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The purpose of this paper is to investigate some properties of q-Euler numbers and polynomials
with weight 0. From those q-Euler numbers with weight 0, we derive some identities on the q-Euler
numbers and polynomials with weight 0.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp, Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
algebraic closure of Qp. The p-adic absolute value is defined by |x|p = 1/pr where x = prs/t
for s, t ∈ Z with (p, t) = (p, s) = 1 and r ∈ Q. In this paper, we assume that α ∈ Q and q ∈ Cp

with |1 − q|p < 1. As well-known definition, the Euler polynomials are defined by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, (1.1)

with the usual convention about replacing En(x) by En(x) (see [1–15]).
In this special case, x = 0, En(0) = En are called the nth Euler numbers (see [1]).

Recently, the q-Euler numbers with weight α are defined by
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(α)
0,q = 1, q

(
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q + 1

)n
+ Ẽ

(α)
n,q = 0 if n > 0, (1.2)

with the usual convention about replacing (Ẽ(α)
q )n by Ẽ

(α)
n,q (see [3, 12]). The q-number of x

is defined by [x]q = (1 − qx)/(1 − q) (see [1–15]). Note that limq→ 1[x]q = x. Let us define
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the notation of q-Euler numbers with weight 0 as Ẽ(0)
n,q = Ẽn,q. The purpose of this paper is to

investigate some interesting identities on the q-Euler numbers with weight 0.

2. On the Extended q-Euler Numbers of Higher-Order with Weight 0

Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the fermionic p-adic
q-integral on Zp is defined by Kim as follows:

Iq
(
f
)
=
∫

Zp

f(x)dμ−q(x)

= lim
N→∞

[2]q
1 + qp

N

pN−1∑

x=0

f(x)
(−q)x,

(2.1)

(see [1–12]). By (2.1), we get

qnIq
(
fn
)
+ (−1)n−1Iq

(
f
)
= [2]q

n−1∑

l=0

(−1)n−1−lf(l)ql,
(2.2)

where fn(x) = f(x + n) and n ∈ N (see [4, 5]).
By (1.2), (2.1), and (2.2), we see that

∫

Zp

[x]nqαdμ−q(x) = Ẽ
(α)
n,q =

[2]q
(
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)n[α]nq

n∑
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(
n

l

)
(−1)l 1

1 + qαl+1
. (2.3)

In the special case, n = 1, we get

∫

Zp

extdμ−q(x) =
[2]q

qet + 1
=

1 + q−1

et + q−1
=

∞∑

n=0

Hn

(
−q−1

) tn

n!
, (2.4)

where Hn(−q−1) are the nth Frobenius-Euler numbers. From (2.4), we note that the q-Euler
numbers with weight 0 are given by

Ẽn,q =
∫

Zp

xndμ−q(x) = Hn

(
−q−1

)
, for n ∈ Z+. (2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

Ẽn,q = Hn

(
−q−1

)
, (2.6)

whereHn(−q−1) are called the nth Frobenius-Euler numbers.
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Let us define the generating function of the q-Euler numbers with weight 0 as follows:

F̃q(t) =
∞∑

n=0

Ẽn,q
tn

n!
. (2.7)

Then, by (2.3) and (2.7), we get

F̃q(t) = [2]q
∞∑

m=0
(−1)mqmemt =

1 + q

qet + 1
. (2.8)

Now we define the q-Euler polynomials with weight 0 as follows:

∞∑

n=0

Ẽn,q(x)
tn

n!
=

1 + q

qet + 1
ext. (2.9)

Thus, (2.4) and (2.9), we get
∫

Zp

e(x+y)tdμ−q
(
y
)
=

1 + q

qet + 1
ext =
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n=0

Ẽn,q(x)
tn

n!
. (2.10)

From (2.10), we have

∞∑

n=0

Ẽn,q(x)
tn

n!
=

(
1 + q−1

et + q−1

)
ext =

∞∑

n=0

Hn

(
−q−1, x

) tn

n!
, (2.11)

where Hn(−q−1, x) are called the nth Frobenius-Euler polynomials (see [9]).
Therefore, by (2.11), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

Ẽn,q(x) =
∫

Zp

(
x + y

)n
dμ−q(x) = Hn

(
−q−1, x

)
, (2.12)

whereHn(−q−1, x) are called the nth Frobenius-Euler polynomials.

From (2.2) and Theorem 2.2, we note that

qnHm

(
−q−1, n

)
+Hm

(
−q−1

)
= [2]q

n−1∑

l=0

(−1)llmql, (2.13)

where n ∈ N with n ≡ 1 (mod2).
Therefore, by (2.13), we obtain the following corollary.

Corollary 2.3. For n ∈ N, with n ≡ 1 (mod 2) and m ∈ Z+, one has
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)
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)
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(−1)llmql. (2.14)
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In particular, q = 1, we get Em(n) +Em = 2
∑n−1

l=0 (−1)llm, where Em and Em(n) are called
the mth Euler numbers and polynomials which are defined by

2
et + 1

=
∞∑

m=0

Em
tm

m!
,

2
et + 1

ext =
∞∑

m=0

Em(x)
tm

m!
. (2.15)

By (2.2), we easily see that

q
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∫
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Thus, by (2.16), we get
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(2.17)

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

qHn

(
−q−1, 1

)
+Hn

(
−q−1

)
=

⎧
⎨

⎩
1 + q, if n = 0,

0, if n > 0,
(2.18)

where Hn(−q−1, x) are called the nth Frobenius-Euler polynomials and Hn(−q−1) are called
the nth Frobenius-Euler numbers. In particular, q = 1, we have

En(1) + En =

⎧
⎨

⎩
2, if n = 0,

0, if n > 0,
(2.19)

where En are called the nth Euler numbers.
From (2.5) and Theorem 2.2, we note that

Ẽn,q(x) =
∫

Zp

(
x + y

)n
dμ−q

(
y
)
=

n∑

l=0

(
n

l

)∫

Zp

yldμ−q
(
y
)
xn−l =
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(
n
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)
Ẽn,qx

n−l =
(
x + Ẽq

)n
,

(2.20)

where the usual convention about replacing (Ẽq)
l by Ẽl,q. By Theorems 2.2 and 2.4, we get

qẼn,q(1) + Ẽn,q =

⎧
⎨

⎩
[2]q, if n = 0,

0, if n > 0.
(2.21)
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From (2.20) and (2.21), we have

q
(
Ẽq + 1

)n
+ Ẽn,q =

⎧
⎨

⎩
[2]q, if n = 0,

0, if n > 0.
(2.22)

For n ∈ N, by (2.20) and (2.22), we have

q2Ẽn,q(2) = q2
(
Ẽq + 1 + 1

)n
= q2

n∑

l=1

(
n

l

)(
Ẽq + 1

)l
+ q
(
1 + q − Ẽ0,q

)
= q + q2 − q

n∑

l=0

(
n

l

)
Ẽl,q

= q + q2 − q
(
Ẽq + 1

)n
= q + q2 + Ẽn,q − q[2]qδ0,n.

(2.23)

Therefore, by (2.23), we obtain the following theorem.

Theorem 2.5. For n ∈ N, one has

q2Ẽn,q(2) = q + q2 + Ẽn,q. (2.24)

For n ∈ Z+, we have

Ẽn,q−1(1 − x) =
∫

Zp

(1 − x + x1)ndμ−q−1(x1) = (−1)n
∫

Zp

(x1 + x)ndμ−q(x1) = (−1)nẼn,q(x).

(2.25)

Therefore, by (2.25), we obtain the following theorem.

Theorem 2.6. For n ∈ Z+, one has

Ẽn,q−1(1 − x) = (−1)nẼn,q(x). (2.26)

From (2.20), we have
∫

Zp

(1 − x)ndμ−q(x) = (−1)n
∫

Zp

(x − 1)ndμ−q(x) = (−1)nẼn,q(−1). (2.27)

By Theorem 2.6 and (2.27), we get
∫

Zp

(1 − x)ndμ−q(x) = Ẽn,q−1(2) = 1 + q + q2Ẽn,q−1 if n > 0. (2.28)

Therefore, by (2.28), we obtain the following theorem.

Theorem 2.7. For n ∈ N, one has
∫

Zp

(1 − x)ndμ−q(x) = 1 + q + q2Ẽn,q−1 . (2.29)
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Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), p-adic analogue
of Bernstein operator of order n for f is given by

Bn

(
f | x) =

n∑

k=0

Bk,n(x)f
(
k

n

)
=

n∑

k=0

f

(
k

n

)(n

k

)
xk(1 − x)n−k, (2.30)

where n, k ∈ Z+ (see [1, 6, 7]).
For n, k ∈ Z+, p-adic Bernstein polynomial of degree n is defined by

Bk,n(x) =

(
n

k

)
xk(1 − x)n−k, x ∈ Zp (2.31)

(see [1, 6, 7]).
Let us take the fermionic p-adic q-integral on Zp for one Bernstein polynomials in

(2.31) as follows:

∫

Zp

Bk,n(x)dμ−q(x) =

(
n

k

)∫

Zp

xk(1 − x)n−kdμ−q(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)
(−1)l

∫
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xk+ldμ−q(x)

=

(
n

k

)
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(
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l

)
(−1)lẼk+l,q.

(2.32)

By simple calculation, we easily get

∫

Zp

Bk,n(x)dμ−q(x) =
∫

Zp

Bn−k,n(1 − x)dμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)
(−1)k+l

∫

Zp

(1 − x)n−ldμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)
(−1)k+l

(
1 + q + q2Ẽn−l,q−1

)

=

(
n

k

)
k∑

l=0

(
k

l

)
(−1)k+lq2Ẽn−l,q−1 + [2]q

(
n

k

)
(−1)kδ0,k if n > k.

(2.33)

Therefore, by (2.32) and (2.33), we obtain the following theorem.

Theorem 2.8. For n ∈ Z+ with n > k > 0, one has

n−k∑

l=0

(
n − k

l

)
(−1)lẼk+l,q =

k∑

l=0

(
k

l

)
(−1)k+lq2Ẽn−l,q−1 . (2.34)
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In particular, k = 0, we get

n∑

l=0

(
n

l

)
(−1)lẼl,q = q2Ẽn,q−1 + [2]q. (2.35)

By Theorems 2.1 and 2.2, we get

n−k∑

l=0

(
n − k

l

)
(−1)lHk+l

(
−q−1

)
=

k∑

l=0

(
k

l

)
(−1)k+lq2Hn−l

(−q), (2.36)

where n, k ∈ Z+ with n > k > 0.
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