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We study the eigenvalue interval for the existence of positive solutions to a semiposi-
tone higher order fractional differential equation −Dt

μx(t) = λf(t, x(t),Dt
μ1x(t),Dt

μ2x(t), . . . ,
Dt

μn−1x(t)) . . .Dt
μix(0) = 0, 1 ≤ i ≤ n − 1,Dt

μn−1+1x(0) = 0,Dt
μn−1x(1) =

∑m−2
j=1 ajDt

μn−1x(ξj), where
n − 1 < μ ≤ n, n ≥ 3, 0 < μ1 < μ2 < · · · < μn−2 < μn−1, n − 3 < μn−1 < μ − 2, aj ∈ R, 0 < ξ1 < ξ2 < · · · <
ξm−2 < 1 satisfying 0 <

∑m−2
j=1 ajξ

μ−μn−1−1
j < 1, Dt

μ is the standard Riemann-Liouville derivative,
f ∈ C((0, 1) × R

n, (−∞,+∞)), and f is allowed to be changing-sign. By using reducing order
method, the eigenvalue interval of existence for positive solutions is obtained.

1. Introduction

In this paper, we consider the eigenvalue interval for existence of positive solutions to the
following semipositone higher order fractional differential equation:

−Dt
μx(t) = λf(t, x(t),Dt

μ1x(t),Dt
μ2x(t), . . . ,Dt

μn−1x(t)),

Dt
μix(0) = 0, 1 ≤ i ≤ n − 1, Dt

μn−1+1x(0) = 0,

Dt
μn−1x(1) =

m−2∑

j=1

ajDt
μn−1x

(
ξj
)
,

(1.1)
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where n − 1 < μ ≤ n, n ≥ 3, n ∈ N, 0 < μ1 < μ2 < · · · < μn−2 < μn−1, and n − 3 < μn−1 < μ − 2,
aj ∈ R, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 satisfying 0 <

∑m−2
j=1 ajξ

μ−μn−1−1
j < 1, Dt

μ is the standard
Riemann-Liouville derivative, f : (0, 1) × R

n → (−∞,+∞) is continuous.
Recently, one has found that fractional models can sufficiently describe the operation

of variety of computational, economic mathematics, physical, and biological processes
and systems, see [1–9]. Accordingly, considerable attention has been paid to the solution
of fractional differential equations, integral equations, and fractional partial differential
equations of physical phenomena [10–24]. One of the most frequently used tools in the
theory of fractional calculus is furnished by the Riemann-Liouville operators. It possesses
advantages of fast convergence, higher stability and higher accuracy to derive the solution of
different types of fractional equations.

In this work, we will deal with the eigenvalue interval for existence of positive
solutions to the higher order fractional differential equation when f may be negative. This
type of differential equation is called semipositone problem which arises in many interesting
applications as pointed out by Lions in [25]. For example, the semipositone differential
equation which can be derived from chemical reactor theory, design of suspension bridges,
combustion, and management of natural resources, see [26–28]. To our knowledge, few
results were established, especially for higher order multipoint boundary value problems
with the fractional derivatives.

2. Preliminaries and Lemmas

We use the following assumptions in this paper:

(B1) f : (0, 1) × R
n → (−∞,+∞) is continuous, and there exist functions α, β ∈ L1[(0, 1),

(0,+∞)] and continuous function h : R
n → [0,+∞) such that

−α(t) ≤ f(t, x1, x2, . . . , xn) ≤ β(t)h(x1, x2, . . . , xn), (t, x1, x2, . . . , xn) ∈ (0, 1) × R
n. (2.1)

Now we begin this section with some preliminaries of fractional calculus. Let μ > 0
and n = [μ] + 1 = N + 1, where N is the smallest integer greater than or equal to μ. For a
function x : (0, 1) → R, we define the fractional integral of order μ of x as

Iμx(t) =
1

Γ
(
μ
)

∫ t

0
(t − s)μ−1x(s)ds (2.2)

provided the integral exists. The fractional derivative of order μ of a continuous function x is
defined by

Dt
μx(t) =

1
Γ
(
n − μ

)

(
d

dt

)n ∫ t

0
(t − s)n−μ−1x(s)ds, (2.3)

provided the right side is pointwise defined on (0,+∞). We recall the following properties
[8, 9]which are useful for the sequel.
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Lemma 2.1 (see [8, 9]).

(1) If x ∈ L1(0, 1), ρ > σ > 0, and n ∈ N, then

IρIσx(t) = Iρ+σx(t), Dt
σIρx(t) = Iρ−σx(t), (2.4)

Dt
σIσx(t) = x(t),

d

dtn
(Dt

σx(t)) = Dt
n+σx(t). (2.5)

(2) If ν > 0, σ > 0, then

Dt
νtσ−1 =

Γ(σ)
Γ(σ − ν)

tσ−ν−1. (2.6)

Lemma 2.2 (see [8]). Assume that x ∈ L1(0, 1) and μ > 0. Then

IμDt
μx(t) = x(t) + c1t

μ−1 + c2t
μ−2 + · · · + cnt

μ−n, (2.7)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to μ.

Let x(t) = Iμn−1v(t), and consider the following modified integro-differential equation:

−Dt
μ−μn−1v(t) = λf

(
t, Iμn−1v(t), Iμn−1−μ1v(t), . . . , Iμn−1−μn−2v(t), v(t)

)
,

v(0) = v′(0) = 0 v(1) =
m−2∑

j=1

ajv
(
ξj
)
.

(2.8)

The following Lemmas 2.3–2.5 are obtained by Zhang et al. [10].

Lemma 2.3. The higher order multipoint boundary value problem (1.1) has a positive solution if and
only if nonlinear integro-differential equation (2.8) has a positive solution. Moreover, if v is a positive
solution of (2.8), then x(t) = Iμn−1v(t) is positive solution of the higher order multipoint boundary
value problem (1.1).

Lemma 2.4. If 2 < μ − μn−1 < 3 and α ∈ L1[0, 1], then the boundary value problem

Dt
μ−μn−1w(t) + λα(t) = 0,

w(0) = w′(0) = 0, w(1) =
m−2∑

j=1

ajw
(
ξj
) (2.9)

has the unique solution

w(t) = λ

∫1

0
K(t, s)α(s)ds, (2.10)
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where

K(t, s) = k(t, s) +
tμ−μn−1−1

1 −∑m−2
j=1 ajξ

μ−μn−1−1
j

m−2∑

j=1

ajk
(
ξj , s

)
, (2.11)

is the Green function of the boundary value problem (2.9), and

k(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[t(1 − s)]μ−μn−1−1 − (t − s)μ−μn−1−1

Γ
(
μ − μn−1

) , 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]μ−μn−1−1

Γ
(
μ − μn−1

) , 0 ≤ t ≤ s ≤ 1.

(2.12)

Lemma 2.5. The Green function of the boundary value problem (2.9) satisfies

K(t, s) ≤ τ, (2.13)

where

τ =
1 +

∑m−2
j=1 aj

(
1 − ξ

μ−μn−1−1
j

)

Γ
(
μ − μn−1

)(
1 −∑m−2

j=1 ajξ
μ−μn−1−1
j

) . (2.14)

Define a modified function [·]∗ for any z ∈ C[0, 1] by

[z(t)]∗ =

{
z(t), z(t) ≥ 0,
0, z(t) < 0,

(2.15)

and consider the following boundary value problem

−Dt
μ−μn−1u(t) = λ

[
f
(
t, Iμn−1[u(t) −w(t)]∗, Iμn−1−μ1[u(t) −w(t)]∗ · · · ,

Iμn−1−μn−2[u(t) −w(t)]∗, [u(t) −w(t)]∗
)

+ α(t)
]
,

u(0) = u′(0) = 0, u(1) =
m−2∑

j=1

aju
(
ξj
)
.

(2.16)

Lemma 2.6. Suppose u(t) ≥ w(t), t ∈ [0, 1] is a solution of the problem (2.16), then u − w is a
positive solution of the problem (2.8), consequently, Iμn−1[u(t)−w(t)] is also a positive solution of the
semipositone higher differential equation (1.1).
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Proof. Since u is a solution of the BVP (2.16) and u(t) ≥ w(t) for any t ∈ [0, 1], then we have

−Dt
μ−μn−1u(t) = λ

[
f
(
t, Iμn−1[u(t) −w(t)], Iμn−1−μ1[u(t) −w(t)], . . . ,

Iμn−1−μn−2[u(t) −w(t)], [u(t) −w(t)]
)

+ α(t)
]
,

u(0) = u′(0) = 0, u(1) =
m−2∑

j=1

aju
(
ξj
)
.

(2.17)

Let v = u −w, then we have

w(0) = w′(0) = 0, w(1) =
m−2∑

j=1

ajw
(
ξj
)
, (2.18)

and Dt
μ−μn−1v(t) = Dt

μ−μn−1u(t) −Dt
μ−μn−1w(t), which implies that

−Dt
μ−μn−1u(t) = −Dt

μ−μn−1v(t) + λα(t). (2.19)

Substituting the above into (2.17), then v = u −w solves the (2.8), that is, u −w is a positive
solution of the semipositone differential equation (2.8). By Lemma 2.3, Iμn−1[u(t) −w(t)] is a
positive solution of the singular semipositone differential equation (1.1). This completes the
proof of Lemma 2.5.

Let

γ(t) =

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1−1
j

⎞

⎠tμ−μn−1−1(1 − t) +
m−2∑

j=1

ajξ
μ−μn−1−1
j

(
1 − ξj

)
tμ−μn−1−1. (2.20)

Lemma 2.7 (see [10]). The solution w(t) of (2.9) satisfies

w(t) ≤ ληγ(t), t ∈ [0, 1], (2.21)

where

η =

∫1

0
α(s)ds

Γ
(
μ − μn−1

)(
1 −∑m−2

j=1 ajξ
μ−μn−1−1
j

) . (2.22)

It is well known that the BVP (2.17) is equivalent to the fixed points for the mapping
T by

(Tu)(t) = λ

∫1

0
K(t, s)

[
f
(
s, Iμn−1[u(s) −w(s)], Iμn−1−μ1[u(s) −w(s)], . . . ,

Iμn−1−μn−2[u(s) −w(s)], [u(s) −w(s)]
)
+ α(s)

]
ds.

(2.23)
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The basic space used in this paper isE = C([0, 1];R), whereR is the set of real numbers.
Obviously, the space E is a Banach space if it is endowed with the norm as follows:

‖u‖ = max
t∈[0,1]

|u(t)|, (2.24)

for any u ∈ E. Let

P =
{

u ∈ E : u(t) ≥ 1
2
γ(t)‖u‖

}

, (2.25)

then P is a cone of E.

Lemma 2.8. Assume that (B1) holds. Then T : P → P is a completely continuous operator.

Proof. By using similar method to [10] and standard arguments, according to the Ascoli-
Arzela Theorem, one can show that T : P → P is a completely continuous operator.

Lemma 2.9 (see [29]). Let E be a real Banach space, P ⊂ E be a cone. Assume Ω1,Ω2 are two
bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, and let T : P ∩ (Ω2 \ Ω1) → P be a completely
continuous operator such that either

(1) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(2) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

3. Main Results

Theorem 3.1. Suppose that (B1) holds, and

lim∑n
i=1 |xi|→∞

min
t∈[1/4,3/4]

f(t, x1, x2, . . . , xn)
∑n

i=1|xi|
= +∞. (3.1)

Then there exists some constant λ∗ > 0 such that the higher order multipoint boundary value problem
(1.1) has at least one positive solution for any λ ∈ (0, λ∗).

Proof. By Lemma 2.8, we know T is a completely continuous operator. Take

r = τ

∫1

0

[
β(s) + α(s)

]
ds, (3.2)
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where τ is defined by Lemma 2.5. LetΩ1 = {u ∈ P : ‖u‖ < r}. Then, for any u ∈ ∂Ω1, s ∈ [0, 1],
we have

0 ≤ [u(s) −w(s)]∗ ≤ u(s) ≤ ‖u‖ ≤ r,

0 ≤ Iμn−1[u(s) −w(s)]∗ ≤ r

Γ
(
μn−1

) ,

0 ≤ Iμn−1−μi[u(s) −w(s)]∗ ≤ r

Γ
(
μn−1 − μi

) , i = 1, . . . , n − 2.

(3.3)

Choose

λ∗ = min
{

r

4η
,

1
N + 1

}

, (3.4)

where

N = max
(u1,u2,...,un)∈[0,1]×[0,r/Γ(μn−1)]×···×[0,r/Γ(μn−1−μn−2)]×[0,r]

h(u1, u2, . . . , un), (3.5)

and η is defined by Lemma 2.7. Thus, for any u ∈ ∂Ω1, s ∈ [0, 1], and λ ∈ (0, λ∗), by (3.3), we
have

‖Tu‖ = max
t∈[0,1]

(Tu)(t)

= λmax
t∈[0,1]

∫1

0
K(t, s)

[
f
(
s, Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≤ λτ

∫1

0

[
β(s)h

(
Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≤ λτ(N + 1)
∫1

0

[
β(s) + α(s)

]
ds ≤ r = ‖u‖.

(3.6)

Therefore,

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1. (3.7)

On the other hand, choose a real number L > 0 such that

λL

∫3/4

1/4
K

(
1
2
, s

)

ds

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

≥ 1. (3.8)
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By (3.1), for any t ∈ [1/4, 3/4], there exists a constant B > 0 such that

f(t, x1, x2, . . . , xn)
∑n

i=1|xi|
> L, for

n∑

i=1

|xi| ≥ B. (3.9)

Take

R = max

⎧
⎪⎨

⎪⎩
2r, 4λη,

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠

−1

4μ−μn−1+1B

⎫
⎪⎬

⎪⎭
, (3.10)

let Ω2 = {u ∈ P : ‖u‖ < R} and ∂Ω2 = {u ∈ P : ‖u‖ = R}. Then for any u ∈ ∂Ω2, s ∈ [0, 1], by
Lemma 2.7, we have

u(s) −w(s) ≥ u(s) − ληγ(s) ≥ 1
2
Rγ(s) − ληγ(s) ≥ 1

4
Rγ(s) ≥ 0. (3.11)

And then, for any u ∈ ∂Ω2, s ∈ [1/4, 3/4], one gets

(
n−2∑

i=1

∣
∣Iμn−1−μi [u(s) −w(s)]∗

∣
∣

)

+
∣
∣Iμn−1[u(s) −w(s)]∗

∣
∣ +

∣
∣[u(s) −w(s)]∗

∣
∣

≥ u(s) −w(s) ≥ 1
4
Rγ(t) ≥

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

R

+
m−2∑

j=1

ajξ
μ−μn−1−1
j

(
1 − ξj

)
(
1
4

)μ−μn−1
R ≥

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

R ≥ B.

(3.12)

It follows from (3.12) that, for any u ∈ ∂Ω2,

‖Tu‖ ≥ λ

∫1

0
K

(
1
2
, s

)
[
f
(
s, Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≥ λ

∫3/4

1/4
K

(
1
2
, s

)

f
(
s, Iμn−1[u(s) −w(s)], Iμn−1−μ1[u(s) −w(s)], . . . ,

Iμn−1−μn−2[u(s) −w(s)], [u(s) −w(s)]
)
ds
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≥ λ

∫3/4

1/4
K

(
1
2
, s

)

L
(|Iμn−1[u(s) −w(s)]| + ∣

∣Iμn−1−μ1[u(s) −w(s)]
∣
∣

+ · · · + ∣
∣Iμn−1−μn−2[u(s) −w(s)]

∣
∣ + |[u(s) −w(s)]|)ds

≥ λL

∫3/4

1/4
K

(
1
2
, s

)

|[u(s) −w(s)]|ds

≥ λL

∫3/4

1/4
K

(
1
2
, s

)

ds

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

R = R = ‖u‖.

(3.13)

So, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2. (3.14)

By Lemma 2.9, T has at least a fixed point u ∈ (P ∩Ω2) \Ω1 such that r ≤ ||u|| ≤ R.
It follows from λ∗ ≤ r/4η and λ ∈ (0, λ∗) that

u(t) −w(t) ≥ u(t) − ληγ(t) ≥ 1
2
rγ(t) − ληγ(t) ≥ r

4
γ(t) > 0, t ∈ (0, 1). (3.15)

Let x(t) = Iμn−1[u(t) −w(t)], then

x(t) > 0, t ∈ (0, 1). (3.16)

By Lemma 2.6, we know that the differential equation (1.1) has at least a positive solutions
x.

Theorem 3.2. Suppose (B1) holds and

lim inf∑n
i=1|ui|→∞

min
t∈[1/4,3/4]

f(t, u1, u2, . . . , un) = +∞, lim∑n
i=1 |ui|→∞

h(u1, u2, . . . , un)
∑n

i=1|ui|
= 0. (3.17)

Then there exists λ∗ > 0 such that the higher order multipoint boundary value problem (1.1) has at
least one positive solution for any λ ∈ (λ∗,+∞).

Proof. By (3.17), there exists M > 0 such that for any t ∈ [1/4, 3/4] we have

f(t, u1, u2, . . . , un) ≥
4η

∫3/4
1/4 K(1/2, s)ds

, if
n∑

i=1

|ui| ≥ M. (3.18)
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Let

λ∗ =
M

η
(
1 −∑m−2

j=1 ajξ
μ−μn−1
j

)
(1/4)μ−μn−1+1

. (3.19)

In the following of the proof, we suppose λ > λ∗. Take

r = 4λη, (3.20)

and let Ω1 = {u ∈ P : ‖u‖ < r} and ∂Ω1 = {u ∈ P : ‖u‖ = r}. Then for any u ∈ ∂Ω1, s ∈ [0, 1],
by Lemma 2.7, we have

u(s) −w(s) ≥ u(s) − ληγ(s) ≥ 1
2
rγ(s) − ληγ(s) = ληγ(s) ≥ 0. (3.21)

So for any u ∈ ∂Ω1, s ∈ [1/4, 3/4], one gets

(
n−2∑

i=1

∣
∣Iμn−1−μi [u(s) −w(s)]∗

∣
∣

)

+
∣
∣Iμn−1[u(s) −w(s)]∗

∣
∣ +

∣
∣[u(s) −w(s)]∗

∣
∣

≥ u(s) −w(s) ≥ ληγ(s) ≥ λη

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

≥ λ∗η

⎛

⎝1 −
m−2∑

j=1

ajξ
μ−μn−1
j

⎞

⎠
(
1
4

)μ−μn−1+1

≥ M.

(3.22)

Thus, by (3.22), for any u ∈ ∂Ω1, we have

‖Tu‖ ≥ λ

∫1

0
K

(
1
2
, s

)
[
f
(
s, Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≥ λ

∫3/4

1/4
K

(
1
2
, s

)

f
(
s, Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
ds

≥ λ

∫3/4

1/4
K

(
1
2
, s

)

ds × 4η
∫3/4
1/4 K(1/2, s)ds

= r = ‖u‖.

(3.23)

So, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.24)
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Next, take

σ =
n−2∑

i=1

1
Γ
(
μn−1 − μi

) +
1

Γ
(
μn−1

) + 1. (3.25)

Let us choose ε > 0 such that

λτσε

∫1

0
β(s)ds < 1. (3.26)

Then for the above ε, by (3.17), there exists N > r > 0 such that, for any t ∈ [0, 1],

h(u1, u2, . . . , un) ≤ ε
n∑

i=1

|ui|, if
n∑

i=1

|ui| > N. (3.27)

Thus, by (3.3) and (3.27), if

(
n−2∑

i=1

∣
∣Iμn−1−μi [u(s) −w(s)]∗

∣
∣

)

+
∣
∣Iμn−1[u(s) −w(s)]∗

∣
∣ +

∣
∣[u(s) −w(s)]∗

∣
∣ > N, (3.28)

we have

h
(
Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
ds

≤ ∣
∣Iμn−1[u(s) −w(s)]∗

∣
∣ +

∣
∣Iμn−1−μ1[u(s) −w(s)]∗

∣
∣ + · · ·

+
∣
∣Iμn−1−μn−2[u(s) −w(s)]∗

∣
∣ +

∣
∣[u(s) −w(s)]∗

∣
∣ε

≤
(

n−2∑

i=1

1
Γ
(
μn−1 − μi

) +
1

Γ
(
μn−1

) + 1

)

‖u‖ε = σ‖u‖ε.

(3.29)

Take

R =
λτθ

∫1

0

[
β(s) + α(s)

]
ds + λτ

∫1

0
α(s)ds

1 − λτσε

∫1

0
β(s)ds

+N, (3.30)

where

θ = max∑n
i=1|ui|≤N

h(u1, u2, . . . , un) + 1. (3.31)

Then R > N > r.
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Now let Ω2 = {u ∈ P : ‖u‖ < R} and ∂Ω2 = {u ∈ P : ‖u‖ = R}. Then, for any
u ∈ P ∩ ∂Ω2, we have

‖Tu‖ = max
t∈[0,1]

(Tu)(t)

= λmax
t∈[0,1]

∫1

0
K(t, s)

[
f
(
s, Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≤ λτ

∫1

0

[
β(s)h

(
Iμn−1[u(s) −w(s)]∗, Iμn−1−μ1[u(s) −w(s)]∗, . . . ,

Iμn−1−μn−2[u(s) −w(s)]∗, [u(s) −w(s)]∗
)
+ α(s)

]
ds

≤ λτ

(

max∑n
i=1|ui|≤N

h(u1, u2, . . . , un) + 1

)∫1

0

[
β(s) + α(s)

]
ds + λτ

∫1

0

[
β(s)σε‖u‖ + α(s)

]
ds

≤ λτθ

∫1

0

[
β(s) + α(s)

]
ds + λτ

∫1

0
α(s)ds + λτσε

∫1

0
β(s)dsR ≤ R = ‖u‖,

(3.32)

which implies that

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.33)

By Lemma 2.9, T has at least a fixed point u ∈ (P ∩Ω2) \Ω1 such that r ≤ ||u|| ≤ R.
It follows from r = 4λη that

u(t) −w(t) ≥ 1
2
‖u‖γ(t) − ληγ(t) = ληγ(t) > 0, t ∈ (0, 1). (3.34)

Let x(t) = Iμn−1[u(t) −w(t)], then

x(t) > 0, t ∈ (0, 1). (3.35)

By Lemma 2.6, we know that the differential equation (1.1) has at least a positive solutions
x.

Example 3.3. Consider the existence of positive solutions for the nonlinear higher order
fractional differential equation with four-point boundary condition

−Dt
5/2x(t) =

[
|x(t)| +

∣
∣
∣Dt

1/4x(t)
∣
∣
∣ +

∣
∣
∣Dt

3/8x(t)
∣
∣
∣
]1/2

+ ln t,

Dt
1/4x(0) = Dt

3/8x(0) = Dt
11/8x(0) = 0, Dt

3/8x(1) = 2Dt
3/8x

(
1
2

)

−Dt
3/8x

(
3
4

)

.

(3.36)
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Then there exists λ∗ > 0 such that the higher order four-point boundary value problem (1.1)
has at least one positive solution for any λ ∈ (λ∗,+∞).

Proof. Let

f
(
t, x, y, z

)
=

(|x| + ∣
∣y

∣
∣ + |z|)1/2 + ln t, t ∈ (0, 1) × R

3, (3.37)

then

−|ln t| = ln t ≤ f
(
t, x, y, z

)
=

(|x| + ∣
∣y

∣
∣ + |z|)1/2 + ln t ≤ (|x| + ∣

∣y
∣
∣ + |z|)1/2,

α(t) = |ln t|, β(t) = 1, h
(
x, y, z

)
=

(|x| + ∣
∣y

∣
∣ + |z|)1/2,

lim inf
|x|+|y|+|z|→+∞

min
t∈[1/4, 3/4]

f
(
t, x, y, z

)
= +∞, lim

|x|+|y|+|z|→+∞
h
(
x, y, z

)

|x| + ∣
∣y

∣
∣ + |z| = 0.

(3.38)

Clearly, α, β ∈ L1[(0, 1), (0,+∞)], and

0 <
m−2∑

j=1

ajξ
μ−μn−1−1
j = 1 − 2

(
1
2

)9/8

+
(
3
4

)9/8

= 0.8065 < 1. (3.39)

By Theorem 3.2, there exists λ∗ > 0 such that the higher order multipoint boundary value
problem (3.36) has at least one positive solution for any λ ∈ (λ∗,+∞).
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