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Phase fitted and amplification fitted Numerov-type methods for periodic initial value problems
with two frequencies are investigated. A one-frequency method and a two-frequency method are
constructed. The two new methods both have algebraic order five and are dispersive of order six
and dissipative of order five. The two-dimensional absolute stability region for the one-frequency
method and the three-dimensional absolute stability region for the two-frequency method are
plotted. Numerical experiments are reported to show the efficiency and competence of the two
new methods.

1. Introduction

In this paper we are interested in the numerical integration of the initial value problem (IVP)
of ordinary differential equations in the form

y′′(x) = f
(
x, y

)
, y(x0) = y0, y′(x0) = y′

0, x ∈ [x0, xend], (1.1)

whose solutions exhibit a pronounced oscillatory character. Such problems are frequently
encountered in a variety of scientific fields and engineering applications. Since the analytical
solutions of these equations are usually not available, the numerical solutions become
very important. To our knowledge, most existing methods of fitted type (trigonometri-
cally/exponentially fitted, phase fitted and amplification fitted, etc.) are adapted to one
frequency (see [1–3]). We call them one-frequency methods. For example, by phase fitting,
Van de Vyver [4] constructed an adapted explicit Numerov-type method for oscillatory
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problems with one frequency. Other related work can be found in [5–20]. However, for
oscillatory problems with many frequencies in the solution, when we apply a one-frequency
method, it is difficult to choose the most suitable fitting frequency. Contrast to the one-
frequency methods, papers on integrators that are adapted to more than one frequency
are few. In [21], Wang obtained a trigonometrically fitted Numerov-type method for
periodic IVPs with two frequencies and provided some numerical examples to show that
his method associated with two frequencies is more accurate and more efficient than the
trigonometrically fitted Numerov methods with one frequency. More recently, Fang et al. [22]
gave a trigonometrically fitted explicit Numerov-type method for the numerical integration
of oscillatory problems with two frequencies. Inspired by Van de Vyver’s idea in [4], we
investigate, in this paper, explicit Numerov-type methods for the numerical integration
of periodic IVPs with two frequencies. The paper is organized as follows. In Section 2,
the preliminaries of stability and phase properties of explicit Numerov-type methods are
recalled. In Section 3, we construct two new phase fitted and amplification fitted explicit
Numerov-typemethods for periodic initial value problemswith two frequencies. In Section 4,
the stability and phase properties of the newly derived methods are analyzed. In Section 5,
we present some numerical results. Section 6 is devoted to the conclusions.

2. Numerov-Type Methods

In this section, we recall some elementary notions about Numerov-type methods. The explicit
Numerov-type methods considered here have the form

Yi = (1 + ci)yn − ciyn−1 + h2
s−1∑

j=1

aijf
(
xn + cjh, Yj

)
, i = 1, . . . , s.

yn+1 = 2yn − yn−1 + h2
s∑

i=1

bif(xn + cih, Yi),

(2.1)

with c1 = −1, c2 = 0, and can be expressed in the Butcher tableau as

c A

bT
=

−1 0 0 0 · · · 0
0 0 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

. . . . . .
...

cs as1 as2 · · · ass−1 0

b1 b2 · · · bs−1 bs

(2.2)

or equivalently by the triplet (c,A, b). The order conditions for this kind of Numerov-type
methods can be found in [23]. A favorable property of these methods is that they need only
s−1 function evaluations at each step. According to the idea of Lambert andWatson [24], the
stability of the Numerov-type methods can be analyzed by the test equation

y′′(x) = −λ2y(x). (2.3)
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Applying the explicit Numerov-type method (2.1) to (2.3), we obtain the following relation

yn+1 − S
(
H2

)
yn + P

(
H2

)
yn−1 = 0, H = λh (2.4)

with

S
(
H2

)
= 2 −H2bT

(
I +H2A

)−1
(e + c), P

(
H2

)
= 1 −H2bT

(
I +H2A

)−1
c. (2.5)

Since the coefficient matrix A satisfies As−1 = 0, we have

S
(
H2

)
= 2 −H2bT (e + c) +H4bTA(e + c) − · · · + (−1)s−1H2s−2bTAs−2(e + c),

P
(
H2

)
= 1 −H2bTc +H4bTAc − · · · + (−1)s−1H2s−2bTAs−2c,

(2.6)

where e is the s-dimensional vector of units, and the vectors c, b, and matrixA are defined by
the Butcher tableau of the scheme (2.1). The polynomial

ζ2 − S
(
H2

)
ζ + P

(
H2

)
(2.7)

is called the stability polynomial of the difference equation (2.4) associated with the method
(2.1).

Definition 2.1. The method (2.1) is said to have a periodicity interval Ip = (0,H2
0) if the roots

of its stability polynomial, ξ1,2(H) are conjugate complex and satisy |ξ1,2(H)| = 1, for all H ∈
(0,H2

0). The method is called P-stable if the periodicity interval Ip = (0,∞).

The existence of a nonempty periodicity interval Ip = (0,H2
0) is equivalent to the

fact that there exists a nonzero real number H0 such that the coefficients of the stability
polynomial satisfy the conditions

P
(
H2

)
≡ 1,

∣∣∣S
(
H2

)∣∣∣ < 2, ∀H ∈
(
0,H2

0

)
. (2.8)

Therefore, the P -stable conditions are given by

P
(
H2

)
≡ 1,

∣∣∣S
(
H2

)∣∣∣ < 2, ∀H > 0. (2.9)

An interval Is = (0,H2
1) is called the interval of absolute stability of the method (2.1) if (see [4])

P
(
H2

)
< 1,

∣∣∣S
(
H2

)∣∣∣ < P
(
H2

)
+ 1, H ∈

(
0,H2

1

)
. (2.10)
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Definition 2.2. The quantities (see [25])

φ(H) = H − arccos

(
S
(
H2)

2
√
P(H2)

)

, d(H) = 1 −
√
P(H2), (2.11)

are called the phase-lag and the dissipation, respectively. Accordingly, the method is said to
be dispersive of order q and dissipative of order p if φ(H) = O(Hq+1), and d(H) = O(Hp+1),
respectively. If φ(H) = 0, themethod is said to be phase fitted or zero-dispersive, and if d(H) = 0,
the method is said to be amplification fitted or zero-dissipative.

3. Construction of the New Methods

In this section, we construct explicit Numerov-type methods which are both phase fitted and
amplification fitted. The construction is based on the following Butcher tableau of coefficients

−1 0 0 0 0
0 0 0 0 0

25
28

1325
43904

35775
43904

0 0

−23
5

16744
33125

383111
15625

−13866608
828125

0

b1 b2 b3 b4

. (3.1)

If we choose {b1, b2, b3, b4} = {173/1908, 2791/3450, 307328/3056775, 125/636732}, the clas-
sical Numerov-type method is recovered in [26]. In the following, we derive the frequency-
dependent weights bi, i = 1, . . . , 4 of a one-frequency method and a two-frequency method by
phase fitting and amplification fitting.

3.1. A One-Frequency Numerov-Type Method

Applying the method (3.1) to the test equation

y′′(x) = −ω2
1y(x), (3.2)

we obtain the following expressions for S and P

S(u) =
2 − b2u

2 + 53b3u2(−1568 + 675u2)

4390
+
3b4u2(42000 − 83720u2 + 159183u4)

3500
,

P(u) =
1 + b1u

2 − 25b3u2(1568 + 53u2)

43904
− 23b4u2

(
−7000 + 23520u2 + 769u4

)
, u = ω1h.

(3.3)
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Nullifying the dispersion φ(u) and the dissipation d(u) in Definition 2.2 for the test equation
(3.2) yields

S(u) = 2 cos(u), P(u) = 1. (3.4)

Choosing b1 = 173/1908, b2 = 2791/3450, we solve the linear systems (3.4) for the b-values as
follows

b3 = − 196
(
5119800000 − 19455100000u2 + 6757940320u4 − 460960901u6

+731400
(
23520u2 + 769u4 − 7000

)
cos(u)

)
/3056775Mu2,

b4 =
625

(−64915200 + 30302600u2 − 1798287u4 + 41400
(
1568 + 53u2) cos(u)

)

636732Mu2
,

(3.5)

where M = (−19000 + 952935u2 + 11707u4).
It is easy to verify the above coefficients satisfy the algebraic fifth-order conditions for

the Numerov-type methods with one frequency (see [23]):

bTe = 1 − 173
940800

u6 +O
(
u8
)
, bTc = 0 +

1
10080

u4 +O
(
u6
)
,

bTc2 =
1
6
− 173
470400

u2 +O
(
u4
)
, bT (Ae) =

1
12

− 379
2822400

u2 +O
(
u4
)
,

bTc3 = 0 +
349861

197568000
u2 +O

(
u4
)
, bT (c · (Ae)) =

1
12

− 277201
395136000

u2 +O
(
u4
)
,

bT (Ac) = 0 +
110087

395136000
u2 +O

(
u4
)
, bTc4 =

1
15

− 74452453
9219840000

u2 +O
(
u4
)
,

bT
(
c2 ·Ae

)
=

1
30

− 174376819
55319040000

u2+O
(
u4
)
, bT (c · (Ac))=− 1

60
− 71061653
55319040000

u2+O
(
u4
)
,

bT (Ae ·Ae) =
7

120
− 135568679
110638080000

u2 +O
(
u4
)
, bT

(
Ac2

)
=

1
180

+
153119

658560000
u2 +O

(
u4
)
,

bT
(
A2e

)
=

1
360

+
23

90000
u2 +O

(
u4
)
.

(3.6)

This one-frequency phase fitted and amplification fitted fifth-order method is denoted as
PFAFI.

3.2. A Two-Frequency Numerov-Type Method

For themethod (3.1), we only need the weights bi(i = 1, . . . , 4). In order to solve the oscillatory
problems with two frequencies, we consider another test equation

y′′(x) = −ω2
2y(x), ω2 /=ω1. (3.7)
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With the same idea stated above, we find the following relation

S(v) = 2 cos(v), P(v) = 1, v = ω2h. (3.8)

Solving (3.4) and (3.8) gives

b1 =

(
56
(
865 + 28v2) + u2(1568 + 53v2))(u2 − v2 + v2 cos(u) − u2 cos(v)

)

M
,

b2 =
(
−1107120

(
u2 − v2

)
+ 446936

(
u4 − v4

)
+ 15525u2v2

(
u2 − v2

)

+ v2
(
23u2

(
−1568 + 675v2

)
+ 56

(
−19770 + 7981v2

))
cos(u)

−u2
(
23u2

(
19432 + 675v2

)
− 112

(
9885 + 322v2

))
cos(v)

)
/N,

b3 =
−1568(23520 + 769

(
u2 + v2))(v2 − u2 − v2 cos(u) + u2 cos(v)

)

T
,

b4 =
250

(
v2 − u2 − v2 cos(u) + u2 cos(v)

)

53061u2v2(u2 − v2)
.

(3.9)

In which M = 22260u2v2(u2 − v2),N = 241500u2v2(u2 − v2), T = 15283875u2v2(u2 − v2).
It is also easy to verify the algebraic fifth order conditions for the Numerov-type

methods with two frequencies (see [23] for reference)

bTe = 1 − 13
(
ω2

1ω
2
2

(
ω2

1 +ω2
2

))
h6

302400
+O

(
h8
)
, bTc = 0 −

(
ω2

1ω
2
2

)
h4

10080
+O

(
h6
)
,

bTc2=
1
6
− 13

(
ω2

1 +ω2
2

)2
h4

151200
+O

(
h6
)
, bT (Ae)=

1
12

−
(
13ω4

1 + 41ω2
1ω

2
2 + 13ω4

2

)
h4

302400
+O

(
h6
)
,

bTc3 = 0 −
(
ω2

1 +ω2
2

)
h2

1680
+O

(
h4
)
, bT (c · (Ae)) =

1
12

−
(
ω2

1 +ω2
2

)
h2

3360
+O

(
h4
)
,

bT (Ac) = 0 −
(
ω2

1 +ω2
2

)
h2

10080
+O

(
h4
)
, bTc4 =

1
15

+
659

(
ω2

1 +ω2
2

)
h2

235200
+O

(
h4
)
,

bT
(
c2 ·Ae

)
=

1
30

+
173

(
ω2

1 +ω2
2

)
h2

156800
+O

(
h4
)
, bT (c · (Ac))=− 1

60
+
659

(
ω2

1 +ω2
2

)
h2

1411200
+O

(
h4
)
,

bT (Ae ·Ae)=
7
120

+
379

(
ω2

1 +ω2
2

)
h2

940800
+O

(
h4
)
, bT

(
Ac2

)
=

1
180

− 13
(
ω2

1 +ω2
2

)
h2

151200
+O

(
h4
)
,

bT
(
A2e

)
=

1
360

−
(
ω2

1 +ω2
2

)
h2

10800
+O

(
h4
)
.

(3.10)

The two-frequency fifth-order Numerov-type method with the weights in (3.9) is denoted as
PFAFII.
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4. Stability and Phase Analysis

In this section, we analyze the stability and phase properties of the two newmethods derived
in Section 3. The theory of Lambert andWatson was reconsidered by Coleman and Ixaru [27].

4.1. Stability and Phase Analysis of PFAFI

We apply a four-stage one-frequency Numerov-type method to the test equation (2.3) and
obtain the functions P and S in (2.4) as follows

P
(
H2, u

)
= 1 −H2b(u)Tc +H4b(u)TAc −H6b(u)TA2c,

S
(
H2, u

)
= 2 −H2b(u)T (e + c) +H4b(u)TA(e + c) −H6b(u)TA2(e + c).

(4.1)

The stability and the phase properties depend on the bivariate functions S(H2, u) and
P(H2, u). In this situation, the interval of absolute stability is replaced by a two-dimensional
region.

Definition 4.1. For the Numerov-type method with S(H2, u) and P(H2, u) given by (4.1), the
quantities

φ(H,u) = H − arccos

(
S
(
H2, u

)

2
√
P(H2, u)

)

, d(H,u) = 1 −
√
P(H2, u) (4.2)

are called the phase-lag and the dissipation, respectively. If

φ(H,u) = O
(
Hq+1

)
, d(H,u) = O

(
Hp+1

)
, (4.3)

then the method is said to be dissipative of order q and dissipative of order p, respectively.

For convenience of analyzing the phase-lag and the dissipation, we denote the ratio
r = u/H. Then the phase-lag and the dissipation of the new method PFAFI are given by

φ = −13
(
r2
(
r2 − 1

))

604800
H7 +O

(
H9

)
,

d =
r2 − 1
20160

H6 +O
(
H8

)
.

(4.4)

Thus the method PFAFI is dispersive of order six and dissipative of order five.

Definition 4.2. In theH-u plane, the region

Ω =
{
(H,u) | H > 0, u > 0, P

(
H2, u

)
< 1,

∣∣∣S
(
H2, u

)∣∣∣ < P
(
H2, u

)
+ 1

}
(4.5)
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Figure 1: Stability region for the method PFAFI.

is said to be the region of absolute stability of the Numerov-type method PFAFI. Any closed
curve defined by

P
(
H2, u

)
= 1 or

∣∣∣S
(
H2, u

)∣∣∣ = P
(
H2, u

)
+ 1 (4.6)

is a stability boundary of the method.

In Figure 1, we plot the region of the absolute stability of the new method PFAFI
derived in Section 3.1 (a similar discussion can be found in [27, 28]).

It should be noted that when the exact value of the frequency of the problem is known
(i.e., the fitted frequency ω equals the test frequency λ), then u = H and we have that
S(H2,H) = 2 cos(H) and P(H2,H) = 1. Consequently, when the main frequency is known
the interval of periodicity is (0,∞) except for H = 2π, 4π, . . .. So the new method PFAFI is
almost P -stable.

4.2. Stability and Phase Analysis of Phase Fitted Numerov-Type
Method with Two Frequencies

We apply a four-stage two-frequency Numerov-type method to the test equation (2.3) and
obtain the functions P and S in (2.4) as follows

P
(
H2, u, v

)
= 1 −H2b(u, v)Tc +H4b(u, v)TAc −H6b(u, v)TA2c,

S
(
H2, u, v

)
= 2 −H2b(u, v)T (e + c) +H4b(u, v)TA(e + c) −H6b(u, v)TA2(e + c).

(4.7)
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Definition 4.3. For the Numerov-type method with S(H2, u, v) and P(H2, u, v) given by (4.7),
the quantities

φ(H,u, v) = H − arccos

(
S
(
H2, u, v

)

2
√
P(H2, u, v)

)

, d(H,u, v) = 1 −
√
P(H2, u, v) (4.8)

are called the phase-lag and the dissipation, respectively. If

φ(H,u, v) = O
(
Hq+1

)
, d(H,u, v) = O

(
Hp+1

)
, (4.9)

then this method is said to be dispersive of order q and dissipative of order p, respectively.

Denote r = u/H and k = v/u. Then the phase-lag and the dissipation of the new
method PFAFII are given by

φ =
13r2

(
r2 − 1

)(
1 + k2)(k2r2 − 1

)

604800
H7 +O

(
H9

)
,

d = −
(
r2 − 1

)(
r2k2 − 1

)

20160
H6 +O

(
H8

)
.

(4.10)

Thus the new method PFAFII is dispersive of order six and dissipative of order five.
Following the main idea of Coleman and Ixaru in [27], the absolute stability of the

two-frequency method PFAFII can be described by a three-dimensional region.

Definition 4.4. A three-dimensional region Ω in the H-u-v space

V =
{
(H,u, v) | P

(
H2, u, v

)
< 1,

∣∣∣S
(
H2, u, v

)∣∣∣ < P
(
H2, u, v

)
+ 1

}
(4.11)

is called the region of absolute stability of a Numerov-type method with the S(H2, u, v) and
P(H2, u, v) given by (4.7), and any closed curve defined by

P
(
H2, u, v

)
= 1 or

∣∣∣S
(
H2, u, v

)∣∣∣ = P
(
H2, u, v

)
+ 1 (4.12)

is a stability boundary of the method.

In Figure 2, we plot the region of absolute stability for the method PFAFII, and
Figure 3 shows the projection of the three-dimensional region onto the u-H plane. (A similar
discussion can be found in [22, 29].)

It should be noted that, for the new method PFAFII and for a problem with one
frequency, when the exact value of the frequency of the problem is known, that is, ω1 =
ω2 = λ, then u = v = H and we have that S(H2,H,H) = 2 cos(H) and P(H2,H,H) = 1.
Consequently, the interval of periodicity is (0,∞) with the points H = 2π, 4π, . . . deleted.
That is, the new method PFAFII is also almost P -stable.
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Figure 2: Stability region for the method PFAFII.
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Figure 3: The projection of the three-dimensional region of PFAFII on the u-H plane.

5. Numerical Experiments

In this section, we compare the numerical performance of the new methods with some well-
known methods from the literature. We select three periodic IVPs with two frequencies. The
methods we choose for comparison are listed as follows.

(i) EFRKN4F: the trigonometrically fitted RKN method of order 4 with the FSAL
property given in [2].

(ii) VPHA: the phase fitted and amplification fitted Numerov-type method with one
frequency given in [4].

(iii) TFNTONE: the trigonometrically fitted Numerov-type method obtained by Fang
and Wu in [3].
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Table 1: Comparison of the end-point global errors and the consumed CPU time in seconds (in the
brackets) produced by the five methods for Problem 1.

h EFRKN4F VPHA TFNTONE PFAFI PFAFII
1 NaN (0.09) 674.5 (0.08) 63.2 (0.06) 0.27 (0.06) 7.9e − 3 (0.06)
1/2 0.17 (1.19) 12.7 (0.13) 1.99 (0.11) 0.04 (0.13) 1.3e − 3 (0.11)
1/4 4.6e − 3 (0.34) 2.3e − 2 (0.28) 2.7e − 3 (0.23) 1.5e − 4 (0.23) 1.1e − 5 (0.23)
1/8 1.5e − 4 (0.71) 2.4e − 4 (0.53) 2.8e − 5 (0.47) 2.3e − 6 (0.48) 1.9e − 7 (0.48)
1/16 0.7e − 6 (1.39) 3.4e − 6 (1.13) 1.43e − 7 (0.95) 1.3 × 10−7 (0.95) 4.9e − 9 (0.95)

(iv) PFAFI: the phase fitted and amplification fitted Numerov-type method with one
frequency obtained in this paper.

(v) PFAFII: the phase fitted and amplification fitted Numerov-type method with two
frequencies obtained in this paper.

Problem 1. We consider the inhomogeneous equation

y′′(x) + 100y(x) = 99 sin(x), y(0) = 1, y′(0) = 11, (5.1)

whose exact solution is given by

y(x) = cos(10x) + sin(10x) + sin(x). (5.2)

In our test we chooseω1 = 10 for VPHA, TFNTONE, EFRKN4F and PFAFI, and ω1 = 10, ω2 =
1 for PFAFII. The problem is integrated on the interval [0, 1000] and the numerical results are
presented in Table 1.

Problem 2. Consider the famous Kramarz system (see [30])

y′′ = 2498y + 4998z, y(0) = 2, y′(0) = 0,

z′′ = −2499y − 4999z, z(0) = −1, z′(0) = 0,
(5.3)

whose exact solution is

y(x) = 2 cos(x), z(x) = − cos(x). (5.4)

The eigenvalues of the matrix of coefficients of the equations for y′′ and z′′ are −1 and −2500.
For this stiff equation, we choose ω1 = 1 for VPHA, TFNTONE, EFRKN4F and PFAFI, and
ω1 = 50, ω2 = 1 for PFAFII. The problem is integrated on the interval [0, 1000] and the
numerical results are presented in Table 2.
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Table 2: Comparison of the end-point global errors and the consumed CPU time in seconds (in the
brackets) produced by the five methods for Problem 2.

h EFRKN4F VPHA TFNTONE PFAFI PFAFII
8 NaN (0.02) NaN (0.03) NaN (0.02) NaN (0.02) 6.7e − 12 (0.02)
4 NaN (0.05) NaN (0.05) NaN (0.03) NaN (0.03) 2.5e − 12 (0.03)
2 NaN (0.09) NaN (0.09) NaN (0.06) NaN (0.05) 2.0e − 11 (0.06)
1 NaN (0.17) NaN (0.19) NaN (0.13) NaN (0.11) 1.8e − 11 (0.09)
1/2 NaN (0.34) NaN (0.38) NaN (0.25) NaN (0.23) 1.0e − 11 (0.20)
1/4 NaN (0.70) NaN (0.77) NaN (0.5) NaN (0.47) 8.0e − 12 (0.40)
1/8 NaN (1.42) NaN (1.53) NaN (1.0) NaN (0.92) 1.7e − 11 (0.82)
1/16 1.2e − 12 (2.56) 1.6e − 11 (2.70) 2.3e − 12(1.75) NaN (1.86) 1.8e − 11 (1.65)

Table 3: Comparison of the end-point global errors and the consumed CPU time in seconds (in the
brackets) produced by the five methods for Problem 3 with ε = 10−7, ω = 103.

h EFRKN4F VPHA TFNTONE PFAFI PFAFII
2 NaN (0) NaN (0) NaN (0) NaN (0) 2.6e − 11 (0)
1 NaN (0) NaN (0) 0.01 (0) NaN (0) 3.0e − 11 (0)
1/2 NaN (0.015) NaN (0.015) 0.35 (0.015) 1.38 (0.015) 2.9e − 12 (0.015)
1/4 NaN (0.016) NaN (0.016) 0.025 (0.016) 1.43 (0.016) 4.7e − 11 (0.016)
1/8 NaN (0.016) NaN (0.016) 3.3e − 3 (0.016) 1.56 (0.016) 1.4e − 11 (0.015)
1/16 NaN (0.031) NaN (0.016) 2.6e − 3 (0.016) 1.68 (0.016) 1.5e − 11 (0.031)
1/32 NaN (0.047) NaN (0.031) 8.6e − 4 (0.031) 1.42 (0.031) 1.3e − 12 (0.031)

Problem 3. Consider the linear stiff system in [31]

y′′(t) = −1
2

(
ω2 + 1 ω2 − 1
ω2 − 1 ω2 + 1

)
y(t),

y(0) = (1 + ε, ε − 1)T , y′(0) = (εω + 1, εω − 1)T ,

(5.5)

whose analytic solution is given by

y(t) =
(

cos(t) + sin(t)
− cos(t) − sin(t)

)
+ ε

(
cos(ωt) + sin(ωt)
cos(ωt) + sin(ωt)

)
. (5.6)

In our test we chooseω1 = ω for VPHA, TFNTONE, EFRKN4F and PFAFI, andω1 = ω, ω2 = 1
for PFAFII. The problem is integrated on the interval [0, 10] and the numerical results are
presented in Table 3 with ε = 10−7, ω = 103, and in Table 4 with ε = 10−7, ω = 105.

Problem 4. Consider the nonlinear system in [32]

y′′(t) =
(−1 0

0 −λ2
)
y(t) + k

(
1
1

)(∥∥y(t)
∥∥2
2 + cos2(t) − 1

)
,

y(0) = (0, 0)T , y′(0) = (1, 0)T ,

(5.7)



Abstract and Applied Analysis 13

Table 4: Comparison of the end-point global errors and the consumed CPU time in seconds (in the
brackets) produced by the five methods for Problem 3 with ε = 10−7, ω = 105.

h EFRKN4F VPHA TFNTONE PFAFI PFAFII
1/8 NaN (0.02) NaN (0.02) 0.29 (0.01) NaN (0.01) 5.7e − 7 (0.02)
1/16 NaN (0.03) NaN (0.03) 0.05 (0.02) 1.76 (0.02) 8.3e − 8 (0.03)
1/32 NaN (0.06) NaN (0.06) 8.8e − 3 (0.03) 1.91 (0.03) 7.5e − 8 (0.05)
1/64 NaN (0.11) NaN (0.11) 8.6e − 3 (0.06) 2.01 (0.05) 4.1e − 8 (0.08)
1/128 NaN (0.20) NaN (0.23) 1.8e − 3 (0.14) 2.07 (0.08) 3.3e − 8 (0.14)
1/256 NaN (0.43) NaN (0.45) 9.0e − 5 (0.27) 2.10 (0.17) 1.1e − 8 (0.27)
1/512 NaN (0.89) NaN (0.93) 1.8e − 6 (0.53) 2.11 (0.36) 4.6e − 9 (0.53)

Table 5: Comparison of the end-point global errors and the consumed CPU time in seconds (in the
brackets) produced by the five methods for Problem 4.

h EFRKN4F VPHA TFNTONE PFAFI PFAFII
1/4 NaN (0.76) NaN (0.61) NaN (0.53) NaN (0.42) 3.45e − 7 (0.43)
1/8 NaN (1.52) NaN (1.24) NaN (0.89) NaN (0.81) 2.14e − 8 (0.89)
1/16 NaN (3.06) NaN (2.45) NaN (1.79) NaN (1.60) 1.33e − 9 (1.78)
1/32 NaN (6.04) NaN (4.89) 0.008 (3.56) 0.82 (2.5) 3.98e − 11 (3.59)
1/64 NaN (12.07) NaN (9.73) 0.08 (7.1) 0.82 (5) 4.39e − 12 (7.1)

where λ = 103, k = 0.01. The analytic solution of the problem is

y(t) = (sin(t), 0)T . (5.8)

In our test we choose ω = λ for VPHA, TFNTONE, EFRKN4F and PFAFI, and ω1 =
λ,ω2 = 1 for PFAFII. The problem is integrated on the integral interval [0, 1000] and the
numerical results are stated in Table 5.

6. Conclusions

In this paper, we investigate Numerov-type methods adapted to oscillatory problems with
two frequencies obtained by phase fitting and amplification fitting. The numerical stability
and the phase properties of the new method are analyzed. Unlike the case of one-frequency
methods, the absolute stability region of a two-frequency method is a region in the three-
dimensional space. The results of numerical experiments on four oscillatory test problems
with two frequencies, including non-stiff and stiff problems, show that the new methods are
superior to some well-known high quality codes proposed in the recent scientific literature.
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