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We consider the nonlinear eigenvalue problems for the equation −u′′
(t) + sinu(t) = λu(t), u(t) > 0,

t ∈ I =: (0, 1), u(0) = u(1) = 0, where λ > 0 is a parameter. It is known that for a given ξ > 0,
there exists a unique solution pair (uξ, λ(ξ)) ∈ C2(I) × R+ with ‖uξ‖∞ = ξ. We establish the precise
asymptotic formulas for bifurcation curve λ(ξ) as ξ → ∞ and ξ → 0 to see how the oscillation
property of sinu has effect on the behavior of λ(ξ). We also establish the precise asymptotic formula
for bifurcation curve λ(α) (α = ‖uλ‖2) to show the difference between λ(ξ) and λ(α).

1. Introduction

We consider the following nonlinear eigenvalue problem:

−u′′(t) + sinu(t) = λu(t), t ∈ I =: (0, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(0) = u(1) = 0, (1.3)

where λ > 0 is a parameter. This problem comes from sine-Gordon equation and has been
investigated from a view point of bifurcation theory in L∞-framework. Indeed, by using
implicit function theorem, it has been shown in [1] that for ξ > 0, there exists a continuous
function λ = λ(ξ) such that (uξ, λ(ξ)) ∈ C2(I) × R+ satisfies (1.1)–(1.3) with ‖uξ‖∞ = ξ.
Moreover, the solution set of of (1.1)–(1.3) is given by Γ := {(uξ, λ(ξ)) ∈ C2(I) × R+; ξ > 0}.
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Furthermore, it is well known that uξ(t) ∼ ξ sinπt for ξ � 1 and 0 < ξ 	 1. Therefore, we
have

λ(ξ) −→ π2 (ξ −→ ∞), (1.4)

λ(ξ) −→ π2 + 1 (ξ −→ 0). (1.5)

Equations (1.1)–(1.3) are the special case of the following semilinear equation:

−u′′(t) + f(u(t)) = λu(t), t ∈ I, (1.6)

u(t) > 0, t ∈ I, (1.7)

u(0) = u(1) = 0. (1.8)

The structures of the global behavior of the bifurcation curves of (1.6)–(1.8) have been studied
by many authors in L∞-framework. We refer to [2–6] and the references therein. In particular,
if f(u)/u is strictly increasing as u → ∞, then we know from [3] that λ(ξ) is also strictly
increasing for ξ > 0 and the asymptotic behavior of λ(ξ) as ξ → ∞ is mainly determined by
f(ξ)/ξ. For example, if f(u) = up (p > 1) in (1.6), then as ξ → ∞ (cf. [7]),

λ(ξ) = ξp−1 +O
(
e−δ

√
ξ
)
, (1.9)

where δ > 0 is a constant. However, since (sinu)/u is not strictly increasing but oscillating
as a function of u ≥ 0, it is interesting to study whether the oscillation property of sinu has
effect on the asymptotic shape of λ(ξ) for ξ > 0 or not.

Motivated by this, we first establish the precise asymptotic formula for λ(ξ) as ξ → ∞.

Theorem 1.1. As ξ → ∞,

λ(ξ) = π2 + 2

√
2
π
ξ−3/2 cos

(
ξ − 3

4
π

)

+ 2

√
2
π
ξ−5/2

{
−3
8
sin

(
ξ − 3

4
π

)
− 1√

2π2
cos

(
2ξ − 1

4
π

)

+
1
π2

cos ξ cos
(
ξ − 1

4
π

)}
+ o

(
ξ−5/2

)
.

(1.10)

The local behavior of λ(ξ) as ξ → 0 can be obtained formally by the method in [8].
However, it seems rather hard task to obtain the higher terms of the asymptotic expansion
of λ(ξ), since it is necessary to solve the equations derived from the asymptotic expansion of
λ(ξ) step by step.

Here, we introduce a simpler way on how to obtain the asymptotic expansion formula
for λ(ξ) as ξ → 0.



Abstract and Applied Analysis 3

Theorem 1.2. Let an arbitrary integerN > 0 be fixed. Then as ξ → 0,

λ = π2 + 1 − 1
8
ξ2 +

1
192

(
1 +

1
8π2

)
ξ4 +

N∑
n=3

anξ
2n + o

(
ξ2N

)
, (1.11)

where {an} (n = 3, 4, . . .) are the constants determined inductively.

Next, since (1.1)–(1.3) is regarded as an eigenvalue problem, we focus our attention
on studying the structure of the solution set in L2-framework. Suppose that f(u) = up(p > 1)
in (1.6). Then we know from [9] that, for a given α > 0, there exists a unique solution pair
(uα, λ(α)) ∈ C2(I) × R+ of (1.6)–(1.8) satisfying ‖uα‖2 = α. Furthermore, λ(α) is an increasing
function of α > 0 and as α → ∞,

λ(α) = αp−1 + C0α
(p−1)/2 +O(1). (1.12)

We see from (1.9) and (1.12) the difference between the asymptotic formulas for λ(ξ)
and λ(α)when f(u) = up in (1.6). We refer to [4, 7, 9] for the works in this direction.

Motivated by this, it seems interesting to compare the asymptotic behavior of λ(α) and
λ(ξ) of (1.1)–(1.3) when ξ � 1 and α � 1.

Now we consider (1.1)–(1.3) in L2-framework. Let α > 0 be a given constant. Assume
that there exists a solution pair (uα, λ(α)) ∈ C2(I)×R+ satisfying ‖uα‖2 = α. Then, it is natural
to expect that for t ∈ I, as α → ∞,

uα(t)
α

−→
√
2 sinπt. (1.13)

Therefore, we expect that ‖uα‖∞ ∼ √
2 ‖uα‖2 for α � 1. To obtain the existence, we apply

the variational method to our situation, namely, we consider the constrained minimization
problem associated with (1.1)–(1.3). Let

Mα :=
{
v ∈ H1

0(I) : ‖v‖2 = α
}
, (1.14)

where ‖v‖2 is the usual L2-norm of v, α > 0 is a parameter, andH1
0(I) is the usual real Sobolev

space. Then consider the following minimizing problem, which depends on α > 0:

Minimize K(v) :=
1
2
∥∥v′∥∥2

2 +
∫

I

(1 − cosv(t))dt under the constraint v ∈ Mα. (1.15)

Let

β(α) := min
v∈Mα

K(v). (1.16)

Then by Lagrange multiplier theorem, for a given α > 0, there exists a pair (uα, λ(α)) ∈ Mα ×
R+ which satisfies (1.1)–(1.3) with K(uα) = β(α). Here, λ(α), which is called the variational
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eigenvalue, is the Lagrange multiplier. By this variational framework, we parameterize the
solution (u, λ) of (1.1)–(1.3) by α, that is, (u, λ) = (uα, λ(α)) ∈ Mα × R+. Then we know from
the arguments in [10, 11] that λ(α) is continuous function for 0 < α 	 1 and α � 1. Our next
aim is to study precisely the asymptotic behavior of λ(α) as α → ∞.

Theorem 1.3. As α → ∞

λ(α) = π2 + 23/4π−1/2α−3/2 cos
(√

2α − 3
4
π

)

− π−3α−2 sin
(√

2α − 3
4
π

)
cos

(√
2α − 3

4
π

)

+ 21/4π−1/2α−5/2
{
−3
8
sin

(√
2α − 3

4
π

)
− 1√

2π2
cos

(
2
√
2α − 1

4
π

)

+
1
π2

cos
(√

2α
)
cos

(√
2α − 1

4
π

)
− 1
4
π−5cos3

(√
2α − 3

4
π

)}

+ o
(
α−5/2

)
.

(1.17)

By Theorems 1.1 and 1.3, we clearly understand the difference between λ(ξ) and λ(α).
The remainder of this paper is organized as follows. In Section 2, we prove

Theorem 1.1. We prove Theorem 1.2 in Section 3. Section 4 is devoted to the proof of
Theorem 1.3.

2. Proof of Theorem 1.1

Inwhat follows,C denotes various positive constants independent of ξ � 1.Wewrite λ = λ(ξ)
for simplicity. We know from [1] that if (uξ, λ(ξ)) ∈ C2(I) × R+ satisfies (1.1)–(1.3), then

uξ(t) = uξ(1 − t), 0 ≤ t ≤ 1, (2.1)

uξ

(
1
2

)
= max

0≤t≤1
uξ(t) = ξ, (2.2)

u′
ξ(t) > 0, 0 ≤ t <

1
2
. (2.3)

By (1.1), for t ∈ I,

[
u′′
ξ(t) + λuξ(t) − sinuξ(t)

]
u′
ξ(t) = 0. (2.4)

This implies that for t ∈ I,

d

dt

[
1
2
u′
ξ(t)

2 +
1
2
λuξ(t)

2 + cosuξ(t)
]
= 0. (2.5)
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By this, (2.2) and putting t = 1/2, we obtain

1
2
u′
ξ(t)

2 +
1
2
λuξ(t)

2 + cosuξ(t) ≡ constant =
1
2
λξ2 + cos ξ. (2.6)

By this and (2.3), for 0 ≤ t ≤ 1/2,

u′
ξ(t) =

√
λ
(
ξ2 − uξ(t)

2
)
+ 2

(
cos ξ − cosuξ(t)

)
. (2.7)

Then by putting s = uξ(t)/ξ, we obtain

1
2
=
∫1/2

0
dt =

∫1/2

0

u′
ξ(t)√

λ
(
ξ2 − uξ(t)

2
)
+ 2

(
cos ξ − cosuξ(t)

)dt

=
1√
λ

∫1

0

1√
1 − s2 + 2(cos ξ − cos ξs)/(λξ2)

ds

=
1√
λ

{∫1

0

1√
1 − s2

ds +

(∫1

0

1√
1 − s2 + B

ds −
∫1

0

1√
1 − s2

ds

)}

=
1√
λ

(π
2
+ V

)
,

(2.8)

where

V := −
∫1

0

B
√
1 − s2 + B

√
1 − s2

(√
1 − s2 + B +

√
1 − s2

)ds, (2.9)

B :=
2
λξ2

(cos ξ − cos ξs). (2.10)

We put

V1 = − 1
λξ2

∫1

0

cos ξ − cos ξs

(1 − s2)3/2
ds, (2.11)

V2 = V − V1. (2.12)

Lemma 2.1. For ξ � 1

V1 =
√

π

2
1

λξ3/2

[(
1 +

15
128ξ2

(1 + o(1))
)
cos

(
ξ − 3

4
π

)

− 3
8ξ

(1 + o(1)) sin
(
ξ − 3

4
π

)]
.

(2.13)
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Proof. By putting s = sin θ in (2.11), integration by parts and l’Hopital’s rule,

−V1 =
1
λξ2

∫π/2

0

1
cos2θ

(cos ξ − cos(ξ sin θ))dθ

=
1
λξ2

∫π/2

0
(tan θ)′(cos ξ − cos(ξ sin θ))dθ

=
1
λξ2

lim
t→π/2

[tan t(cos ξ − cos(ξ sin t))]t0

− 1
λξ

∫π/2

0
tan θ cos θ sin(ξ sin θ)dθ

= − 1
λξ

∫π/2

0
sin θ sin(ξ sin θ)dθ.

(2.14)

By [12, page 962],

∫π/2

0
sin θ sin(ξ sin θ)dθ =

π

2
J1(ξ), (2.15)

where J1(ξ) is Bessel function of the first kind. For ξ � 1, by [12, page 972], we have

J1(ξ) =

√
2
πξ

[(
1 +

15
128ξ2

(1 + o(1))
)
cos

(
ξ − 3

4
π

)

− 3
8ξ

(1 + o(1)) sin
(
ξ − 3

4
π

)]
.

(2.16)

By this, (2.14) and (2.15), we obtain (2.13). Thus, the proof is complete.

Remark 2.2. Taking (1.4) into account, (2.13) is written as

V1 = 2−1/2π−3/2ξ−3/2(1 + o(1))
[(

1 +
15

128ξ2
(1 + o(1))

)
cos

(
ξ − 3

4
π

)

− 3
8ξ

(1 + o(1)) sin
(
ξ − 3

4
π

)]
.

(2.17)

After we obtain (2.31) later, then (2.13) will be improved in the form (2.32).

Lemma 2.3. For ξ � 1,

V2 = −2−1/2π−7/2(1 + o(1))ξ−5/2
{

1√
2
cos

(
2ξ − 1

4
π

)
− cos ξ cos

(
ξ − 1

4
π

)}

+ o
(
ξ−5/2

)
.

(2.18)
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Proof. For ξ � 1 and 0 ≤ s ≤ 1, by mean value theorem,

|B| ≤ Cξ−1(1 − s) ≤ Cξ−1
(
1 − s2

)
. (2.19)

By this and Lebesgue’s convergence theorem, we have

V2 = − 2
λξ2

∫1

0

cos ξ − cos ξs√
1 − s2

×

⎛
⎜⎝ 1

√
1 − s2 + B

(√
1 − s2 + B +

√
1 − s2

) − 1
√
1 − s2

(
2
√
1 − s2

)

⎞
⎟⎠ds

= −(1 + o(1))
2
λξ2

∫1

0

cos ξ − cos ξs√
1 − s2

×
2
(
1 − s2

) −
(
1 − s2 + B +

√
1 − s2

√
1 − s2 + B

)

√
1 − s2 + B

(√
1 − s2 + B +

√
1 − s2

)√
1 − s22

√
1 − s2

ds

= −(1 + o(1))
2
λξ2

∫1

0

cos ξ − cos ξs√
1 − s2

· 1 − s2 − B −
√
1 − s2

√
1 − s2 + B

4(1 − s2)2
ds

= −(1 + o(1))
1

2λξ2

∫1

0

cos ξ − cos ξs√
1 − s2

· (1 − s2 − B)2 − (1 − s2
)(
1 − s2 + B

)

(1 − s2)2
[
(1 − s2 − B) +

√
1 − s2

√
1 − s2 + B

]ds

=
3
4
(1 + o(1))

1
λξ2

∫1

0

cos ξ − cos ξs√
1 − s2

·
(
1 − s2

)
B

(1 − s2)3
ds

=
3
2
(1 + o(1))

1
λ2ξ4

∫1

0

(cos ξ − cos ξs)2

(1 − s2)5/2
ds

=
3
2
(1 + o(1))

1
λ2ξ4

∫π/2

0

(cos ξ − cos (ξ sin θ))2

cos4 θ
dθ

=
3
2
(1 + o(1))

1
λ2ξ4

V3,

(2.20)

where

V3 :=
∫π/2

0

(cos ξ − cos(ξ sin θ))2

cos4 θ
dθ. (2.21)

We know

∫
1

cos4 θ
dθ =

1
3
sin θ

(
1

cos3 θ
+

2
cos θ

)
. (2.22)



8 Abstract and Applied Analysis

Taking (2.22) into account and integration by parts in V3, we obtain that

V3 = lim
θ→π/2

[
1
3
sin θ

(
1

cos3 θ
+

2
cos θ

)
(cos ξ − cos(ξ sin θ))2

]θ
0

− 2
3
ξ

∫π/2

0
sin θ

(
1

cos2 θ
+ 2

)
(cos ξ − cos(ξ sin θ)) sin(ξ sin θ)dθ

:=
1
3
V4 − 2

3
ξ(V5 + V6),

(2.23)

where

V4 := lim
θ→π/2

sin θ
(

1
cos3θ

+
2

cos θ

)
(cos ξ − cos(ξ sin θ))2 (2.24)

V5 :=
∫π/2

0

sin θ
cos2θ

(cos ξ − cos(ξ sin θ)) sin(ξ sin θ)dθ, (2.25)

V6 := 2
∫π/2

0
sin θ(cos ξ − cos(ξ sin θ)) sin(ξ sin θ)dθ. (2.26)

Then by l’Hopital’s rule,

V4 = lim
θ→π/2

sin θ
(

1
cos3θ

+
2

cos θ

)
(cos ξ − cos(ξ sin θ))2

= lim
θ→π/2

(
1 + 2 cos2θ

)
(cos θ − cos(ξ sin θ))2

cos3θ

= lim
θ→π/2

(cos ξ − cos(ξ sin θ))2

cos3θ

= lim
θ→π/2

− 2 ξ(cos ξ − cos(ξ sin θ)) sin(ξ sin θ)
3 cos θ sin θ

= lim
θ→π/2

− 2 ξ sin ξ
3

(cos ξ − cos(ξ sin θ))
cos θ sin θ

= lim
θ→π/2

− 2 ξ2 sin ξ
3

sin(ξ sin θ) cos θ
cos(2θ)

= 0.

(2.27)

We next calculate V5. We know from [12, pages 442 and 972] that for z � 1,

∫π/2

0
cos(z cos θ)dθ =

π

2
J0(z)

=
√

π

2
(1 + o(1))z−1/2 cos

(
z − 1

4
π

)
,

(2.28)
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where J0(z) is Bessel function. Integration by parts in (2.25), applying the l’Hopital’s rule,
putting θ = π/2 − η and taking (2.28) into account, we obtain

V5 = lim
θ→π/2

[
1

cos θ
(cos ξ − cos(ξ sin θ))sin(ξ sin θ)

]θ
0

− ξ

∫π/2

0

(
sin2(ξ sin θ) + cos ξ cos(ξ sin θ) − cos2(ξ sin θ)

)
dθ

= ξ

∫π/2

0
cos(2ξ sin θ)dθ − ξ cos ξ

∫π/2

0
cos(ξ sin θ)dθ

= ξ

∫π/2

0
cos

(
2ξ cosη

)
dη − ξ cos ξ

∫π/2

0
cos

(
ξ cosη

)
dη

=
√

π

2
ξ1/2(1 + o(1))

(
1√
2
cos

(
2ξ − 1

4
π

)
− cos ξ cos

(
ξ − 1

4
π

))
.

(2.29)

Clearly,

V6 = O(1). (2.30)

By (1.4), (2.20), (2.23), (2.27), (2.29), and (2.30), we obtain (2.18). Thus the proof is complete.

Proof of Theorem 1.1. By (2.8), Lemmas 2.1 and 2.3,

λ = π2 + 4πV + 4V 2 = π2 + 4πV1 +O
(
ξ−5/2

)
= π2 +O

(
ξ−3/2

)
. (2.31)

By this and Lemma 2.1,

V1 =
√

π

2
1

ξ3/2

(
π2 +O(ξ−3/2)

)−1

×
(
cos

(
ξ − 3

4
π

)
− 3
8
(1 + o(1))ξ−1 sin

(
ξ − 3

4
π

)
+O

(
ξ−2

))

= 2−1/2π−3/2ξ−3/2
(
cos

(
ξ − 3

4
π

)
− 3
8
ξ−1 sin

(
ξ − 3

4
π

))
+ o

(
ξ−5/2

)
.

(2.32)



10 Abstract and Applied Analysis

By this, (2.31) and Lemmas 2.1 and 2.3,

λ = π2 + 4π(V1 + V2) +O
(
V 2

)

= π2 + 4π
{
2−1/2π−3/2ξ−3/2

(
cos

(
ξ − 3

4
π

)
− 3
8
ξ−1 sin

(
ξ − 3

4
π

))

−2−1/2π−7/2ξ−5/2
(

1√
2
cos

(
2ξ − 1

4
π

)
− cos ξ cos

(
ξ − 1

4
π

))}

+ o
(
ξ−5/2

)
.

(2.33)

By this, we obtain (1.10). Thus, the proof is complete.

3. Proof of Theorem 1.2

We write λ = λ(ξ) for simplicity. We prove (1.11) by showing the calculation to get a2. The
argument to obtain an (n ≥ 3) is the same as that to obtain a2. The argument in this section is
a variant used in [11, Section 2]. By (2.8) and (2.10), we have

1
2
=

1√
λ

∫1

0

1√
1 − s2 + B

ds. (3.1)

Since 0 < ξ 	 1, by Taylor expansion, for 0 ≤ s ≤ 1, we obtain

cos ξ − cos ξs =
∞∑
k=1

(−1)k
(2k)!

ξ2k
(
1 − s2k

)
. (3.2)

By this and (3.1),

√
λ = 2

∫1

0

1√
1 − s2

(
1 +

2
λξ2

1
1 − s2

∞∑
k=1

(−1)k
(2k)!

ξ2k
(
1 − s2k

))−1/2
ds. (3.3)

By using this, direct calculation gives us Theorem 1.2. For completeness, we calculate (1.11)
up to the third term.

Step 1. We have

1 +
2
λξ2

1
1 − s2

∞∑
k=1

(−1)k
(2k)!

ξ2k
(
1 − s2k

)
= 1 − 1

λ
+

1
12λ

1 − s4

1 − s2
ξ2 + o

(
ξ2
)
. (3.4)
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By (3.3), (3.4), and Taylor expansion,

√
λ = 2

∫1

0

1√
1 − s2

(
1 − 1

λ
+

1
12λ

(
1 + s2

)
ξ2 + o

(
ξ2
))−1/2

ds

=
2
√
λ√

λ − 1

∫1

0

1√
1 − s2

(
1 − 1

24(λ − 1)

(
1 + s2

)
ξ2 + o

(
ξ2
))

ds.

(3.5)

By this, (1.5) and direct calculation, we obtain

√
λ − 1 = π − 1

16π
ξ2 + o

(
ξ2
)
. (3.6)

This implies

λ = π2 + 1 − 1
8
ξ2 + o

(
ξ2
)
. (3.7)

Step 2. Now we calculate the third term of λ(ξ). First, we note that

∫1

0

1 + s2 + s4√
1 − s2

ds =
15
16

π,

∫1

0

(1 + s2)2√
1 − s2

ds =
19
16

π. (3.8)

By this, (1.5), (3.3), (3.7), Taylor expansion, and the same calculation as that to obtain (3.5),

√
λ − 1 = 2

∫1

0

1√
1 − s2

{
1 − 1

2

(
1

12(λ − 1)

(
1 + s2

)
ξ2

− 1
360(λ − 1)

(
1 + s2 + s4

)
ξ4
)
+
3
8

1

144(λ − 1)2
(1 + s2)

2
ξ4 + o

(
ξ4
)}

ds

= π − 1
16π

ξ2
(
1 +

1
8π2

ξ2 + o
(
ξ2
))

+
1

360π
15
16

ξ4 +
1

192π3

19
16

ξ4 + o
(
ξ4
)

= π − 1
16π

ξ2 +
1

384π

(
1 − 5

8π2

)
ξ4 + o

(
ξ4
)
.

(3.9)

By this, we obtain (1.11) up to the third term. Thus, the proof is complete.
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4. Proof of Theorem 1.3

In this section, we assume that α � 1. We write λ = λ(α) for simplicity. We consider the
solution pair (λ(α), uα) ∈ R+×Mα. We obtain from the same argument as that in [10, Theorem
1.2] that

uα(t)
α

−→
√
2 sinπt (4.1)

uniformly on [0, 1] as α → ∞. By this, we have

‖uα‖∞ =
√
2α(1 + o(1)). (4.2)

Furthermore, by [13, Lemma 2.4], we see that β(α) is continuous for α > 0. By multiplying uα

by (1.1) and integration by parts, we obtain

λ(α)α2 =
∥∥u′

α

∥∥2
2 +

∫1

0
uα(t) sinuα(t)dt. (4.3)

By this and (1.16), for α � 1,

λ(α)α2 = 2β(α) +
∫1

0
uα(t) sinuα(t)dt − 2

∫1

0
(1 − cosuα(t))dt. (4.4)

This along with (4.1) implies that λ(α) is continuous for α � 1.

Lemma 4.1. For α � 1,

‖uα‖2∞ =
(
1 − 2√

λ

(π
4
+U

))−1
α2, (4.5)

where

U = −
∫1

0

√
1 − s2B

√
1 − s2 + B

(√
1 − s2 + B +

√
1 − s2

)ds. (4.6)
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Proof. By (2.7), (2.10), and putting θ = uα and s = θ/‖uα‖∞,

‖uα‖2∞ − α2 = 2
∫1/2

0

(
‖uα‖2∞ − uα(t)

2
)
u′
α(t)√

λ
(
‖uα‖2∞ − uα(t)

2
)
+ 2(cos ‖uα‖∞ − cosuα(t))

dt

= 2
∫ ‖uα‖∞

0

‖uα‖2∞ − θ2

√
λ
(
‖uα‖2∞ − θ2

)
+ 2(cos ‖uα‖∞ − cos θ)

dθ

= 2
‖uα‖2∞√

λ

∫1

0

1 − s2√
1 − s2 + B

ds

= 2
‖uα‖2∞√

λ

[∫1

0

√
1 − s2ds +

∫1

0

(
1 − s2√
1 − s2 + B

−
√
1 − s2

)
ds

]

= 2
‖uα‖2∞√

λ

(π
4
+U

)
.

(4.7)

Now, the result follows easily from (4.7). Thus, the proof is complete.

Lemma 4.2. For α � 1,

‖uα‖∞ =
√
2α − 2−3/4π−5/2α−1/2 cos

(√
2α − 3

4
π

)
+ o

(
α−1/2

)
. (4.8)

Proof. By (2.10) and (4.6),

|U| ≤ C

λ‖uα‖2∞

∣∣∣∣∣
∫1

0

cos ‖uα‖∞ − cos(‖uα‖∞s)√
1 − s2

ds

∣∣∣∣∣ ≤ C
(
‖uα‖−2∞

)
. (4.9)

By this, (2.8), Lemma 2.1, and Taylor expansion,

1 − 2√
λ

(π
4
+U

)
= 1 − 2(π + 2V )−1

(π
4
+U

)

=
1
2
− 2
π

(
U − V

2
(1 + o(1))

)
=

1
2
+

1
π
V (1 + o(1)).

(4.10)
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By this, (4.5), (2.12), (2.13), (2.18), Taylor expansion, and (4.2),

‖uα‖∞ =
(
1
2
+

1
π
V (1 + o(1))

)−1/2
α

=
√
2
(
1 − 1

π
V (1 + o(1))

)
α

=
√
2α − 2−3/4π−5/2α−1/2 cos

(√
2α − 3

4
π

)
+ o

(
α−1/2

)
.

(4.11)

Thus, the proof is complete.

Proof of Theorem 1.3. By Lemma 4.2, we put

‖uα‖∞ =
√
2α +Aα−1/2 + o

(
α−1/2

)
,

A = −2−3/4π−5/2 cos
(√

2α − 3
4
π

)
.

(4.12)

Then substitute (4.12) for (1.10) and use Taylor expansion to obtain

λ = π2 + 2

√
2
π

(√
2α +Aα−1/2 + o

(
α−1/2

))−3/2
cos

(√
2α +Aα−1/2 + o

(
α−1/2

)
− 3
4
π

)

+ 2

√
2
π

(√
2α
)−5/2{−3

8
sin

(√
2α − 3

4
π

)
− 1√

2π2
cos

(
2
√
2α − 1

4
π

)

+
1
π2

cos
(√

2α
)
cos

(√
2α − 1

4
π

)}
+ o

(
α−5/2

)

= π2 + 23/4π−1/2α−3/2
(
1 +

1√
2
Aα−3/2 + o

(
α−3/2

))−3/2

×
{
cos

(√
2α − 3

4
π

)
cos

(
Aα−1/2(1 + o(1))

)

− sin
(√

2α − 3
4
π

)
sin

(
Aα−1/2(1 + o(1))

)}

+ 2

√
2
π

(√
2α
)−5/2{−3

8
sin

(√
2α − 3

4
π

)
− 1√

2π2
cos

(
2
√
2α − 1

4
π

)

+
1
π2

cos
(√

2α
)
cos

(√
2α − 1

4
π

)}
+ o

(
α−5/2

)
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= π2 + 23/4π−1/2α−3/2
(
1 − 3

2
√
2
Aα−3/2 + o

(
α−3/2

))

×
{(

1 − 1
2
A2α−1(1 + o(1))

)
cos

(√
2α − 3

4
π

)

− Aα−1/2(1 + o(1)) sin
(√

2α − 3
4
π

)}

+ 21/4π−1/2α−5/2
{
−3
8
sin

(√
2α − 3

4
π

)
− 1√

2π2
cos

(
2
√
2α − 1

4
π

)

+
1
π2

cos
(√

2α
)
cos

(√
2α − 1

4
π

)}
+ o

(
α−5/2

)

= π2 + 23/4π−1/2α−3/2 cos
(√

2α − 3
4
π

)

− π−3α−2 sin
(√

2α − 3
4
π

)
cos

(√
2α − 3

4
π

)

+ 21/4π−1/2α−5/2
{
−3
8
sin

(√
2α − 3

4
π

)
− 1√

2π2
cos

(
2
√
2α − 1

4
π

)

+
1
π2

cos
(√

2α
)
cos

(√
2α − 1

4
π

)
− 1
4
π−5cos3

(√
2α − 3

4
π

)}

+ o
(
α−5/2

)
.

(4.13)

Thus, we obtain (1.17) and the proof is complete.
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