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BP 540, 76058 Le Havre Cedex, France

Correspondence should be addressed to Houda Mokrani, houdamokrani@yahoo.fr

Received 29 October 2011; Accepted 12 December 2011

Academic Editor: Shaher M. Momani

Copyright q 2012 H. Mokrani and F. Mint Aghrabatt. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We discuss the asymptotic behavior of solutions for semilinear parabolic equations on the
Heisenberg group with a singular potential. The singularity is controlled by Hardy’s inequality,
and the nonlinearity is controlled by Sobolev’s inequality.We also establish the existence of a global
branch of the corresponding steady states via the classical Rabinowitz theorem.

1. Introduction

In this paper, we study a class of parabolic equations on the Heisenberg group H
d. Let us

recall that the Heisenberg group is the space R
2d+1 of the (noncommutative) law of product

(
x, y, s

)
·
(
x′, y′, s′

)
=
(
x + x′, y + y′, s + s′ + 2

((
y | x′) −

(
y′ | x

)))
. (1.1)

The left invariant vector fields are

Xj = ∂xj + 2yj∂s, Yj = ∂yj − 2xj∂s, j = 1, . . . , d S = ∂s =
1
4
[
Yj, Xj

]
. (1.2)

In the sequel we will denote, we will denote Zj = Xj and Zj+d = Yj for j ∈ {1, . . . , d}. We fix
here some notations:

z =
(
x, y
)
∈ R

2d, w = (z, s) ∈ H
d, ρ(z, s) =

(
|z|4 + |s|2

)1/4
, (1.3)
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where ρ is the Heisenberg distance. Moreover, the Laplacian-Kohn operator on H
d and

Heisenberg gradient is given by

ΔHd =
n∑

j=1

X2
j + Y 2

j ; ∇Hd = (Z1, . . . , Z2d). (1.4)

Let Ω be an open and bounded domain of H
d, we define thus the associated Sobolev

space as follows

H1
(
Ω,Hd

)
=
{
f ∈ L2(Ω); ∇Hdf ∈ L2(Ω)

}
, (1.5)

and H1
0(Ω,Hd) is the closure of C∞

0 (Ω) inH1(Ω,Hd).
We are concerned in the following semilinear parabolic problem

∂tu −ΔHdu − μ
|z|2

ρ4
u = λu + |u|p−2u, w ∈ Ω, t > 0,

u(w, 0) = u0(w), w ∈ Ω,

u|∂Ω = 0, t > 0,

(1.6)

where λ is a real constant and 2 < p < 2∗; the index 2∗ = 2 + 2/d is the critical index of
Sobolev’s inequality on the Heisenberg group [1, 2]:

‖u‖L2∗ (Ω) ≤ CΩ‖u‖H1(Ω, Hd), ∀u ∈ H1
0

(
Ω,Hd

)
. (1.7)

D’Ambrosio in [3] has proved Hardy’s inequality: let u ∈ H1
0(Ω,Hd), it holds that

μ

∫

Ω

|z|2

ρ(w)4
|u(w)|2dw ≤ ‖∇Hdu‖2L2(Ω). (1.8)

And by the work of Dou et al. [4], we have the following Hardy inequality with remainder
terms for all u ∈ C∞

0 (Ω \ {0}):

1
4

∫

Ω

(
ln
(

R

ρ(w)

))−2 |z|2

ρ(w)4
|u(w)|2dw + μ

∫

Ω

|z|2

ρ(w)4
|u(w)|2dw ≤ ‖∇Hdu‖2L2(Ω), (1.9)

for any R ≥ R0, where R0 = supw∈Ωρ(w), and μ = d2. Moreover μ is optimal and it is not
attained in H1

0(Ω,Hd).
Stimulated by the recent paper in the Euclidean space R

d of Karachalios and
Zographopoulos [5] which studied the global bifurcation of nontrivial equilibrium solutions
on the bounded domain case for a reaction term f(s) = λs − |s|2s, where λ is a bifurcation
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parameter; our focus here is devoted to some results concerning the existence of a global
attractor for the (1.6) and the existence of a global branch of the corresponding steady states

−ΔHdu − μ
|z|2

ρ(w)4
u = λu + |u|p−2u in Ω,

u|∂Ω = 0,

(1.10)

with respect to λ. Let us recall some definitions on semiflows.

Definition 1.1. Let E be a complete metric space, a semiflow is a family of continuous maps
S(t) : E → E, t ≥ 0, satisfying the semigroup identities

S(0) = I, S
(
t + t′

)
= S(t)S

(
t′
)
. (1.11)

For B ⊂ E and t ≥ 0,

S(t)B := {u(t) = S(t)u0;u0 ∈ B}. (1.12)

The positive orbit of u through u0 is the set

γ+(u0) = {u(t) = S(t)u0, t ≥ 0}, (1.13)

then the positive orbit of B is the set γ+(B) = ∪t≥0S(t)B. TheW-limit set of u0 is

W(u0) =
{
φ ∈ E : u

(
tj
)
= S
(
tj
)
u0 −→ φ, tj −→ +∞

}
. (1.14)

The α-limit set of u0 is

α(u0) =
{
φ ∈ E : u

(
tj
)
−→ φ, tj −→ −∞

}
. (1.15)

The subset A attracts a set B if dist(S(t)B,A) → 0, t → +∞. A is invariant if S(t)A = A
and for all t ≥ 0.

The functional J : E → R is a Lyapunov functional for the semiflow S(t) if

(i) J is continuous.

(ii) J(S(t)u0) ≤ J(S(t′)u0) for 0 ≤ t′ ≤ t.

(iii) J(S(t)) is constant for some orbit u and for all t ∈ R.

We have the following theorem from Ball [6, 7].

Theorem 1.2. Let S(t) be an asymptotically compact semiflow, and suppose that there exists a
Lyapunov functional J. Suppose further that the set E is bounded, then S(t) is dissipative, so there
exists a global attractorA(t).

For each complete orbit u containing u0 lying in A(t), the limit sets α(u0) and W(u0) are
connected subsets of E on which J is constant.
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If E is totally disconnected (in particular countable), the limits

φ− = lim
t→−∞

u(t), φ+ = lim
t→+∞

u(t) (1.16)

exist and are equilibrium points. furthermore, any solution S(t)u0 tends to an equilibrium point as
t → ±∞.

The outline of the paper is as follows. In Section 2, we study the existence of an
unbounded connected branch of positive solutions of (1.10) with respect to the parameter
λ by using global bifurcation theorem introduced by López-Gómez and Molina-Meyer in [8].
In Section 3, we describe the asymptotic behavior of solutions of (1.6)when u0 has low energy
smaller than the mountain pass level.

2. Existence of a Global Branch of the Corresponding Steady States

From the study of spectral decomposition of H1
0(Ω,Hd) with respect to the operator −ΔHd −

μ(|z|2/ρ(w)4), where the singular potential V satisfies Hardy’s inequality (1.8), we have the
following.

Proposition 2.1. Let 0 < μ ≤ μ. Then there exist 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → +∞, such
that for each k ≥ 1, the following Dirichlet problem

−ΔHdφk − μ
|z|2

ρ(w)4
φk = λkφk, in Ω

φk

∣∣
∂Ω = 0

(2.1)

admits a nontrivial solution in H1
0(Ω,Hd). Moreover, {φk}k≥1 constitutes an orthonormal basis of

Hilbert spaceH1
0(Ω,Hd).

For the proof of this proposition, we refer to [9].
Remark that the first eigenvalue λ1,μ characterized by

λ1,μ = inf
u∈H1

0(Ω,Hd)\{0}

∫
Ω

(
|∇Hdu(w)|2 − μ

(
|z|2/ρ(w)4

)
|u(w)|2

)
dw

‖u‖2L2(Ω)

, (2.2)

is simple with a positive associated eigenfunction φ1,μ.
We discuss the behavior of λ1,μ when 0 < μ < μ and μ ↑ μ.

Proposition 2.2. Let 0 < μ < μ and μ ↑ μ. Then,

(i) (λ1,μ)μ is a decreasing sequence, and there exist λ∗ > 0 such that λ1,μ → λ∗.

(ii) The corresponding normalized eigenfunction φ1,μ converging weakly to 0, inH1
0(Ω,Hd).

Proof. (i) Let μ1 < μ2. The characterization (2.2) of λ1,μ implies that λ1,μ1 > λ1,μ2 .
The improved Hardy inequality (1.9) implies that λ1,μ is bounded from below by CΩ =

1/4 supΩ(ln(R/ρ(w)))−2(|z|2)/(ρ(w)4). So, there exist λ∗ > 0 such that λ1,μ → λ∗.
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(ii) The eigenfunction φ1,μ satisfies, for any v ∈ C∞
0 (Ω):

∫

Ω
∇Hdφ1,μ∇Hdvdw − μ

∫

Ω

|z|2

ρ(w)4
φ1,μ vdw = λ1,μ

∫

Ω
φ1,μ vdw. (2.3)

We still denote by φ1,μ the sequence of normalized eigenfunction, forming a bounded
sequence inH1

0(Ω,Hd). Then there exists u ∈ H1
0(Ω,Hd) such that

φ1,μ ⇀ u in H1
0

(
Ω,Hd

)
,

φ1,μ → u in Lq(Ω), for any 2 ≤ q < 2∗.
(2.4)

For some fixed small enough ε > 0 and any v ∈ C∞
0 (Ω), we have

∫

Ω

|z|2

ρ(w)4
(
φ1,μ − u

)
vdw ≤ ‖v‖L∞(Ω)

(∫

Ω

∣∣φ1,μ − u
∣∣Q−ε/Q−2−ε

dw

)Q−2−ε/Q−ε

×

⎛

⎝
∫

Ω

(
|z|

ρ(w)2

)Q−ε

dw

⎞

⎠

2/Q−ε

.

(2.5)

Thus,

∫

Ω

|z|2

ρ(w)4
φ1,μ vdw −→

∫

Ω

|z|2

ρ(w)4
uvdw, as μ ↑ μ. (2.6)

We assume that u/= 0, so passing to the limit in (2.3), we get that u is a nontrivial solution of
the problem

−ΔHdu − μ
|z|2

ρ(w)4
u = λ∗u, u ∈ H1

0

(
Ω,Hd

)
. (2.7)

However, μ is not achieved inH1
0(Ω,Hd), so u = 0.

Thanks to Hardy’s inequality (1.8) and Poincaré’s inequality,

‖u‖μ =

(∫

Ω

[

|∇Hdu(w)|2 − μ
|z|2

ρ(w)4
|u(w)|2

]

dw

)1/2

, (2.8)

is equivalent to the norm on H1
0(Ω,Hd) for all 0 ≤ μ < μ, so that we will use ‖ · ‖μ as the

norm of H1
0(Ω,Hd).

Theorem 2.3. Let Ω ∈ H
d a bounded domain and assume that 0 < μ < μ. Then, there exists an

unbounded component C+
λ1,μ

⊂ R × H1
0(Ω,Hd) of the set of positive solutions of (1.10) bifurcating

from (λ1,μ, 0).
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Proof. We introduce the Banach space X = H1
0(Ω,Hd), and the inner product in X is given by

〈u, v〉X ≡
∫

Ω

[

∇Hdu∇Hdv − μ
|z|2

ρ(w)4
uv

]

dw −
λ1,μ

2

∫

Ω
uvdw. (2.9)

Let

a(u, v) =
∫

Ω
uvdw, ∀u, v ∈ X. (2.10)

The bilinear form a(u, v) is continuous in X, so the Riesz representation theorem implies that
there exist a bounded linear operator L such that

a(u, v) = 〈Lu, v〉, ∀u, v ∈ X. (2.11)

The operator L is self-adjoint and compact and its largest eigenvalue is characterized by

ν1 = sup
u∈X

〈Lu, u〉
〈u, u〉X

= sup
u∈X

‖u‖L2(Ω)
∫
Ω

[
|∇Hdu|2 − μ

(
|z|2/ρ(w)4

)
|u|2
]
dw

=
1

λ1,μ
. (2.12)

We define the following energy functional on H1
0(Ω,Hd):

Iμ,λ(u) =
1
2

∫

Ω

[

|∇Hdu|2 − μ
|z|2

ρ(w)4
|u| 2

]

dw − 1
p

∫

Ω
|u|pdw − λ

2

∫

Ω
|u|2dw. (2.13)

Similar to the classical case, Iμ,λ(·) is well defined on H1
0(Ω,Hd) and belongs to

C1(H1
0(Ω,Hd);R), and we have

〈
I ′μ,λ(u), v

〉
=
∫

Ω

[

∇Hdu∇Hdv − μ
|z|2

ρ(w)4
uv − |u|p−2uv − λuv

]

dw, (2.14)

for any v ∈ H1
0(Ω,Hd). Let N(λ, .) : R ×X → X∗, X∗ is the dual space of X, defined as by

〈N(λ, u), v〉 =
∫

Ω

[

∇Hdu∇Hdv − μ
|z|2

ρ(w)4
uv − |u|p−2uv − λuv

]

dw, (2.15)

for all v ∈ X. Since I ′μ,λ(u) is a bounded linear functional, N(λ, ·) is well defined, and
N(λ, u) = u −G(λ, u), where G(λ, u) = λLu +H(u),

〈H(u), v〉 =
∫

Ω
|u|p−2uvdw, ∀v ∈ X. (2.16)
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So,

|〈H(u), v〉| ≤ ‖u‖p−1Lp(Ω)‖v‖Lp(Ω). (2.17)

By Sobolev embedding Sobolev theorem [10], we have

1
‖u‖X

|〈H(u), v〉| ≤ ‖u‖p−2X ‖v‖X. (2.18)

Then,

lim
‖u‖X → 0

‖H(u)‖X∗

‖u‖X
= lim

‖u‖X → 0
sup
‖v‖X≤1

1
‖u‖X

|〈H(u), v〉| = 0. (2.19)

Consequently, hypotheses (HL) and (HR) of [8] are hold. If u ∈ H1
0(Ω,Hd) \ {0} is

a nonnegative solution of (1.10), then it follows from the strong maximum principle of J.-
M. Bony [11] and the generalization of the Hopf boundary point lemma on the Heisenberg
group [12], that u lies in the interior of the cone:

int(P) =
{
u ∈ H1

0

(
Ω,Hd

)
: u > 0 in Ω,

∂u

∂n
< 0 on ∂Ω

}
. (2.20)

Hence, the assumption (HP) of [8] is fulfilled.

Remark 2.4. According to the theory of Rabinowitz [13], we can see that there is a continuum
Cλ1,μ of the set of nontrivial solutions of (1.10), and the continuum Cλ1,μ consists of two
subcontinua C+

λ1,μ
and C−

λ1,μ
. However, this does not necessarily implies that the subcontinuum

C+
λ1,μ

satisfies the global alternative of Rabinowitz [13] by the reasons already explained
by Dancer [14], López-Gómez and Molina-Meyer [8, 15]. Instead, the existence of a
global subcontinuum C+

λ1,μ
of the set of positive solutions follows by slightly adapting [8,

Theorem 1.1].

3. Asymptotic Behavior of Solutions for Problem (1.6)

Similar to [16, 17], we are interested here in the description of the behavior of solutions of
(1.6) when u0 has low energy smaller than the mountain pass level

cμ,λ = inf
h∈Γ

max
t∈[0,1]

Iμ,λ(h(t)), where

Γ =
{
h ∈ C

(
[0, 1];H1

0

(
Ω,Hd

))
;h(0) = 0 and h(1) = e

}
.

(3.1)

In view of [9], since 2 < p < 2∗, the functional Iμ,λ satisfies the Palais-Smale condition and
admits at least a positive solution (called mountain pass solution).
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Proposition 3.1. Let u0 ∈ H1
0(Ω,Hd), λ > 0, and 0 < μ < μ, the problem (1.6) has a unique weak

solution u such that

u ∈ C
(
[0, T);H1

0

(
Ω,Hd

))
∩ C1

(
[0, T);H−1

(
Ω,Hd

))
, (3.2)

and we have

d

dt
Iμ,λ(u(t)) = −‖∂tu‖2L2(Ω). (3.3)

Proof. By means of the Hill-Yosida theorem, T(t) = {e−tLμ}t≥0 is the semigroup generated by
the operator Lμ = −ΔHd − μ|z|2/ρ(z, s)4. Let f the function defined by f(t) = λt + |t|p−2t, for
t ∈ R. Since f : H1

0(Ω,Hd) → H−1(Ω) is locally Lipschitz, so by Pazy [18, Theorem 1.4] or
Cazenave and Haraux [19, Theorem 6.2.2], there exists a unique solution of (1.6) defined on
a maximal interval [0, Tmax), where 0 < Tmax ≤ +∞ and

u ∈ C
(
[0, T);H1

0

(
Ω,Hd

))
∩ C1

(
[0, T);H−1(Ω)

)
, (3.4)

satisfying the variation of constants formula

u(t) = T(t)u0 +
∫ t

0
T(t − τ)f(u(τ)) dτ. (3.5)

Moreover, if Tmax < +∞, we say that Tmax is blow-up time, whereas if Tmax = +∞, we say that
u is global solution.

We will show that u satisfies (3.3): Let u ∈ D(Lμ), (D(Lμ) is the domain of definition
of Lμ), and t ∈ [0, T), T < Tmax. Since Iμ,λ ∈ C1(H1

0(Ω,Hd);R), we have

〈

I ′μ,λ(u),ΔHdu + μ
|z|2

ρ(w)4
u + f(u)

〉

= −
∫

Ω

∣∣∣∣∣
ΔHdu + μ

|z|2

ρ(w)4
u + f(u)

∣∣∣∣∣

2

dw

= −
∫

Ω
|∂tu|2dw.

(3.6)

Set g(t) = f(u(t)), and let gn ∈ C1([0, T];H1
0(Ω,Hd)), u0n ∈ D(Lμ) such that

gn −→ g in C1
(
[0, T];H1

0

(
Ω,Hd

))
,

u0n −→ u0 in H1
0

(
Ω,Hd

)
.

(3.7)

Define un(t) = T(t)u0n +
∫ t
0 T(t − τ)gn(τ)dτ , then, un ∈ C1([0, T];H1

0(Ω,Hd)) and satisfies

∂tun −ΔHdun − μVun = gn un −→ u in H1
0

(
Ω,Hd

)
. (3.8)
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Thus, from (3.6),

Iμ,λ(un(t)) − Iμ,λ(u0n) =
∫ t

0

〈

I ′μ,λ(un(τ)),ΔHdun + μ
|z|2

ρ(w)4
un + gn(τ)

〉

dτ

= −
∫ t

0
‖∂τun(τ)‖2L2(Ω)dτ +

∫ t

0

〈
I ′μ,λ(un(τ)), gn(τ) − f(un(τ))

〉
dτ.

(3.9)

Passing to the limit, we deduce (3.3).

Next, we introduce the following sets:

O+ ≡
{
u ∈ H1

0

(
Ω,Hd

)
: Iμ,λ(u) < cμ,λ;

〈
I ′μ,λ(u), u

〉
> 0
}
,

O− ≡
{
u ∈ H1

0

(
Ω,Hd

)
: Iμ,λ(u) < cμ,λ;

〈
I ′μ,λ(u), u

〉
< 0
}
,

N ≡
{
u ∈ H1

0

(
Ω,Hd

)
:
〈
I ′μ,λ(u), u

〉
= 0
}
.

(3.10)

N is named the Nehari manifold relative to Iμ,λ. The mountain-pass level cμ,λ defined in (3.1)
may also be characterized as

cμ,λ = inf
u∈N

Iμ,λ(u). (3.11)

Theorem 3.2. If there exist t0 ≥ 0 such that Iμ,λ(u(t0)) ≤ 0, then u(t) blows up in finite time.

Proof. Let t0 ≥ 0 such that Iμ,λ(u(t0)) ≤ 0, and we suppose that u(t) is a global solution for the
problem (1.6). Since u(t) satisfy (3.3), we have

Iμ,λ(u(t0)) = Iμ,λ(u(t)) +
∫ t

t0

‖∂τu(τ)‖2L2(Ω)dτ. (3.12)

Set g(t) ≡
∫
Ω |u(t)|2dw, then

d

dt
g(t) =

∫

Ω
u(t)∂tu(t)dw

= −2
∫

Ω

[

|∇Hdu(t)|2 − μ
|z|2

ρ(w)4
|u(t)|2

]

dw

+ 2λ
∫

Ω
|u(t)|2dw + 2

∫

Ω
|u(t)|pdw

= 4
∫ t

t0

‖∂τu(τ)‖2L2(Ω)dτ − 4Iμ,λ(u(t0)) + 2
(
1 − 2

p

)∫

Ω
|u(t)|pdw

≥ 2
(
1 − 2

p

)∫

Ω
|u(t)|pdw > 0.

(3.13)
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Hence, we get for t ≥ t0, g(t) ≥ g(t0) =
∫
Ω |u(t0)|2dw.

Let ε ∈ (1, p/2), so we deduce by (3.13), that for any t ≥ t0:

− 1
ε − 1

d

dt
g1−ε(t) = g−ε(t)

d

dt
g(t)

≥ 2
(
1 − 2

p

)
g−ε(t)

∫

Ω
|u(t)|pdw

≥ Cg−ε(t)
(∫

Ω
|u(t)|2dw

)p/2

≥ C

(∫

Ω
|u(t0)|2dw

)(p/2)−ε
.

(3.14)

Hence, for any t ≥ t0 sufficiently large, we have

0 <

(∫

Ω
|u(t)|2dw

)1−ε
= g1−ε(t)

≤ g1−ε(t0) + C(ε − 1)g(p/2)−ε(t0)(t0 − t).

(3.15)

Then

−1 < C(ε − 1)g(p/2)−1(t0)(t0 − t), (3.16)

and so t < t0 + [C(ε − 1)gp/2−1(t0)]
−1, which is a contradiction.

Theorem 3.3. Assume that u0 ∈ O+ and λ < λ1,μ, then the problem (1.6) admits a global solution
u(t). Moreover, there exists a positive number α such that

‖u(t)‖ = O
(
e−αt
)
, as t → +∞. (3.17)

Proof. Let u0 ∈ O+, and let u(t) = u(w, t, u0) be the unique solution established in
Proposition 3.1. From inequality (3.3), we have that t �→ Iμ,λ(u(t)) is strictly decreasing, so

Iμ,λ(u(t)) ≤ Iμ,λ(u0) ≤ cμ,λ. (3.18)

Suppose there exists t∗ ∈ (0, Tmax) such that u(t∗) /∈ O+. Then,

〈
I ′μ,λ(u(t

∗)), u(t∗)
〉
≤ 0. (3.19)

Moreover, since the application t �→ 〈I ′μ,λ(u(t)), u(t)〉 is continuous, there exists t0 ∈ (0, t∗]
such that

〈
I ′μ,λ(u(t0)), u(t0)

〉
= 0. (3.20)
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Hence, u(t0) = 0 inΩ or u(t0) ∈ N. If u(t0) = 0 inΩ, then by the uniquess of u(t), we conclude
that u(t) = 0 for any t ∈ [t0, Tmax). Thus, u(t) is global by extending to 0 for all t ≥ Tmax, and
so Iμ,λ(u(t)) > 0 for any t ≥ 0 by Theorem 3.2. But Iμ,λ(u(t0)) = 0, which is a contradiction. So,
we conclude that u(t) ∈ O+ for all t ∈ [t0, Tmax).

On other hand, we can write

Iμ,λ(u(t)) =
1
p

〈
I ′μ,λ(u(t)), u(t)

〉

+
(
1
2
− 1
p

)∫

Ω

[

|∇Hdu(t)|2 − μ
|z|2

ρ(w)4
|u(t)|2

]

dw −
(
1
2
− 1
p

)
λ

∫

Ω
|u(t)|2dw

>

(
1
2
− 1
p

)∫

Ω

[

|∇Hdu(t)|2 − μ
|z|2

ρ(w)4
|u(t)|2

]

dw −
(
1
2
− 1
p

)
λ

∫

Ω
|u(t)|2dw

≥
(
1
2
− 1
p

)(

1 − λ

λ1,μ

)

‖u(t)‖2μ > 0.

(3.21)

Since u(t) satisfy (3.3), we have

∫ t

t0

‖∂τu(τ)‖2L2(Ω)dτ +
(
1
2
− 1
p

)(

1 − λ

λ1,μ

)

‖u(t)‖2μ ≤ Iμ,λ(u(t0)) < cμ,λ. (3.22)

Then we have

∫ t

t0

‖∂τu(τ)‖2L2(Ω)dτ < cμ,λ, ‖u(t)‖2μ <

[(
1
2
− 1
p

)(

1 − λ

λ1,μ

)]−1
cμ,λ, (3.23)

which implies that u(t) is a global solution of the problem (1.6), and O+ is invariant set.
Letting t → +∞ in (3.23), the integral

∫ t
t0
‖∂τu(τ)‖2L2(Ω)dτ is finitely determined. Therefore,

there exists a sequence (tn) n � 0 with tn → +∞ as n → +∞ such that

∫

Ω
|∂τu(tn)|2dw −→ 0, u(tn) ⇀ v in H1

0

(
Ω,Hd

)
. (3.24)

Letting tn → +∞, we obtain that v ∈ H1
0(Ω,Hd) is a solution of problem (1.10). So

〈
I ′μ,λ(v), v

〉
= 0. (3.25)

If v /= 0, then v ∈ N, and so

Iμ,λ(v) ≥ cμ,λ. (3.26)
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Since u(tn) satisfies (3.3), it follows by Hölder inequality and from (3.24), that

∣
∣
∣
〈
I ′μ,λ(u(tn, .)), u(tn, .)

〉∣∣
∣ ≤
∣
∣
∣
∣

∫

Ω
u(tn,w)∂tu(tn,w)dw

∣
∣
∣
∣

≤
∥
∥u(tn, .)‖L2(Ω)‖∂tu(tn, .)

∥
∥
L2(Ω)

≤
√
λ1,μ‖u(tn, .)‖μ‖∂tu(tn, .)‖L2(Ω)

≤ C‖∂tu(tn, .)‖L2(Ω).

(3.27)

Therefore,

lim
n→+∞

〈
I ′μ,λ(u(tn)), u(tn)

〉
= 0. (3.28)

We deduce by (3.22), (3.25), and (3.28) that

Iμ,λ(v) =
(
1
2
− 1
p

)∫

Ω

[

|∇Hdv(w)|2 − μ
|z|2

ρ4(w)
|v(w)|2

]

dw −
(
1
2
− 1
p

)
λ

∫

Ω
|v(w)|2dw

≤ lim
n→+∞

(
1
2
− 1
p

)∫

Ω

[

|∇Hdu(tn,w)|2 − μ
|z|2

ρ4(w)
|v(tn,w)|2

]

dw

− lim
n→+∞

(
1
2
− 1
p

)
λ

∫

Ω
|v(tn,w)|2dw + lim

n→+∞

〈
I ′μ,λ(u(tn)), u(tn)

〉

≤ lim
n→+∞

Iμ,λ(u(tn))

≤ Iμ,λ(u0) < cμ,λ,

(3.29)

which contradicts (3.26), and so v = 0 in Ω. Hence, by (3.24), we have

u(tn, .) −→ 0 in Lq(Ω), 2 ≤ q < 2∗. (3.30)

Since

‖u(tn, .)‖2μ=
〈
I ′μ,λ(u(tn)), u(tn)

〉
+ λ

∫

Ω
|u(tn,w)|2dw +

∫

Ω
|u(tn,w)|pdw → 0, as n −→ +∞,

(3.31)

we have

u(tn, .) −→ 0 in H1
0

(
Ω,Hd

)
, as n → +∞. (3.32)
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For simplicity, let us denote by t the divergent sequence and by u(t) = u(tn,w). We have from
(3.29) that

Iμ,λ(u(t)) =
(
1
2
− 1
p

)∫

Ω

[

|∇Hdu(t,w)|2 − μ
|z|2

ρ4(w)
|u(t,w)|2

]

dw

−
(
1
2
− 1
p

)
λ

∫

Ω
|u(t,w)|2dw

=
(
1
2
− 1
p

)
‖u(t)‖2μ − λ

(
1
2
− 1
p

)
‖u(t)‖2L2(Ω).

(3.33)

So, due to (3.3) we have

‖u(t)‖2μ =
2p

p − 2
Iμ,λ(u(t)) + λ‖u(t)‖2L2(Ω)

≤
2p

p − 2
Iμ,λ(u0) + λ‖u(t)‖2L2(Ω)

<
2p

p − 2
cμ,λ + o(1).

(3.34)

Therefore, there exists t0 such that for all t ≥ t0,

‖u(t)‖2μ ≤
2p

p − 2
cμ,λ. (3.35)

On the other hand,

∫

Ω
|u(t,w)|pdw ≤ C

p

Ω

(
μ

μ − μ

)p/2

‖u(t)‖pμ

≤ C
p

Ω

(
μ

μ − μ

)p/2[ 2p
p − 2

cμ,λ

]p−2/2
‖u(t)‖2μ.

(3.36)

Let C1 = C
p

Ω(μ/μ − μ)p/2[(2p/p − 2)cμ,λ]
(p−2)/2, we have

(1 − C1)‖u(t)‖2μ ≤ ‖u(t)‖2μ − ‖u(t)‖pLp(Ω)

≤
〈
I ′μ,λ(u(t)), u(t)

〉
+ λ‖u(t)‖2L2(Ω).

(3.37)
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Let us recall that if we set g(t) ≡
∫
Ω |u(t,w)|2dw, then

d

dt
g(t) = 2

∫

Ω
u(t,w)∂tu(t,w)dw

= −2
∫

Ω

[

|∇Hdu(t,w)|2 − μ
|z|2

ρ4(w)
|u(t,w)|2

]

dw + 2λ
∫

Ω
|u(t,w)|2dw

+ λ

∫

Ω
|v(tn,w)|pdw

= −2
〈
I ′μ,λ(u(t)), u(t)

〉
.

(3.38)

So we get from (3.22) that for any t ≥ t0, we have

∫+∞

t

〈
I ′μ,λ(u(τ)), u(τ)

〉
dτ =

1
2
‖u(t)‖2L2(Ω)

≤ 1
2λμ,λ

‖u(t)‖2μ ≤
p

(
p − 2

)
λμ,λ

Iμ,λ(u(t)).

(3.39)

So from (3.37) and (3.39), we have for any t ≥ t0 that

∫+∞

t

Iμ,λ(u(τ))dτ ≤ 1
2λμ,λ

∫+∞

t

‖u(τ)‖2μdτ

≤ (1 − C1)−1
1

2λμ,λ

[∫+∞

t

〈
I ′μ,λ(u(τ)), u(τ)

〉
dτ + λ

∫+∞

t

‖u(τ)‖2L2(Ω)dτ

]

≤ (1 − C1)−1

2λ2
μ,λ

p

p − 2
Iμ,λ(u(t)) + (1 − C1)−1

λ

2λμ,λ

∫+∞

t

‖u(τ)‖2L2(Ω)dτ.

(3.40)

Since limt→+∞‖u(t)‖2L2(Ω) = 0, there exists t1 > t0 such that for any t ≥ t1, we have

∫+∞

t

Iμ,λ(u(τ))dτ ≤ (1 − C1)−1

2λ2
μ,λ

p

p − 2
Iμ,λ(u(t)). (3.41)

Thus,
∫+∞

t

Iμ,λ(u(τ))dτ ≤ C(t1)e−αt, (3.42)

with α = ((1 − C1)
−1/2λ2μ,λ)(p/p − 2). But we remark that

Iμ,λ(u(t + 1)) ≤
∫ t+1

t

Iμ,λ(u(τ))dτ <

∫+∞

t

Iμ,λ(u(τ))dτ, (3.43)
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hence, we deduce that for any t ≥ t1, we have

Iμ,λ(u(t + 1)) < C(t1)e−αt, (3.44)

and we can conclude that for any t ≥ t1, we have

‖u(t)‖μ= O
(
e−αt
)
. (3.45)

Remark 3.4. for small u0, Theorem 3.3 is an immediate consequence from the fact that,
according to the linearized stability principle, the trivial solution is linearly asymptotically
stable. In other words, from the fact that the principle eigenvalue of the linearization at u = 0
is positive.

Questions of stability for nonlinear systems are frequently resolved via linearized
stability or Lyapunov-type methods. Here, we proved the asymptotic stability under
Lyapunov function to obtain estimates in Lp(Ω).

Corollary 3.5. Assume that u0 ∈ O+ and λ < λ1,μ. Then any solution u(t) of (1.6) tends to the trivial
equilibrium point, as t → +∞.

Proof. It follows from (3.45) that the semiflow T(t) is eventually bounded, see [7]. Since the
resolvent of the operator Lμ is compact, T(t) is compact for t > 0 (see [20, Theorem 3.3],
thus by [18, Corollary 3.2.2], T(t) is asymptotically smooth and so by [7, Proposition 2.3] is
asymptotically compact. It remains to shows that E, the set of equilibrium points of T(t), is
bounded: u(t) ∈ E, so u(t) ∈ N. Then from (3.3) and Poincaré’s inequality, we have

(
1
2
− 1
p

)
‖u(t)‖2μ = Iμ,λ(u(t)) + λ

(
1
2
− 1
p

)
‖u(t)‖2L2(Ω)

≤ Iμ,λ(u0) + λ

(
1
2
− 1
p

)
‖u(t)‖2L2(Ω)

≤ cμ,λ +
λ

λ1,μ

(
1
2
− 1
p

)
‖u(t)‖2μ,

(3.46)

which implies that the set E is bounded. Then, by Theorem 1.2, T(t) is dissipative and by
(3.45), we have dist(T(t)B, 0) → 0 as t → +∞, for every bounded set B ⊂ H1

0(Ω,Hd). So,
we conclude that the global attractor A = 0, and that any solution u(t) = S(t)u0 tends to the
trivial equilibrium point as t → +∞, when u0 ∈ O+.

Theorem 3.6. Assume that u0 ∈ O−. Then the solution u(t) of the problem (1.6) blows up in finite
time.

Proof. Let u0 ∈ O−, and let u(t) = u(w, t, u0) be the unique solution, the existence of which
has been proved in Proposition 3.1. From the inequality (3.3), we have that t �→ Iμ,λ(u(t)) is
strictly decreasing, so

Iμ,λ(u(t)) = Iμ,λ(u0) = cμ,λ. (3.47)
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Suppose there exists t̃ ∈ (0, Tmax) such that u(t̃) /∈ O−. Then

〈
I ′μ,λ(u(t)), u(t)

〉
≥ 0. (3.48)

And since the application t �→ 〈I ′
μ,λ

(u(t)), u(t)〉 is continuous, there exists t̃0 ∈ (0, t̃] such that

〈
I ′μ,λ(u(t0)), u(t0)

〉
= 0. (3.49)

Hence, u(t̃0) = 0 inΩ or u(t̃0) ∈ N. If u(t̃0) = 0 inΩ, then by the uniquess of u(t), we conclude
that u(t) = 0 for any t ∈ [t̃0, Tmax). Thus, u(t) is global by extending to 0 for all t ≥ Tmax, and
thanks to Theorem 3.2, Iμ,λ(u(t)) > 0 for any t ≥ 0. But Iμ,λ(u(t̃0)) = 0, which is a contradiction,
and so u(t̃0) ∈ N. But by [21],

cμ,λ = inf
u∈N

Iμ,λ(u), (3.50)

then cμ,λ ≤ Iμ,λ(u(t̃0)), which contradicts (3.47). So, we conclude that u(t) ∈ O− for all t ∈
[t̃0, Tmax). We suppose by contradiction that Tmax = +∞, that is, u(t) = u(t, ·) exists for all t ≥ 0.
For u ∈ O−, we have

d

dt
‖u(t, ·)‖2L2(Ω) = −2

〈
I ′μ,λ(u(t0)), u(t0)

〉
> 0. (3.51)

Then t �→ ‖u(t, ·)‖L2(Ω) is strictly increasing and so

lim
t→+∞

‖u(t, ·)‖L2(Ω) = c ∈ (0,+∞]. (3.52)

We suppose that c < +∞. Following the same reasoning as in the proof of Theorem 3.3, we
deduce that we can select a divergent subsequence, still denoted by t, such that when t →
+∞,

u(t, ·) −→ 0 in H1
0

(
Ω,Hd

)
. (3.53)

Letting t → +∞ in the inequality

√
λ1,μ‖u(t, ·)‖L2(Ω) ≤ ‖u(t, ·)‖μ, (3.54)

we get that 0 < c ≤ 0, which is a contradiction. So we conclude that

lim
t→+∞

‖u(t, ·)‖L2(Ω) = +∞. (3.55)
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Set g(t) = ‖u(t, ·)‖2
L2(Ω), so

− 2
p − 2

d

dt
g1−p/2(t) = g ′(t)g−p/2(t)

= −2‖u(t, ·)‖−p
L2(Ω)

(
‖u(t, ·)‖2μ − λ‖u(t, ·)‖2L2(Ω)‖u(t, ·)‖

2
Lp(Ω)

)

≥ −2‖u(t, ·)‖−p
L2(Ω)‖u(t, ·)‖

2
μ + 2‖u(t, ·)‖−p

L2(Ω)‖u(t, ·)‖
2
Lp(Ω).

(3.56)

By Hölder inequality, we have

‖u(t, ·)‖pLp(Ω) ≥ |Ω|1−p/2‖u(t, ·)‖p
L2(Ω), (3.57)

and by (3.55), there exist t1 > 0 and a constant C1 > 0 such that for t ≥ t1, we have

‖u(t, ·)‖L2(Ω)≥ C1. (3.58)

Then, there exist t1 > 0 and a constant C2 > 0 such that for t ≥ t1, we have

− 2
p − 2

d

dt
g1−p/2(t) ≥ −2λ1,μC

2−p
1 + 2|Ω|1−p/2 ≥ C2. (3.59)

Hence, we have from (3.59), that for any t ≥ t1,

0 < g(t) ≤ g(t1) +
p − 2
2

C2(t − t1), (3.60)

which is a contradiction if t is sufficiently large. So we conclude that Tmax < +∞.
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Applications, Birkhäuser, Boston, Mass, USA, 1996.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


