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Recently, we have proved a main theorem dealing with the absolute Nörlund summability factors
of infinite series by using δ-quasimonotone sequences. In this paper, we prove that result under
weaker conditions. A new result has also been obtained.

1. Introduction

A positive sequence (bn) is said to be almost increasing if there exist a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]).
Obviously, every increasing sequence is almost increasing. However, the converse need not
be true as can be seen by taking an example, say bn = ne(−1)

n

. A sequence (dn) is said to be
δ-quasimonotone if dn > 0 ultimately andΔdn = dn−dn+1 ≥ −δn, where δ = (δn) is a sequence
of positive numbers (see [2]). Let

∑
an be a given infinite series with the sequence of partial

sums (sn) and wn = nan. By uα
n and tαn, we denote the nth Cesàro means of order α, with

α > −1, of the sequences (sn) and (nan), respectively, that is,

uα
n =

1
Aα

n

n∑

v=0

Aα−1
n−vsv, (1.1)

tαn =
1
Aα

n

n∑

v=1

Aα−1
n−vvav, (1.2)

where

Aα
n =
(
n + α
n

)

=
(α + 1)(α + 2) · · · (α + n)

n!
= O(nα), Aα

−n = 0 for n > 0. (1.3)
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The series
∑

an is said to be summable |C, α|k, k ≥ 1, if (see [3])

∞∑

n=1

nk−1∣∣uα
n − uα

n−1
∣
∣k =

∞∑

n=1

1
n
|tαn|k < ∞. (1.4)

If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability.
Let (pn) be a sequence of constants, real or complex, and let us write

Pn = p0 + p1 + p2 + · · · + pn /= 0, (n ≥ 0). (1.5)

The sequence-to-sequence transformation

Vn =
1
Pn

n∑

v=0

pn−vsv (1.6)

defines the sequence (Vn) of the Nörlund mean of the sequence (sn), generated by the
sequence of coefficients (pn). The series

∑
an is said to be summable |N,pn|k, k ≥ 1, if (see

[4])

∞∑

n=1

nk−1|Vn − Vn−1|k < ∞. (1.7)

In the special case when

pn =
Γ(n + α)

Γ(α)Γ(n + 1)
, α ≥ 0, (1.8)

the Nörlund mean reduces to the (C, α) mean and |N,pn|k summability becomes |C, α|k
summability. For pn = 1, we get the (C, 1)mean and then |N,pn|k summability becomes |C, 1|k
summability. Also, if we take k = 1, then we get |N,pn| summability. For any sequence (λn),
wewriteΔλn = λn−λn+1. Quite recently, in [5], we have proved the following theorem dealing
with the absolute Nörlund summability factors of infinite series.

Theorem A. Let p0 > 0, pn ≥ 0, and (pn) be a nonincreasing sequence. Let (Xn) be an almost
increasing sequence such that |ΔXn| = O(Xn/n) and (λn) is a sequence such that

|λn|Xn = O(1) as n −→ ∞. (1.9)

Suppose also that there exists a sequence of numbers (An) such that it is δ-quasimonotone with
∑

nδnXn < ∞,
∑

AnXn is convergent, and |Δλn| ≤ |An| for all n. If the sequence (wα
n) defined

by (see [6])

wα
n =

⎧
⎨

⎩

|tαn|, α = 1,
max
1≤v≤n

|tαv|, 0 < α < 1, (1.10)
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satisfies the condition

m∑

n=1

(wα
n)

k

n
= O(Xm) as m −→ ∞, (1.11)

then the series
∑

anPnλn(n + 1)−1 is summable |N,pn|k, k ≥ 1.

2. The Main Results

The aim of this paper is to prove Theorem A under weaker conditions. We will prove the
following theorems.

Theorem 2.1. If the sequences (Xn), (An), and (λn) are as in Theorem A and if conditions (1.9) and

m∑

n=1

(wα
n)

k

nXk−1
n

= O(Xm) as m −→ ∞ (2.1)

are satisfied, then the series
∑

anλn is summable |C, α|k, 0 < α ≤ 1 and k ≥ 1.

Theorem 2.2. Let (pn) be as in Theorem A. If the sequences (Xn), (An), and (λn) are as in Theorem A
and if conditions (1.9) and (2.1) are satisfied, then the series

∑
anPnλn(n+1)

−1 is summable |N,pn|k,
k ≥ 1.

Remark 2.3. The following sequences satisfy the conditions of the theorems:

δn =
1
n3

, An =
1
n2

, λn =
1
n
, Xn = nε, 0 < ε < 1. (2.2)

Remark 2.4. It should be noted that condition (2.1) is the same as condition (1.11)when k = 1.
When k > 1, condition (2.1) is weaker than condition (1.11), but the converse is not true. In
fact, if (1.11) is satisfied, then we get that

m∑

n=1

(wα
n)

k

n Xk−1
n

= O

(
1

Xk−1
1

)
m∑

n=1

(wα
n)

k

n
= O(Xm). (2.3)

To show that the converse is false when k > 1, the following example is sufficient. We can
take Xn = nε, 0 < ε < 1, and then construct a sequence (an) such that

(wα
n)

k

nXn
k−1 = Xn −Xn−1, (2.4)

whence

m∑

n=1

(wα
n)

k

nXn
k−1 = Xm = mε, (2.5)
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and so

m∑

n=1

(wα
n)

k

n
=

m∑

n=1

(Xn −Xn−1)Xk−1
n =

m∑

n=1

(
nε − (n − 1)ε

)
nε(k−1)

≥ ε
m∑

n=1

(n − 1)ε−1nε(k−1)

= ε
m∑

n=1

(n − 1)εk−1 ∼ mεk

k
as m −→ ∞.

(2.6)

This is because vε−1 ≥ nε−1 for n − 1 ≤ v ≤ n.
This shows that, when k > 1, (1.11) implies (2.1) but not conversely.
We need the following lemmas for the proof of our theorem.

Lemma 2.5 (see [7]). If 0 < α ≤ 1 and 1 ≤ v ≤ n, then

∣
∣
∣
∣
∣
∣

v∑

p=0

Aα−1
n−pap

∣
∣
∣
∣
∣
∣
≤ max

1≤m≤v

∣
∣
∣
∣
∣
∣

m∑

p=0

Aα−1
m−pap

∣
∣
∣
∣
∣
∣
. (2.7)

Lemma 2.6 (see [8]). If −1 < α ≤ β, k > 1 and the series
∑

an is summable |C, α|k, then it is also
summable |C, β|k.

Lemma 2.7 (see [9]). Let (Xn) be an almost increasing sequence such that n|ΔXn| = O(Xn).
If (An) is a δ-quasimonotone with

∑
nδnXn < ∞,

∑
AnXn is convergent, then

nAnXn = O(1) as n −→ ∞,

∞∑

n=1

nXn|ΔAn| < ∞.
(2.8)

Lemma 2.8 (see [10]). Let p0 > 0, pn ≥ 0, and (pn) be a nonincreasing sequence. If the series
∑

an

is summable |C, 1|k, then the series
∑

anPn(n + 1)−1 is summable |N,pn|k, k ≥ 1.

3. Proof of Theorem 2.1

Let (Tα
n ) be the nth (C, α), with 0 < α ≤ 1, mean of the sequence (nanλn). Then, by (1.2), we

have

Tα
n =

1
Aα

n

n∑

v=1

Aα−1
n−vvavλv. (3.1)



Abstract and Applied Analysis 5

First applying Abel’s transformation and then using Lemma 2.5, we have that

Tα
n =

1
Aα

n

n−1∑

v=1

Δλv
v∑

p=1

Aα−1
n−ppap +

λn
Aα

n

n∑

v=1

Aα−1
n−vvav, (3.2)

|Tα
n | ≤

1
Aα

n

n−1∑

v=1

|Δλv|
∣
∣
∣
∣
∣
∣

v∑

p=1

Aα−1
n−ppap

∣
∣
∣
∣
∣
∣
+
|λn|
Aα

n

∣
∣
∣
∣
∣

n∑

v=1

Aα−1
n−vvav

∣
∣
∣
∣
∣

≤ 1
Aα

n

n−1∑

v=1

Aα
vw

α
v |Δλv| + |λn|wα

n

= Tα
n,1 + Tα

n,2.

(3.3)

To complete the proof of Theorem 2.1, by Minkowski’s inequality, it is sufficient to show that

∞∑

n=1

n−1∣∣Tα
n,r

∣
∣k < ∞ for r = 1, 2. (3.4)

Whenever k > 1, we can apply Hölder’s inequality with indices k and k′, where (1/k) +
(1/k′) = 1, we get that

m+1∑

n=2

n−1
∣
∣
∣Tα

n,1

∣
∣
∣
k ≤

m+1∑

n=2

n−1(Aα
n)

−k
{

m∑

v=1

Aα
vw

α
v |Δλv|

}k

≤
m+1∑

n=2

n−1−αk
{

n−1∑

v=1

vαk(wα
v)

k|Av|k
}

×
{

n−1∑

v=1

1

}k−1

= O(1)
m∑

v=1

vαk(wα
v)

k|Av||Av|k−1
m+1∑

n=v+1

1
n2+(α−1)k

= O(1)
m∑

v=1

vαk(wα
v)

k|Av| 1

(v Xv)k−1

∫∞

v

dx

x2+(α−1)k

= O(1)
m∑

v=1

v|Av|
(wα

v)
k

v Xk−1
v

= O(1)
m−1∑

v=1

Δ(v|Av|)
v∑

r=1

(wα
r )

k

r Xk−1
r

+O(1)m|Am|
m∑

v=1

(wα
v)

k

v Xk−1
v

= O(1)
m−1∑

v=1

|Δ(v|Av|)|Xv

+O(1)m|Am|Xm = O(1)
m−1∑

v=1

v|ΔAv|Xv +O(1)
m∑

v=1

|Av|Xv

+O(1)m|Am|Xm = O(1) as m −→ ∞,

(3.5)
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by virtue of the hypotheses of Theorem 2.1 and Lemma 2.7. Again, we have that

m∑

n=1

n−1
∣
∣
∣Tα

n,2

∣
∣
∣
k
= O(1)

m∑

n=1

|λn||λn|k−1
(wα

n)
k

n

= O(1)
m∑

n=1

|λn|
(wα

n)
k

n Xk−1
n

= O(1)
m−1∑

n=1

Δ|λn|
n∑

v=1

(wα
v)

k

v Xk−1
v

+O(1)|λm|
m∑

n=1

(wα
n)

k

n Xk−1
n

= O(1)
m−1∑

n=1

|Δλn|Xn

+O(1)|λm|Xm = O(1)
m−1∑

n=1

|An|Xn +O(1)|λm|Xm

= O(1) as m −→ ∞,

(3.6)

by virtue of the hypotheses of Theorem 2.1. This completes the proof of Theorem 2.1. If we
take α = 1, then we get a new result dealing with |C, 1|k summability factors.

Proof of Theorem 2.2. In order to prove Theorem 2.2, we need to consider only the special case
in which (N,pn) is (C, α). Therefore, Theorem 2.2 will then follow by means of Theorem 2.1,
Lemma 2.6 (for β = 1), and Lemma 2.8. If we take α = 1, then we get a new result for the
absolute Nörlund summability factors of infinite series.
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[2] R. P. Boas, “Quasi-positive sequences and trigonometric series,” Proceedings of the LondonMathematical
Society, vol. 14, pp. 38–46, 1965.

[3] T. M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley,”
Proceedings of the London Mathematical Society, vol. 7, pp. 113–141, 1957.

[4] D. Borwein and F. P. Cass, “Strong Nörlund summability,” Mathematische Zeitschrift, vol. 103, pp. 94–
111, 1968.

[5] H. Bor, “A new application of δ-quasi-monotone and almost increasing sequences,” Computers &
Mathematics with Applications, vol. 61, no. 9, pp. 2899–2902, 2011.

[6] T. Pati, “The summability factors of infinite series,” Duke Mathematical Journal, vol. 21, pp. 271–284,
1954.

[7] L. S. Bosanquet, “A mean value theorem,” Journal of the London Mathematical Society, vol. 16, pp. 146–
148, 1941.

[8] M. R. Mehdi, Linear transformations between the Banach spaces Lp and lp with applications to absolute
summability [Ph.D. thesis], University College and Birkbeck College, London, UK, 1959.

[9] H. Bor, “An application of almost increasing and δ-quasi-monotone sequences,” Journal of Inequalities
in Pure and Applied Mathematics, vol. 3, article 16, 2002.

[10] R. S. Varma, “On the absolute Nörlund summability factors,” Rivista di Matematica della Università di
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