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We study the existence of solutions for the boundary value problem −Δνy1(t) = f(y1(t+ν−1), y2(t+
μ− 1)), −Δμy2(t) = g(y1(t+ ν − 1), y2(t+μ− 1)), y1(ν − 2) = Δy1(ν + b) = 0, y2(μ− 2) = Δy2(μ+ b) =
0, where 1 < μ, ν ≤ 2, f, g : R × R → R are continuous functions, b ∈ N0. The existence of
solutions to this problem is established by the Guo-Krasnosel’kii theorem and the Schauder fixed-
point theorem, and some examples are given to illustrate the main results.

1. Introduction

In recent years, fractional differential equations have been of great interest. It is caused
both by the intensive development of the theory of fractional calculus itself and by the
applications of such constructions in various sciences such as physics, mechanics, chemistry,
and engineering. The continuous fractional calculus has seen tremendous growth within the
last ten years or so. Some of the recent progress in the continuous fractional calculus has
included a paper [1] in which the authors explored a continuous fractional boundary value
problem of conjugate type. Using cone theory, they then deduced the existence of one or
more positive solutions. Other recent work in the direction of those articles may be found,
see [2–14].

Recently, there appeared a number of papers on the discrete fractional calculus, such
as [15–32], which has helped to build up some of the basic theories of this area. For example,
Atici and Eloe discussed properties of the generalized falling function, a corresponding
power rule for fractional delta-operators, and the commutivity of fractional sums in [15].
And Goodrich studied a two-point fractional boundary value problem in [24], which gave
the existence results for a certain two-point boundary value problem of right-focal type for a
fractional difference equation.
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From the above works, we can see a fact, although the discrete fractional boundary
value problem has been studied by some authors, to the best of our knowledge, systems of
discrete fractional boundary value problem are seldom considered.

Goodrich in [24] considered a discrete fractional boundary value problem

−Δνy(t) = f
(
t + ν − 1, y(t + ν − 1)

)
,

y(ν − 2) = 0 = Δy(ν + b),
(1.1)

where t ∈ [0, b + 1]
N0
, f : [ν − 1, ν + b − 1]

Nν−1 × R → R, and 1 < ν ≤ 2, which gave a
representation for the solution to this problem and established the existence and uniqueness
of solution to this problem by the Guo-Krasnosel’kii theorem.

Goodrich in [25] examined a system of discrete fractional difference equations subject
to nonlocal boundary conditions

−Δν1y1(t) = λ1a1(t + ν1 − 1)f1
(
y1(t + ν1 − 1), y2(t + ν2 − 1)

)
,

−Δν2y2(t) = λ2a2(t + ν2 − 1)f2
(
y1(t + ν1 − 1), y2(t + ν2 − 1)

)
,

(1.2)

for t ∈ [0, b]
N0
, subject to the conditions

y1(ν1 − 2) = ψ1
(
y1
)
, y2(ν2 − 2) = ψ2

(
y2
)
,

y1(ν1 + b) = φ1
(
y1
)
, y2(ν2 + b) = φ2

(
y2
)
,

(1.3)

where λi > 0, ai : R → [0,+∞), νi ∈ (1, 2], and for each i = 1, 2, ψi, φi : R
b+3 → R are

given functionals, and fi : [0,+∞) × [0,+∞) → [0,+∞) are continuous for each admissible
i. This paper gives the existence of a positive solution on discrete fractional boundary value
problems.

Motivated by all the works above, in this paper, we discuss the existence of solutions
to a system of discrete fractional boundary value problem

−Δνy1(t) = f
(
y1(t + ν − 1), y2

(
t + μ − 1

))
, for t ∈ [0, b + 1]

N0
,

−Δμy2(t) = g
(
y1(t + ν − 1), y2

(
t + μ − 1

))
, for t ∈ [0, b + 1]

N0
,

y1(ν − 2) = Δy1(ν + b) = 0,

y2
(
μ − 2

)
= Δy2

(
μ + b

)
= 0,

(1.4)

where 1 < μ, ν ≤ 2, f, g : R × R → R are continuous functions, b ∈ N0.
The plan of the paper is as follows. In Section 2, we will present some lemmas in order

to prove our main results. Section 3, establishes and proves our main results. In Section 4 we
give some examples to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we give some background materials from fractional
difference theory to facilitate the analysis of problem (1.4). These and other related results
and their proof can be found in [15–18].
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Definition 2.1. One defines tν := Γ(t + 1)/Γ(t + 1 − ν), for any t and ν for which the right-hand
side is defined. One also appeals to the convention that if t + 1 − ν is a pole of the Gamma
function and t + 1 is not a pole, then tν = 0.

Definition 2.2. The νth fractional sum of a function f , for ν > 0, is defined by

Δ−νf(t;a) :=
1

Γ(ν)

t−ν∑

s=a
(t − s − 1)ν−1f(s), (2.1)

for t ∈ {a + ν, a + ν + 1, . . .} := Na+ν. One also defines the νth fractional difference for ν > 0 by
Δνf(t) := ΔNΔν−Nf(t), where t ∈ Na+ν and ν ∈ N is chosen so that 0 ≤N − 1 < ν ≤N.

Lemma 2.3. Let t and ν be any numbers for which tν and tν−1 are defined, then

Δtν = νtν−1. (2.2)

Lemma 2.4. Let 0 ≤N − 1 < ν ≤N, whereN ∈ N andN − 1 ≥ 0, then

Δ−νΔνy(t) = y(t) + C1t
ν−1 + C2t

ν−2 + · · · + CNt
ν−N, (2.3)

for some Ci ∈ R, with 1 ≤ i ≤N.

Before stating the next useful lemma, let us introduce the following notation, which
will be important in the sequel:

T1 :=
{
(t, s) ∈ [ν − 1, ν + b + 1]

Nν−1 × [0, b + 1]
N0

: 0 ≤ s < t − ν + 1 ≤ b + 2
}
,

T2 :=
{
(t, s) ∈ [ν − 1, ν + b + 1]

Nν−1 × [0, b + 1]
N0

: 0 ≤ t − ν + 1 ≤ s ≤ b + 2
}
,

L1 :=
{
(t, s) ∈ [μ − 1, μ + b + 1

]
Nμ−1

× [0, b + 1]
N0

: 0 ≤ s < t − μ + 1 ≤ b + 2
}
,

L2 :=
{
(t, s) ∈ [μ − 1, μ + b + 1

]
Nμ−1

× [0, b + 1]
N0

: 0 ≤ t − μ + 1 ≤ s ≤ b + 2
}
.

(2.4)

Lemma 2.5. ([24]) The unique solution of the discrete fractional boundary value problem

−Δνy(t) = h(t + ν − 1), y(ν − 2) = 0 = Δy(ν + b) (2.5)

is given by

y(t) :=
b+1∑

s=0

G1(t, s)h(s + ν − 1), (2.6)
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where 1 < ν ≤ 2, G1(t, s) is given by

G1(t, s) :=
1

Γ(ν)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b − s − 1)ν−2 − (t − s − 1)ν−1, (t, s) ∈ T1,

Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b − s − 1)ν−2, (t, s) ∈ T2.

(2.7)

Remark 2.6. Let us note that in case we put μ replacing ν in Lemma 2.5, it follows that

y(t) :=
b+1∑

s=0

G2(t, s)h
(
s + μ − 1

)
, (2.8)

where 1 < μ ≤ 2, G2(t, s) is given by

G2(t, s) :=
1

Γ
(
μ
)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Γ(b + 3)tμ−1

Γ
(
μ + b + 1

)
(
μ + b − s − 1

)μ−2 − (t − s − 1)μ−1, (t, s) ∈ L1,

Γ(b + 3)tμ−1

Γ
(
μ + b + 1

)
(
μ + b − s − 1

)μ−2
, (t, s) ∈ L2.

(2.9)

Lemma 2.7. ([24]) The Green function G1(t, s) given in Lemma 2.5 satisfies

(i) G1(t, s) ≥ 0 for (t, s) ∈ [ν − 1, ν + b + 1]
Nν−1 × [0, b + 1]

N0

(ii) maxt∈[ν−1,ν+b+1]
Nν−1

G1(t, s) = G1(s + ν − 1, s), for s ∈ [0, b]
N0

(iii) there exists a number γ1 ∈ (0, 1) such that

min
t∈[(b+ν)/4, 3(b+ν)/4]

G1(t, s) ≥ γ1 max
t∈[ν−1, ν+b+1]

Nν−1
G1(t, s) = γ1G1(s + ν − 1, s), for s ∈ [0, b + 1]

N0
.

(2.10)

Similarly, G2(t, s) satisfies

(I) G2(t, s) ≥ 0 for (t, s) ∈ [μ − 1, μ + b + 1]
Nμ−1 × [0, b + 1]

N0

(II) maxt∈[μ−1,μ+b+1]
Nμ−1

G2(t, s) = G2(s + μ − 1, s), for s ∈ [0, b]
N0

(III) there exists a number γ2 ∈ (0, 1) such that

min
t∈[(b+μ)/4, 3(b+μ)/4]

G2(t, s) ≥ γ2 max
t∈[μ−1, μ+b+1]

Nμ−1

G2(t, s) = γ2G2
(
s + μ − 1, s

)
, for s ∈ [0, b + 1]

N0
.

(2.11)

Let B1 and B2 represent the Banach space of all maps from [ν − 1, ν + b]
Nν−1 into R and

[μ − 1, μ + b]
Nμ−1 into R, respectively. And ‖ · ‖ is the usual maximum norm. Define

X := B1 × B2. (2.12)



Abstract and Applied Analysis 5

By equipping Xwith the norm

∥
∥(y1, y2

)∥∥ :=
∥
∥y1
∥
∥ +
∥
∥y2
∥
∥, (2.13)

it follows that (X, ‖ · ‖) is a Banach space, see [26, 27].
Next, we wish to develop a representation for a solution of (1.4) as the fixed point of an

appropriate operator onX. To accomplish this, we present some straightforward adaptations
of results from [24] that will be of use here. Since the proofs of these adaptations are evident,
we do not include them.

Now, consider the operator S : X → X defined by

S(y1, y2
)
(t1, t2) :=

(S1
(
y1, y2

)
(t1), S2

(
y1, y2

)
(t2)
)
, (2.14)

where we define S1 : X → B1 by

S1
(
y1, y2

)
(t1) :=

b+1∑

s=0

G1(t1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))
, (2.15)

and S2 : X → B2 by

S2
(
y1, y2

)
(t2) :=

b+1∑

s=0

G2(t2, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))
. (2.16)

We claim that whenever (y1, y2) ∈ X is a fixed point of the operator S, it follows that the pair
of functions y1(t) and y2(t) are a solution to problem (1.4).

Lemma 2.8. Let f, g : R×R → R. If (y1, y2) ∈ X is a fixed point of S, then (y1, y2) is a solution to
problem (1.4).

Proof. Suppose that the operator S has a fixed point, say (y1, y2) ∈ X. Let (t1, t2) ∈ Nν−1×Nμ−1,
then we have

y1 = S1
(
y1, y2

)
(t1), (2.17)
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where S1 is defined as in (2.15). It is easy to check that S1(y1, y2)(ν − 2) = 0 and

ΔS1
(
y1, y2

)
(ν + b) = S1

(
y1, y2

)
(ν + b + 1) − S1

(
y1, y2

)
(ν + b)

=
b+1∑

s=0

(
Γ(b + 3)(ν + b + 1)ν−1

Γ(ν + b + 1)
(ν + b − s − 1)ν−2 − (ν + b − s)ν−1

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))

−
b+1∑

s=0

(
Γ(b + 3)(ν + b)ν−1

Γ(ν + b + 1)
(ν + b − s − 1)ν−2 − (ν + b − s − 1)ν−1

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))

=
b+1∑

s=0

(
(ν + b + 1)(ν + b − s − 1)ν−2 − (b + 2)(ν + b − s − 1)ν−2

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))

−
b+1∑

s=0

(
(ν + b − s)Γ(ν + b − s)
(b − s + 1)Γ(b − s + 1)

− Γ(ν + b − s)
Γ(b − s + 1)

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))

=
b+1∑

s=0

(
(ν − 1)(ν + b − s − 1)ν−2 − (ν − 1)Γ(ν + b − s)

(b − s + 1)Γ(b − s + 1)

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))

=
b+1∑

s=0

(
(ν − 1)

Γ(ν + b − s)
Γ(b − s + 2)

− (ν − 1)Γ(ν + b − s)
Γ(b − s + 2)

)

× f(y1(s + ν − 1), y2
(
s + μ − 1

))
= 0,

(2.18)

so the boundary conditions are satisfied. Furthermore, we can check that S1(y1, y2)(t1)
satisfies the difference equation in (1.4). Since similar verifications may be made for
S2(y1, y2)(t2), the claim follows, which completes the proof.

3. Main Results

In this section, we will show that under certain conditions, problem (1.4) has at least one
solution.

Let us now present the conditions that we will assume henceforth. We note that
conditions (F1)-(F2) are similar to the conditions given by Henderson et al. [26]

(F1) :f, g ∈ C([0,∞), [0,∞))

(F2) : lim
(y1,y2)→ (0+,0+)

f
(
y1, y2

)

y1 + y2
= f∗, lim

(y1,y2)→ (0+,0+)

g
(
y1, y2

)

y1 + y2
= g∗,

lim
(y1,y2)→ (+∞,+∞)

f
(
y1, y2

)

y1 + y2
= f∗∗, lim

(y1,y2)→ (+∞,+∞)

g
(
y1, y2

)

y1 + y2
= g∗∗,

(3.1)
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satisfying

b+1∑

s=0

G1(s + ν − 1, s)
(
f∗ + ε

) ≤ 1
2
,

b+1∑

s=0

G2
(
s + μ − 1, s

)(
g∗ + ε

) ≤ 1
2
,

b+1∑

s=0

γG1(s + ν − 1, s)
(
f∗∗ − ε) ≥ 1

2
,

b+1∑

s=0

γG2
(
s + μ − 1, s

)(
g∗∗ − ε) ≥ 1

2
,

(3.2)

for some 0 < ε < min{f∗∗, g∗∗}.
Define the cone by

K :=

{
(
y1, y2

) ∈ X : y1, y2 ≥ 0, min
(t1,t2)∈[(ν−1)/4, 3(ν+b)/4]×[(μ−1)/4, 3(μ+b)/4]

×[y1(t1) + y2(t2)
] ≥ γ∥∥(y1, y2

)∥∥
}

,

(3.3)

where γ = min{γ1, γ2}, for i = 1, 2, γi is defined as in Lemma 2.7. Clearly, K ⊆ X. In order to
show that S has a fixed point in K, we must first demonstrate that K is invariant under S,
that is, S : K → K. We show this now.

Lemma 3.1. Assume that f, g are nonnegative functions. Let S : X → X be the operator defined as
(2.14), then S : K → K.

Proof. Suppose that (y1, y2) ∈ K. We claim that

min
(t1,t2)∈[(ν−1)/4, 3(ν+b)/4]×[(μ−1)/4, 3(μ+b)/4]

[S1
(
y1, y2

)
(t1) + S2

(
y1, y2

)
(t2)
] ≥ γ∥∥S(y1, y2

)∥∥. (3.4)

In fact,

min
t1∈[(ν−1)/4, 3(ν+b)/4]

S1
(
y1, y2

)
(t1)

≥ min
t1∈[(ν−1)/4, 3(ν+b)/4]

b+1∑

s=0

G1(t1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))

≥ γ1
b+1∑

s=0

G1(s + ν − 1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))

= γ1 max
t1∈[ν−1,ν+b]Nν−1

b+1∑

s=0

G1(t1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))

= γ1
∥∥S1
(
y1, y2

)∥∥.

(3.5)

Similarly, we get

min
t2∈[(μ−1)/4, 3(μ+b)/4]

S2
(
y1, y2

)
(t2) ≥ γ2

∥∥S2
(
y1, y2

)∥∥ . (3.6)
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Put γ = min{γ1, γ2}. Consequently, from (3.5) and (3.6), we obtain

min
(t1,t2)∈[(ν−1)/4, 3(ν+b)/4]×[(μ−1)/4, 3(μ+b)/4]

[S1
(
y1, y2

)
(t1) + S2

(
y1, y2

)
(t2)
]

≥ min
t1∈[(ν−1)/4, 3(ν+b)/4]

S1
(
y1, y2

)
(t1)

+ min
t2∈[(μ−1)/4, 3(μ+b)/4]

S2
(
y1, y2

)
(t2)

≥ γ1
∥
∥S1
(
y1, y2

)∥∥ + γ2
∥
∥S2
(
y1, y2

)∥∥

≥ γ(∥∥S1
(
y1, y2

)∥∥ +
∥
∥S2
(
y1, y2

)∥∥)

= γ
∥
∥S(y1, y2

)∥∥.

(3.7)

So, for (y1, y2) ∈ K, we find

min
(t1,t2)∈[(ν−1)/4, 3(ν+b)/4]×[(μ−1)/4, 3(μ+b)/4]

[S1
(
y1, y2

)
(t1) + S2

(
y1, y2

)
(t2)
] ≥ γ∥∥S(y1, y2

)∥∥. (3.8)

Therefore, from (3.8), whenever we get (y1, y2) ∈ K, it follows that S(y1, y2) ∈ K. This
completes the proof.

We next recall the Guo-Krasnosel’kii fixed-point theorem and Schauder fixed-point
theorem, which we will use to prove the main results.

Lemma 3.2. ([21]) Let B be a Banach space, and letK ⊆ B be a cone. Assume thatΩ1 andΩ2 are open
subsets contained in B such that 0 ∈ Ω1 andΩ1 ⊆ Ω2. Assume, further, that T : K∩ (Ω2 \Ω1) → K
is a completely continuous operator. If either

(1) ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2,

(2) or ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2,

then T has at least one fixed point in K∩ (Ω2 \Ω1).

Lemma 3.3. ([22]) (Schauder fixed-point theorem) Suppose that X is a Banach space. Let K be a
bounded closed-convex set of X, and let T : K → K be a completely continuous operator, then T has
at least one fixed point inK.

Theorem 3.4. Suppose that conditions (F1)-(F2) hold, then problem (1.4) has at least one solution.

Proof. From Lemma 3.1, we know that S : K → K. Note that S is a summation operator on
a discrete finite set. Hence, S is a completely continuous operator.

By conditions (F1) and (F2), for ε given in (F2), there exists some constant r1 > 0, such
that

f
(
y1, y2

) ≤ (f∗ + ε
)(
y1 + y2

)
, (3.9)

g
(
y1, y2

) ≤ (g∗ + ε
)(
y1 + y2

)
, (3.10)

whenever ‖(y1, y2)‖ < r1.
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Setting

Ω1 :=
{(
y1, y2

) ∈ X :
∥
∥(y1, y2

)∥∥ < r1
}
, (3.11)

Then, for (y1, y2) ∈ K ∩ ∂Ω1, by Lemma 2.7, (F2) and (3.9), we find that

∥
∥S1
(
y1, y2

)∥∥ = max
t1∈[ν−1,ν+b]Nν−1

b+1∑

s=0

G1(t1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))

≤
b+1∑

s=0

G1(s + ν − 1, s)
(
f∗ + ε

)(
y1 + y2

)

≤ ∥∥(y1, y2
)∥∥

b+1∑

s=0

G1(s + ν − 1, s)
(
f∗ + ε

)

≤ 1
2
r1 =

1
2
∥∥(y1, y2

)∥∥.

(3.12)

Similar, by (3.10), it can be shown that

∥∥S2
(
y1, y2

)∥∥ ≤ 1
2
∥∥(y1, y2

)∥∥. (3.13)

Thus, putting (3.12) and (3.13) together, for (y1, y2) ∈ K ∩ ∂Ω1, we have

∥∥S(y1, y2
)∥∥ ≤ 1

2
∥∥(y1, y2

)∥∥ +
1
2
∥∥(y1, y2

)∥∥ =
∥∥(y1, y2

)∥∥. (3.14)

Now, for the above ε, by (F2), we can find a constant r∗∗ > 0 such that

f
(
y1, y2

) ≥ (f∗∗ − ε)(y1 + y2
)
, (3.15)

g
(
y1, y2

) ≥ (g∗∗ − ε)(y1 + y2
)
, (3.16)

whenever ‖y1 + y2‖ ≥ r∗∗. Let

1
2
r∗∗ ≤ r2 ≤ min

{
b+1∑

s=0

G1(s + ν − 1, s)
(
f∗∗ − ε)γr∗∗,

b+1∑

s=0

G2
(
s + μ − 1, s

)(
g∗∗ − ε)γr∗∗

}

. (3.17)

Moreover, put

Ω2 :=
{(
y1, y2

) ∈ X :
∥∥(y1, y2

)∥∥ < 2r2
}
. (3.18)

If (y1, y2) ∈ K ∩ ∂Ω2, then

y1(t1) + y2(t2) ≥ min
(t1,t2)∈[(ν−1)/4, 3(ν+b)/4]×[(μ−1)/4,3(μ+b)/4]

[
y1(t1) + y2(t2)

] ≥ γ∥∥(y1, y2
)∥∥. (3.19)
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Thus, from (3.15) and (3.19), we obtain

∥
∥S1
(
y1, y2

)∥∥ = max
t1∈[ν−1,ν+b]Nν−1

b+1∑

s=0

G1(t1, s)f
(
y1(s + ν − 1), y2

(
s + μ − 1

))

≥
b+1∑

s=0

G1(s + ν − 1, s)
(
f∗∗ − ε)(y1 + y2

)

≥
b+1∑

s=0

G1(s + ν − 1, s)
(
f∗∗ − ε)γ∥∥(y1, y2

)∥∥

≥ r2 = 1
2
∥
∥(y1, y2

)∥∥.

(3.20)

Similarly, by (3.16) and (3.19), we have

∥∥S2
(
y1, y2

)∥∥ ≥ 1
2
∥∥(y1, y2

)∥∥. (3.21)

So, from (3.20) and (3.21), we get

∥∥S(y1, y2
)∥∥ ≥ ∥∥(y1, y2

)∥∥, (3.22)

whenever (y1, y2) ∈ K ∩ ∂Ω2.
Thus, by (3.14) and (3.22), we get that all of the hypotheses of Lemma 3.2 are satisfied.

Consequently, we conclude that S has a fixed point, say (y∗
1, y

∗
2) ∈ K. Then the theorem is

proved.

Theorem 3.5. Let f, g : R × R → R be continuous functions. Suppose that the following conditions
are satisfied:

(i) there exist nonnegative functions a, h, p, q ∈ C(R,R+) such that

∣∣f
(
y1, y2

)∣∣ ≤ a(y1
)
+ p
(
y2
)
,
∣∣g
(
y1, y2

)∣∣ ≤ h(y1
)
+ q
(
y2
)
, (3.23)

(ii) Consider the following:

lim
|y|→+∞

p
(
y
)

∣∣y
∣∣ < A, lim

|y|→+∞
q
(
y
)

∣∣y
∣∣ < B, (3.24)

where A = (2maxt∈[ν−1,ν+b+1]
∑b+1

s=0 G1(t, s))
−1, B = (2maxt∈[μ−1,μ+b+1]

∑b+1
s=0 G2(t, s))

−1, then
boundary value problem (1.4) has at least one solution (y∗∗

1 , y
∗∗
2 ).

Proof. Let ε1 = (1/2)(A − lim|y|→+∞p(y)/|y|). By (ii), there exists a c1 > 0, such that p(y2) <
(A − ε1)|y2|, for |y2| ≥ c1. SetM = max{p(y2) : |y2| ≤ c1}, then there exists a c2 > c1, such that
M/c2 ≤ A − ε1, so we have p(y2) < (A − ε1)c2, for |y2| ≤ c2.
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Let ε2 = (1/2)(B − lim|y|→+∞q(y)/|y|). In the same way, there exists a constant c3 > 0,
such that q(y2) < (B − ε2)c3, |y2| ≤ c3. Define

e1 = max
t1∈[ν−1,ν+b+1]

b+1∑

s=0

G1(t1, s)a
(
y1
)
, e2 = max

t2∈[μ−1,μ+b+1]

b+1∑

s=0

G2(t2, s)h
(
y1
)
,

c = max
{
c2, c3,

2A
ε1
e1,

2B
ε2
e2

}
,

U =
{(
y1, y2

) | (y1, y2
) ∈ X,∥∥(y1, y2

)∥∥ ≤ c, (t1, t2) ∈ [ν − 1, ν + b + 1]
Nν−1

×[μ − 1, μ + b + 1
]

Nμ−1

}
.

(3.25)

Then U is a bounded closed-convex set of X × X, and for any (y1, y2) ∈ U, we have p(y2) <
(A − ε1)c, q(y2) < (B − ε2)c. Next, we prove S : U → U, where S is defined as (2.14).

For (y1, y2) ∈ U, from (i) and (sii), we obtain

S1
(
y1, y2

)
(t1) =

b+1∑

s=0

G1(t1, s)f
(
y1, y2

)

≤
b+1∑

s=0

G1(t1, s)a
(
y1
)
+

b+1∑

s=0

G1(t1, s)p
(
y2
)

≤ e1 + (A − ε1)c
b+1∑

s=0

G1(t1, s)

≤ ε1
2A

c +
1
2

(
1 − ε1

A

)
c =

1
2
c,

(3.26)

similarly,

S2
(
y1, y2

)
(t2) ≤ ε2

2B
c +

1
2

(
1 − ε2

B

)
c =

1
2
c. (3.27)

Thus, from (3.26) and (3.27), we have ‖S(y1, y2)‖ ≤ c. Then, S : U → U.
Note that S is a summation operator on a discrete finite set. Hence, S is trivially

completely continuous. By Schauder fixed-point theorem, the boundary problem value
problem (1.4) has at least one solution, say (y∗∗

1 , y
∗∗
2 ). This completes the proof.

4. Examples

In this section, we will present some examples to illustrate the main results.
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Example 4.1. Suppose that ν = 3/2, μ = 5/4, η1 = 1/1000, η2 = 10/γ , γ = min{γ1, γ2}, and γ1,
γ2 are defined as in Lemma 2.7, b = 2. Let f(y1, y2) := ((1/1000e−y2) + (1000/γe1/y1))(y1 + y2)
and g(y) := ((1/2000e−y1) + (1000/γe1/y2))(y1 + y2), then (1.4) becomes

−Δ3/2y1(t) = f
(
y1

(
t +

1
2

)
, y2

(
t +

1
4

))
, for t ∈ [0, 3]

N0
,

−Δ5/4y2(t) = g
(
y1

(
t +

1
2

)
, y2

(
t +

1
4

))
, for t ∈ [0, 3]

N0
,

y1

(
−1
2

)
= Δy1

(
7
2

)
= 0,

y2

(
−3
4

)
= Δy2

(
13
4

)
= 0.

(4.1)

In this case,

lim
(y1,y2)→ (0+,0+)

f
(
y1, y2

)

y1 + y2
=

1
1000

= f∗, lim
(y1,y2)→ (0+,0+)

g
(
y1, y2

)

y1 + y2
=

1
2000

= g∗,

lim
(y1,y2)→ (+∞,+∞)

f
(
y1, y2

)

y1 + y2
=

1000
γ

= f∗∗, lim
(y1,y2)→ (+∞,+∞)

g
(
y1, y2

)

y1 + y2
=

1000
γ

= g∗∗,

(4.2)

b+1∑

s=0

G1(s + ν − 1, s) =
b+1∑

s=0

Γ(b + 3)(s + ν − 1)ν−1

Γ(ν + b + 1)
(ν + b − s − 1)ν−2

=
b+1∑

s=0

Γ(b + 3)Γ(s + ν)Γ(ν + b − s)
Γ(ν + b + 1)Γ(s + 1)Γ(b − s + 2)

=
b+1∑

s=0

(b + 2)(b + 1) · · · (b − s + 2)(s + ν − 1) · · · (s + 1)
(ν + b)(ν + b − 1) · · · (ν + b − s)

≤
b+1∑

s=0
(s + ν − 1) · · · (s + 1)

≤ (b + 2)(b + ν)(b + 2) = 4 × 7
2
× 4 = 56.

(4.3)

Similarly, we get

b+1∑

s=0

G2
(
s + μ − 1, s

) ≤ (b + 2)
(
b + μ

)
(b + 2) = 52. (4.4)
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Thus,

b+1∑

s=0

G1(s + ν − 1, s)
(
f∗ + η1

) ≤ 56 ×
(

1
1000

+
1

1000

)
≤ 1

2
,

b+1∑

s=0

G2(s + ν − 1, s)
(
g∗ + η1

) ≤ 52 ×
(

1
2000

+
1

1000

)
≤ 1

2
.

(4.5)

On the other hand,

b+1∑

s=0

G1(s + ν − 1, s) =
b+1∑

s=0

(b + 2)(b + 1) · · · (b − s + 2)(s + ν − 1) · · · (s + 1)
(ν + b)(ν + b − 1) · · · (ν + b − s)

≥
b+1∑

s=0
(b + 2)(b + 1) · · · (b − s + 2)(s + ν − 1) · · · (s + 1)

≥ (b + 2)(b + 2)(ν − 1) = 2 × 2 × 1
2
= 2,

(4.6)

similarly,

b+1∑

s=0

G2
(
s + μ − 1, s

) ≥ (b + 2)(b + 2)
(
μ − 1

) ≥ 4 × 4 × 1
4
= 1. (4.7)

Then,

b+1∑

s=0

γG1(s + ν − 1, s)
(
f∗∗ − η2

) ≥ 2γ ×
(
1000
γ

− 10
γ

)
= 1980 ≥ 1

2
,

b+1∑

s=0

γG2
(
s + μ − 1, s

)(
g∗∗ − η2

) ≥ γ ×
(
1000
γ

− 10
γ

)
= 990 ≥ 1

2
.

(4.8)

Thus, the conditions of Theorem 3.4 are satisfied. So, we obtain that the problem (4.1)
has at least one solution.

Example 4.2. Suppose that ν = 5/3, μ = 7/4, and b = 3. Let f(y1, y2) := y1 + (A/4)y2e−|y2|,
g(y1, y2) := y1 + (B/5)y2e−|y2|, a(y1) = |y1|, h(y1) = 2|y1|, p(y2) = (A/3)|y2|(e−|y2| + 1), and
q(y2) = (B/4)|y2|(e−|y2| + 1),y1, y2 ∈ R

+, where

A =

(

2maxt∈[ν−1,ν+b+1]
b+1∑

s=0

G1(t, s)

)−1
, B =

(

2maxt∈[μ−1,μ+b+1]
b+1∑

s=0

G2(t, s)

)−1
. (4.9)
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Then problem (1.4) is

−Δ5/3y1(t) = y1
(
t +

2
3

)
+
A

4
y2

(
t +

3
4

)
e−|y2(t+(3/4))|, for t ∈ [0, 4]

N0
,

−Δ7/4y1(t) = y1
(
t +

2
3

)
+
B

5
y2

(
t +

3
4

)
e−|y2(t+(3/4))|, for t ∈ [0, 4]

N0
,

y1

(
−1
3

)
= Δy1

(
14
3

)
= 0,

y2

(
−1
4

)
= Δy2

(
19
4

)
= 0.

(4.10)

It is clear that f, g, a, h, p, and q satisfy the conditions of Theorem 3.5. Thus, by
Theorem 3.5, we deduce that problem (4.10) has at least one solution.
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