u‖ = 0; (2.3)

(A2) F : E → E is a bounded continuous operator and there exists u0 ∈ E such that Fu + u0 +
Tu ∈ P , for all u ∈ E;

(A3) r1 > 0 and there exist v0 ∈ E and η > 0 such that

LFu ≥ r1
(
1 + η

)
Lu − LTu − v0, ∀u ∈ E. (2.4)

Let A = LF, then there exists R > 0 such that

deg(I −A,BR, θ) = 0, (2.5)

where BR = {u ∈ E : ‖u‖ < R} is the open ball of radius R in E.
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Remark 2.6. If the operator T which satisfies the conditions of Lemma 2.5 is a null operator,
then Lemma 2.5 turns into Theorem 1 in [20]. On the other hand, if the operator T in
Lemma 2.5 is such that there exist constants α ∈ (0, 1) andN > 0 satisfying ||Tu|| ≤N||u||α for
all u ∈ E, then Lemma 2.5 turns into Theorem 2.1 in [22] or Theorem 1 in [21]. So Lemma 2.5
is an improvement of the results of paper [20–22].

Now we present the necessary definitions from fractional calculus theory. These
definitions can be found in some recent literatures, for example, [26, 27].

Definition 2.7 (see [26, 27]). The Riemann-Liouville fractional integral of order α > 0 of a
function x : (0,+∞) → R is given by

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds (2.6)

provided that the right-hand side is pointwisely defined on (0,+∞).

Definition 2.8 (see [26, 27]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by

Dαx(t) =
1

Γ(n − α)
(
d

dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, (2.7)

where n = [α] + 1, and [α] denotes the integer part of the number α, provided that the right-
hand side is pointwisely defined on (0,+∞).

Remark 2.9. If x, y : (0,+∞) → R with order α > 0, then

Dα(x(t) + y(t)
)
= Dαx(t) +Dαy(t). (2.8)

Lemma 2.10 (see [27]). (1) If x ∈ L1(0, 1), ρ > σ > 0, then

IρIσx(t) = Iρ+σx(t), DσIρx(t) = Iρ−σx(t), DσIσx(t) = x(t). (2.9)

(2) If ρ > 0, σ > 0, then

Dρtσ−1 =
Γ(σ)

Γ
(
σ − ρ) t

σ−ρ−1. (2.10)

Lemma 2.11 (see [27]). Assume that x ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order
α > 0. Then

IαDαx(t) = x(t) + c1tα−1 + c2tα−2 + · · · + cntα−n, (2.11)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.
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Noticing that 2 < α − μn−1 ≤ n − μn−1 < 3, let

k(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t(1 − s))α−μn−1−1 − (t − s)α−μn−1−1
Γ
(
α − μn−1

) , 0 ≤ s ≤ t ≤ 1,

(t(1 − s))α−μn−1−1
Γ
(
α − μn−1

) , 0 ≤ t ≤ s ≤ 1,

(2.12)

by [28], for t, s ∈ [0, 1], one has

tα−μn−1−1(1 − t)s(1 − s)α−μn−1−1
Γ
(
α − μn−1

) ≤ k(t, s) ≤ s(1 − s)α−μn−1−1
Γ
(
α − μn−1

) . (2.13)

Lemma 2.12. If 2 < α − μn−1 < 3 and ρ ∈ L1[0, 1], then the boundary-value problem

Dα−μn−1w(t) + ρ(t) = 0,

w(0) = w′(0) = 0, w(1) =
p−2∑

j=1

ajw
(
ξj
)
,

(2.14)

has the unique solution

w(t) =
∫1

0
K(t, s)ρ(s)ds, (2.15)

where

K(t, s) = k(t, s) +
tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

p−2∑

j=1

ajk
(
ξj , s
)
, (2.16)

is the Green function of the boundary-value problem (2.14).

Proof. By applying Lemma 2.11, we may reduce (2.14) to an equivalent integral equation:

w(t) = −Iα−μn−1ρ(t) + c1tα−μn−1−1 + c2tα−μn−1−2 + c3tα−μn−1−3, c1, c2, c3 ∈ R. (2.17)

Note thatw(0) = w′(0) = 0 and (2.17), we have c2 = c3 = 0. Consequently the general solution
of (2.14) is

w(t) = −Iα−μn−1ρ(t) + c1tα−μn−1−1. (2.18)

By (2.18) and Lemma 2.10, we have

w(t) = − Iα−μn−1ρ(t) + c1tα−μn−1−1

= −
∫ t

0

(t − s)α−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds + c1tα−μn−1−1.
(2.19)
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So,

w(1) = −
∫1

0

(1 − s)α−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds + c1, (2.20)

and for j = 1, 2, . . . , p − 2,

w
(
ξj
)
= −
∫ ξj

0

(
ξj − s

)α−μn−1−1

Γ
(
α − μn−1

) ρ(s)ds + c1ξ
α−μn−1−1
j . (2.21)

By w(1) =
∑p−2

j=1 ajw(ξj), combining with (2.20) and (2.21), we obtain

c1 =

∫1
0 (1 − s)α−μn−1−1ρ(s)ds −

∑p−2
j=1 aj

∫ ξj
0

(
ξj − s

)α−μn−1−1ρ(s)ds

Γ
(
α − μn−1

)(
1 −∑p−2

j=1 ajξ
α−μn−1−1
j

) . (2.22)

So, the unique solution of problem (2.14) is

w(t) = −
∫ t

0

(t − s)α−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds

+
tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

⎧
⎨

⎩

∫1

0

(1 − s)α−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds −
p−2∑

j=1

aj

∫ ξj

0

(
ξj − s

)α−μn−1−1

Γ
(
α − μn−1

) ρ(s)ds

⎫
⎬

⎭

= −
∫ t

0

(t − s)α−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds +
∫1

0

(1 − s)α−μn−1−1tα−μn−1−1
Γ
(
α − μn−1

) ρ(s)ds

+
tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

p−2∑

j=1

aj

∫1

0

(1 − s)α−μn−1−1ξα−μn−1−1j

Γ
(
α − μn−1

) ρ(s)ds

− tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

p−2∑

j=1

aj

∫ ξj

0

(
ξj − s

)α−μn−1−1

Γ
(
α − μn−1

) ρ(s)ds

=
∫1

0

⎛

⎝k(t, s) +
tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

p−2∑

j=1

ajk
(
ξj , s
)
⎞

⎠ρ(s)ds

=
∫1

0
K(t, s)ρ(s)ds.

(2.23)

The proof is completed.
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Lemma 2.13. The function K(t, s) has the following properties:
(1) K(t, s) > 0, for t, s ∈ (0, 1);
(2) K(t, s) ≤Ms(1 − s)α−μn−1−1, for t, s ∈ [0, 1], where

M =
1

Γ
(
α − μn−1

)

⎛

⎝1 +

∑p−2
j=1 aj

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

⎞

⎠. (2.24)

Proof. It is obvious that (1) holds. In the following, we will prove (2). In fact, by (2.13), we
have

K(t, s) = k(t, s) +
tα−μn−1−1

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

p−2∑

j=1

ajk
(
ξj , s
)

≤ s(1 − s)α−μn−1−1
Γ
(
α − μn−1

) +

∑p−2
j=1 aj

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

s(1 − s)α−μn−1−1
Γ
(
α − μn−1

)

≤
⎛

⎝1 +

∑p−2
j=1 aj

1 −∑p−2
j=1 ajξ

α−μn−1−1
j

⎞

⎠s(1 − s)α−μn−1−1
Γ
(
α − μn−1

) .

(2.25)

This completes the proof.
Now let us consider the following modified problems of the BVP (1.1):

−Dα−μn−1u(t) = p(t)f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)
,

u(0) = 0, u′(0) = 0, Dμ−μn−1u(1) =
p−2∑

j=1

ajDμ−μn−1u
(
ξj
)
.

(2.26)

Lemma 2.14. Let x(t) = Iμn−1u(t), u(t) ∈ C[0, 1], Then (1.1) can be transformed into (2.26).
Moreover, if u ∈ C([0, 1], [0,+∞) is a solution of problem (2.26), then, the function x(t) = Iμn−1u(t)
is a positive solution of problem (1.1).

Proof. Substituting x(t) = Iμn−1u(t) into (1.1), by the definition of the Riemann-Liouville
fractional derivative and Lemmas 2.10 and 2.11, we obtain that

Dαx(t) =
dn

dtn
In−αx(t) =

dn

dtn
In−αIμn−1u(t)

=
dn

dtn
In−α+μn−1u(t) = Dα−μn−1u(t),

Dμ1x(t) = Dμ1Iμn−1u(t) = Iμn−1−μ1u(t),

Dμ2x(t) = Dμ2Iμn−1u(t) = Iμn−1−μ2u(t),

...
...

Dμn−2x(t) = Dμn−2Iμn−1u(t) = Iμn−1−μn−2u(t),

Dμn−1x(t) = Dμn−1Iμn−1u(t) = u(t),

Dμn−1+1x(t) = [Dμn−1Iμn−1u(t)]′ = u′(t).

(2.27)
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Also, we have Dμn−1x(0) = u(0) = 0,Dμn−1+1x(0) = u′(0) = 0, and it follows from Dμn−1x(t) =
u(t) that u(1) =

∑p−2
j=1 aju(ξj). Hence, by x(t) = Iμn−1u(t), u ∈ C[0, 1], (1.1) is transformed into

(2.14).
Now, let u ∈ C([0, 1, 0,+∞)) be a solution of problem (2.26). Then, by Lemma 2.10,

(2.26), and (2.27), one has

−Dαx(t) = − dn

dtn
In−αx(t) = − d

n

dtn
In−αIμn−1u(t)

= − dn

dtn
In−α+μn−1u(t) = −Dα−μn−1u(t)

= p(t)f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)

= p(t)f(t, x(t),Dμ1x(t),Dμ2x(t), . . . ,Dμn−1x(t)), 0 < t < 1.

(2.28)

Noticing that

Iαu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, (2.29)

which implies that Iαu(0) = 0, from (2.27), for i = 1, 2, . . . , n − 1, we have

Dμix(0) = 0, Dμn−1+1x(0) = 0, Dμn−1x(1) =
p−2∑

j=1

ajDμn−1x
(
ξj
)
. (2.30)

Moreover, it follows from the monotonicity and property of Iμn−1 that

Iμn−1u ∈ C([0, 1], [0,+∞)). (2.31)

Consequently, x(t) = Iμn−1u(t) is a positive solution of problem (1.1).

In the following let us list some assumptions to be used in the rest of this paper.
(H1) p : (0, 1) → [0,+∞) is continuous, p(t)/≡ 0 on any subinterval of (0,1), and

∫1

0
p(s)ds < +∞. (2.32)

(H2) f : [0, 1] × R
n → (−∞,+∞) is continuous.

In order to use Lemma 2.5, let E = C[0, 1] be our real Banach space with the norm
‖u‖ = maxt∈[0,1]|u(t)| and P = {u ∈ C[0, 1] : u(t) ≥ 0, for all t ∈ [0, 1]}, then P is a total cone
in E.

Define two linear operators L, J : C[0, 1] → C[0, 1] by

(Lu)(t) =
∫1

0
K(t, s)p(s)u(s)ds, t ∈ [0, 1], u ∈ C[0, 1], (2.33)

(Ju)(t) =
∫1

0
K(s, t)p(s)u(s)ds, t ∈ [0, 1], u ∈ C[0, 1], (2.34)
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and define a nonlinear operator A : C[0, 1] → C[0, 1] by

(Au)(t) =
∫1

0
K(t, s)p(s)f

(
t, Iμn−1u(s), Iμn−1−μ1u(s), . . . , Iμn−1−μn−2u(s), u(s)

)
ds, t ∈ [0, 1].

(2.35)

Lemma 2.15. Assume (H1) holds. Then

(i) L, J : C[0, 1] → C[0, 1] are completely continuous positive linear operators with the first
eigenvalue r > 0 and λ > 0, respectively.

(ii) L satisfies L(P) ⊂ P(g1, δ).
Proof. (i) By using the similar method of paper [22], it is easy to know that L, J : C[0, 1] →
C[0, 1] are completely continuous positive linear operators. In the following, by using the
Krein-Rutmann’s theorem, we prove that L, J have the first eigenvalue r > 0 and λ > 0,
respectively.

In fact, it is obvious that there is t1 ∈ (0, 1) such thatK(t1, t1)p(t1) > 0. Thus there exists
[a, b] ⊂ (0, 1) such that t1 ∈ (a, b) and K(t, s)p(s) > 0 for all t, s ∈ [a, b]. Choose ψ ∈ P such
that ψ(t1) > 0 and ψ(t) = 0 for all t /∈ [a, b]. Then for t ∈ [a, b],

(
Lψ
)
(t) =

∫1

0
K(t, s)p(s)ψ(s)ds ≥

∫b

a

K(t, s)p(s)ψ(s)ds > 0. (2.36)

So there exists ν > 0 such that ν(Lψ)(t) ≥ ψ(t) for t ∈ [0, 1]. It follows from Lemma 2.3
that the spectral radius r1 /= 0. Thus corresponding to r = r−11 , the first eigenvalue of L, and L
has a positive eigenvector ϕ1 such that

rLϕ1 = ϕ1. (2.37)

In the same way, J has a positive first eigenvalue λ and a positive eigenvector ϕ2

corresponding to the first eigenvalue λ, which satisfy

λJϕ2 = ϕ2. (2.38)

(ii) Notice that K(t, 0) = K(t, 1) ≡ 0 for t ∈ [0, 1], by λJϕ2 = ϕ2 and (2.12)–(2.16), we
have ϕ2(0) = ϕ2(1) = 0. This implies that ϕ′

2(0) > 0 and ϕ′
2(1) < 0 (see [29]). Define a function

χ on [0, 1] by

χ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ′
2(0), s = 0,
ϕ2(s)

(1 − s)s , 0 < s < 1,

−ϕ′
2(1), s = 1.

(2.39)

Then χ is continuous on [0, 1] and χ(s) > 0 for all s ∈ [0, 1]. So, there exist δ1, δ2 > 0
such that δ1 ≤ χ(s) ≤ δ2 for all s ∈ [0, 1]. Thus

δ1(1 − s)s ≤ ϕ2(s) ≤ δ2(1 − s)s, (2.40)

for all s ∈ [0, 1].
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Let L∗ be the dual operator of L, we will show that there exists g1 ∈ P ∗ \ {θ} such that

λL∗g1 = g1. (2.41)

In fact, let

g1(u) =
∫1

0
p(t)ϕ2(t)u(t)dt ∀u ∈ E. (2.42)

Then by (H1) and (2.40), we have

∫1

0
p(t)ϕ2(t)u(t)dt ≤ δ2‖u‖

∫1

0
t(1 − t)p(t)dt ≤ δ2‖u‖

∫1

0
p(t)dt < +∞, (2.43)

which implies that g1 is well defined. We state that g1 of (2.42) satisfies (2.41). In fact, by
(2.40), (2.41), and interchanging the order of integration, for any s, t ∈ [0, 1], we have

λ−1g1(u) =
∫1

0
p(t)
(
λ−1ϕ2(t)

)
u(t)dt =

∫1

0
p(t)
(
Jϕ2
)
(t)u(t)dt

=
∫1

0
p(t)u(t)

∫1

0
K(s, t)p(s)ϕ2(s)dsdt

=
∫1

0
p(s)ϕ2(s)

∫1

0
K(s, t)p(t)u(t)dtds

=
∫1

0
p(s)ϕ2(s)(Lu)(s)ds

= g1(Lu) =
(
L∗g1

)
(u) ∀u ∈ E.

(2.44)

So (2.41) holds.
In the following we prove that L(P) ⊂ P(g1, δ). In fact, by (2.41) and α − μn−1 − 1 > 1,

we have

ϕ2(s) ≥ δ1(1 − s)s ≥ δ1(1 − s)α−μn−1−1s ≥ δ1M−1K(t, s), t, s ∈ [0, 1]. (2.45)

Take δ = δ1M−1λ−1 > 0 in (2.2). For any u ∈ P , by (2.44), (2.45), we have

g1(Lu) = λ−1g1(u) = λ−1
∫1

0
p(s)ϕ2(s)u(s)ds

≥ δ1M−1λ−1
∫1

0
K(t, s)p(s)u(s)ds = δ(Lu)(t) ∀t ∈ [0, 1].

(2.46)

Hence, g1(Lu) ≥ δ||Lu||, that is, L(P) ⊂ P(g1, δ). The proof is completed.
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3. Main Result

Theorem 3.1. Assume that (H1)(H2) hold, and the following conditions are satisfied.
(H3) There exist nonnegative continuous functions b, c : [0, 1] → (0,+∞) and a nondecreas-

ing continuous function h : R
n → [0,+∞) satisfying

lim∑n
i=1|xi|→+∞

h(x1, x2, . . . , xn)
∑n

i=1|xi|
= 0,

f(t, x1, x2, . . . , xn) ≥ −b(t) − c(t)h(x1, x2, . . . , xn), ∀xi ∈ R.

(3.1)

(H4) f also satisfies

lim inf
∑n
i=1 xi→+∞
∑n−1

i=1 xi≥0

f(t, x1, x2, . . . , xn)
∑n

i=1 xi
> λ lim sup

∑n
i=1 |xi|→ 0

∣
∣f(t, x1, x2, . . . , xn)

∣
∣

∑n
i=1|xi|

< λ, (3.2)

uniformly on t ∈ [0, 1], where λ is the first eigenvalue of the operator J defined by (2.34).
Then the singular fractional-order boundary-value problem (1.1) has at least one nontrivial

solution.

Proof. According to Lemma 2.15, L satisfies L(P) ⊂ P(g1, δ). Let

(Tu)(t) = ch
(
Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)
for u ∈ E, (3.3)

where c = maxt∈[0,1]c(t). It follows from (H3) that T : E → P is a continuous operator. Note
that

Iμn−1u(t) =
∫ t

0

(t − s)μn−1−1u(s)
Γ
(
μn−1

) ds ≤ ‖u‖
Γ
(
μn−1

) ,

Iμn−1−μiu(t) =
∫ t

0

(t − s)μn−1−μi−1u(s)
Γ
(
μn−1 − μi

) ds ≤ ‖u‖
Γ
(
μn−1 − μi

) , i = 1, 2, . . . , n − 2.

(3.4)

Thus from the monotone assumption of h on xi, we have

h
(
Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)

≤ h
(

‖u‖
Γ
(
μn−1

) ,
‖u‖

Γ
(
μn−1 − μ1

) , . . . ,
‖u‖

Γ
(
μn−1 − μn−2

) , ‖u‖
)

, for any u ∈ E, t ∈ [0, 1],
(3.5)
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which implies that

‖Tu‖ = max
t∈[0,1]

{
ch
(
Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)}

≤ ch
(

‖u‖
Γ
(
μn−1

) ,
‖u‖

Γ
(
μn−1 − μ1

) , . . . ,
‖u‖

Γ
(
μn−1 − μn−2

) , ‖u‖
)

for any u ∈ E.
(3.6)

Let

τ =
1

Γ
(
μn−1

) +
1

Γ
(
μn−1 − μ1

) + · · · + 1
Γ
(
μn−1 − μn−2

) + 1, (3.7)

then

lim
‖u‖→+∞

‖Tu‖
‖u‖ ≤ lim

‖u‖→+∞
ch
(‖u‖/Γ(μn−1

)
, ‖u‖/Γ(μn−1 − μ1

)
, . . . , ‖u‖/Γ(μn−1 − μn−2

)
, ‖u‖)

‖u‖

= lim
‖u‖→+∞

cτh
(‖u‖/Γ(μn−1

)
, ‖u‖/Γ(μn−1 − μ1

)
, . . . , ‖u‖/Γ(μn−1 − μn−2

)
, ‖u‖)

τ‖u‖

≤ lim
‖u‖→+∞

cτh
(‖u‖/Γ(μn−1

)
, ‖u‖/Γ(μn−1 − μ1

)
, . . . , ‖u‖/Γ(μn−1 − μn−2

)
, ‖u‖)

‖u‖/Γ(μn−1
)

+ ‖u‖/Γ(μn−1 − μ1
)
+ · · · + ‖u‖/Γ(μn−1 − μn−2

)
+ ‖u‖

= cτ lim∑n
i=1|xi|→+∞

h(x1, x2, . . . , xn)
∑n

i=1|xi|
= 0,

(3.8)

that is,

lim
‖u‖→+∞

‖Tu‖
‖u‖ = 0. (3.9)

Hence T satisfies condition (A1) in Lemma 2.5.
Next take u0(t) ≡ b(t), and (Fu)(t) = f(t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t))

for u ∈ E. Then it follows from (H3) that

Fu + u0 + Tu = f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)

+ b(t) + ch
(
Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

) ≥ 0,
(3.10)

that yields

Fu + u0 + Tu ∈ P, ∀u ∈ E, (3.11)

namely, condition (A2) in Lemma 2.5 holds.
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From (H4), there exists ε > 0 and a sufficiently large l1 > 0 such that, for any t ∈ [0, 1],

f(t, x1, x2, . . . , xn) ≥ λ(1 + ε)(x1 + x2 + · · · + xn)
≥ λ(1 + ε)xn, x1 + x2 + · · · + xn > l1.

(3.12)

Combining (H3)with (3.12), there exists b1 ≥ 0 such that

Fu = f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)

≥ λ(1 + ε)u(t) − b1 − ch
(
Iμn−1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)
, ∀u ∈ E,

(3.13)

that is,

Fu ≥ λ(1 + ε)u − b1 − Tu ∀u ∈ E. (3.14)

As L is a positive linear operator, it follows from (3.14) that

(LFu)(t) ≥ λ(1 + ε)(Lu)(t) − Lb1 − (LTu)(t), ∀t ∈ [0, 1]. (3.15)

So condition (A3) in Lemma 2.5 holds. According to Lemma 2.5, there exists a sufficiently
large number R > 0 such that

deg(I −A,BR, θ) = 0. (3.16)

On the other hand, it follows from (H4) that there exist 0 < ε < 1 and 0 < r < R, for
any t ∈ [0, 1], such that

∣
∣f(t, x1, x2, . . . , xn)

∣
∣ ≤ 1 − ε

Mτ
∫1
0 p(s)ds

(|x1| + |x2| + · · · + |xn|),

|x1| + |x2| + · · · + |xn| < r.
(3.17)

Thus for any u ∈ E with ||u|| ≤ r/τ ≤ r ≤ R, we have

|Iμn−1u(t)| + ∣∣Iμn−1−μ1u(t)∣∣ + · · · + ∣∣Iμn−1−μn−2u(t)∣∣ + |u(t)|

≤ ‖u‖
Γ
(
μn−1

) +
‖u‖

Γ
(
μn−1 − μ1

) + · · · + ‖u‖
Γ
(
μn−1 − μn−2

) + ‖u‖

≤ τ‖u‖ ≤ r.

(3.18)
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By (3.17), for any t ∈ [0, 1], we have

∣
∣f
(
t, Iμn−1u(t), Iμn−1−μ1u(t), . . . , Iμn−1−μn−2u(t), u(t)

)∣
∣

≤ 1 − ε
Mτ

∫1
0 p(s)ds

(|Iμn−1u(t)| + ∣∣Iμn−1−μ1u(t)∣∣ + · · · + ∣∣Iμn−1−μn−2u(t)∣∣ + |u(t)|).
(3.19)

Thus if there exist u1 ∈ ∂Br/τ and μ1 ∈ [0, 1] such that u1 = μ1Au1, then by (3.19), we have

g1(‖u1‖) = g1
(
μ1‖Au1‖

)
= μ1g1(‖Au1‖)

= μ1g1

(

max
0≤t≤1

∣
∣
∣
∣
∣

∫1

0
K(t, s)p(s)f

(
s, Iμn−1u1(s), . . . , Iμn−1−μn−2u1(s), u1(s)

)
ds

∣
∣
∣
∣
∣

)

≤ 1 − ε
Mτ

∫1
0 p(s)ds

g1

(∫1

0
Mp(s)

(|Iμn−1u1(s)| + · · · + ∣∣Iμn−1−μn−2u1(s)
∣
∣ + |u1(s)|

)
ds

)

≤ 1 − ε
Mτ

∫1
0 p(s)ds

Mτ

∫1

0
p(s)dsg1(‖u1‖) = (1 − ε)g1(‖u1‖).

(3.20)

Therefore, g1(‖u1‖) ≤ 0.
But ϕ2(t) > 0 for all t ∈ (0, 1) by the maximum principle, and u1(t) attains zero on

isolated points by the Sturm theorem. Hence, from (2.42),

g1(‖u1‖) =
∫1

0
p(t)ϕ2(t)‖u1‖dt > 0. (3.21)

This is a contradiction. Thus

u/=μAu, ∀u ∈ ∂Br, μ ∈ [0, 1]. (3.22)

It follows from the homotopy invariance of the Leray-Shauder degree that

deg(I −A,Br/τ , θ) = 1. (3.23)

By (3.16), (3.23), and the additivity of Leray-Shauder degree, we obtain

deg(I −A,BR \ Br/τ , θ) = deg(I −A,BR, θ) − deg(I −A,Br/τ , θ) = −1. (3.24)

As a result, A has at least one fixed point u on BR \ Br/τ , namely, the BVP (1.1) has at least
one nontrivial solution x(t) = Iμn−1u(t).

Corollary 3.2. Assume that (H1), (H2), and (H4) hold. If the following condition is satisfied.
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(H∗3) There exists a nonnegative continuous functions b : [0, 1] → (0,+∞) such that

f(t, x1, x2, . . . , xn) ≥ −b(t), for any t ∈ [0, 1], ∀xi ∈ R, (3.25)

then the singular higher multipoint boundary-value problems (1.1) have at least one nontrivial solu-
tion.

Corollary 3.3. Assume that (H1), (H2), and (H4) hold. If the following condition is satisfied.
(H3∗∗) There exist three constants b > 0, c > 0, and αi ∈ (0, 1) such that

f(t, x1, x2, . . . , xn) ≥ −b − c
n∑

i=1

|xi|αi , for any t ∈ [0, 1], ∀xi ∈ R, (3.26)

then the singular higher multipoint boundary-value problems (1.1) have at least one nontrivial solu-
tion.

Remark 3.4. Noticing that the Green function of the BVP (1.1) is not symmetrical, which
implies that the existence of nontrivial solutions of the BVP (1.1) cannot be obtained by
Theorem 2.1 in [22] and Theorem 1 in [20]. It is interesting that we construct a new linear
operator J instead of K in paper [22] and use its first eigenvalue and its corresponding
eigenfunction to seek a linear continuous functional g of P . As a result, we overcome the
difficulty caused by the nonsymmetry of the Green function. In [24], the nonlinearity does not
contain derivatives and a stronger condition is required, that is, h must be an even function;
here we omit this stronger assumption.

Remark 3.5. The results of [20–22] is a special case of the Corollary 3.2 and Corollary 3.3 when
α1 (i = 1, 2, . . . , n) are integer and the nonlinear term does not involve derivatives of unknown
functions.
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