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We introduce the general iterative methods for finding a common fixed point of asymptotically
nonexpansive semigroups which is a unique solution of some variational inequalities. We prove
the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits

a weakly continuous duality mapping. The main result extends various results existing in the
current literature.

1. Introduction

Let E be a normed linear space. Let T be a self-mapping on E. Then T is said to be
asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with lim,_, .k, = 1 such
that for each x, y € E,

IT"x =Ty | < knllx -y

. Yn>1l. (1.1)

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [1] as an
important generalization of the class of nonexpansive maps (i.e., mappings T : E — E such
that |[Tx — Ty|| < ||x — y||, for all x,y € E). We use F(T) to denote the set of fixed points of
T, thatis, F(T) = {x € E: Tx = x}. A self-mapping f : E — E is a contraction on E if there
exists a constant a € (0, 1) such that

17 = fWl <alx-yl, YxyeE. (1.2)
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We use I'lg to denote the collection of all contractions on E. Thatis, I1g = {f : f isa contraction
on E}.

A family S = {T(s) : 0 < s < oo} of mappings of E into itself is called a strongly con-
tinuous semigroup of Lipschitzian mappings on E if it satisfies the following conditions:

(i) T(0)x = x for all x € E;
(i) T(s+t) =T(s)T(t) forall s,t > 0;

(iii) for each t > 0, there exists a bounded measurable function L; : (0,c0) — [0, 0)
such that ||T(f)x — T(t)y|| < L¢||x — y||, for all x,y € E;

(iv) for all x € E, the mapping t — T (t)x is continuous.

A strongly continuous semigroup of Lipchitszian mappings S is called strongly continuous
semigroup of nonexpansive mappings if Ly = 1 for all t > 0 and strongly continuous semigroup of
asymptotically nonexpansive if limsup,_, L; < 1. Note that for asymptotically nonexpansive
semigroup .S, we can always assume that the Lipchitszian constant {L;},., is such that L; > 1
for each t > 0, L; is nonincreasing in ¢, and lim,, . L; = 1; otherwise we replace L;, for each
t > 0, with L; := max{sup_,,Ls, 1}. We denote by F(S) the set of all common fixed points of .S,
that is,

F(8):={x€E:T(t)x=x, 0<t<oo} =(F(T(t). (1.3)

t>0

Sis called uniformly asymptotically regular on C [2, 3] if for all h > 0 and any bounded subset
Bof C,

tlirgsupllT(h)T(t)x -T(t)x| =0, (1.4)

x€B

and almost uniformly asymtotically regular on C [4] if

lim sup =0. (1.5)

t—oo,ep

T(h)% JZ T(s)xds— % J‘; T(s)xds

Let u € C. Then, for each t € (0, 1) and for a nonexpansive map T, there exists a unique
point x; € C satisfying the following condition:

xp=(1-t)Tx; + tu, (1.6)

since the mapping G¢(x) = (1 — t)Tx + tu is a contraction. When H is a Hilbert space and T
is a self-map, Browder [5] showed that {x;} converges strongly to an element of F(T) which
is nearest to u ast — 0*. This result was extended to more various general Banach space by
Morales and Jung [6], Takahashi and Ueda [7], Reich [8], and a host of other authors.

Many authors (see, e.g., [9, 10]) have also shown the convergence of the path x, =
(1 - a,)T"x, + ayu, in Banach spaces for asymptotically nonexpansive mapping self-map T
under some conditions on «,,.
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It is an interesting problem to extend the above results to a strongly continuous semi-
group of nonexpansive mappings and a strongly continuous semigroup of asymptotically
nonexpansive mappings.

Let S be a strongly continuous semigroup of nonexpansive self-mappings. In 1998
Shioji and Takahashi [11] introduced, in Hilbert space, the implicit iteration

1 (™
u, = (1- a")t_J‘ T(s)u,ds+a,u, ueC, n>0, (1.7)
nJo

where {a,} is a sequence in (0,1), {t,} is a sequence of positive real numbers divergent
to co. Under certain restrictions to the sequence {a,}, Shioji and Takahashi proved strong
convergence of (1.7) to a member of F(S). Recently, Zegeye et al. [4] introduced the
implicit (1.7) and the following explicit iteration process for a semigroup of asymptotically
nonexpansive mappings:

1 (™
U = (1 - an)t— f T(s)u,ds+a,u, ueC, n>0, (1.8)
nJo

where t, € R* and a, € (0,1) in a reflexive strictly convex Banach space with a uniformly
Gateaux differentiable norm. Suppose, in addition, that .S is almost uniformly asymptotically
regular. Then the implicit sequence (1.7) and explicit sequence (1.8) converge strongly to a
point of F(S).

On the other hand, by a gauge function ¢ we mean a continuous strictly increasing
function ¢ : [0,00) — [0, 00) such that ¢(0) = 0 and ¢(t) — oo ast — oo. Let E* be the dual
space of E. The duality mapping J, : E — 2F associated to a gauge function ¢ is defined by

Jo() ={f* € E": {x, f*) = lIxllp(llxIl), |f*|| = ¢(llxID}, V¥x€E. (1.9)

In particular, the duality mapping with the gauge function ¢(t) = t, denoted by J, is
referred to as the normalized duality mapping. Clearly, there holds the relation J,(x) =
(oIl /llx]l)J (x) for all x#0 (see [12]). Browder [12] initiated the study of certain classes
of nonlinear operators by means of the duality mapping J,. Following Browder [12], we say
that a Banach space E has a weakly continuous duality mapping if there exists a gauge ¢ for
which the duality mapping J,(x) is single valued and continuous from the weak topology
to the weak® topology; that is, for any {x,} with x, — x, the sequence {J,(x,)} converges
weakly* to J,(x). It is known that IF has a weakly continuous duality mapping with a gauge
function ¢(t) = t*~! forall 1 < p < co. Set

D(t) = JZ p(t)dr, Vt>0, (1.10)

then

Jp(x) = 0@(||x|]), Vx€E, (1.11)

where 0 denotes the subdifferential in the sense of convex analysis.
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In a Banach space E having a weakly continuous duality mapping J, with a gauge
function ¢, an operator A is said to be strongly positive [13] if there exists a constant y > 0
with the property

(Ax, Jp(x)) > ¥lxllp(lx), (1.12)

[|al - pA| = lf};}gl((af =pA)x, J,(x))|, a€[01], pe[-1,1], (1.13)

where [ is the identity mapping. If E := H is a real Hilbert space, then the inequality (1.12)
reduces to

(Ax,x) >7||lx||* Vxe€H. (1.14)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H:

min1<Ax,x> —(x,b), (1.15)
xeC 2

where C is the fixed point set of a nonexpansive mapping T on H and b is a given point
in H. In 2009, motivated and inspired by Marino and Xu [14], Li et al. [15] introduced the
following general iterative procedures for the approximation of common fixed points of a
one-parameter nonexpansive semigroup {T(s) : s > 0} on a nonempty closed convex subset
C in a Hilbert space:

ty
Yn=anyf(yn) + I - can)tl Jo T(s)ynds, n>0,

t (1.16)

Xn+1 = Y f(xn) + (L - crnA)fl j ' T(s)x,ds, n>Q0,

0

where {a,} and {t,} are sequences in [0, 1] and (0, o), respectively, A is a strongly positive
bounded linear operator on H, and f is a contraction on H. And their convergence
theorems can be proved under some appropriate control conditions on parameter {a,} and
{t,}. Furthermore, by using these results, they obtained two mean ergodic theorems for
nonexpansive mappings in a Hilbert space.

All of the above brings us to the following conjectures.

Question 1. Could we obtain strong convergence theorems for the general class of strongly
continuous semigroup of asymptotically nonexpansive mappings in more general Banach
spaces? such as a reflexive Banach space which admits a weakly continuous duality mapping
Jy, where ¢ : [0,00) — [0, o0) is a gauge function.

In this paper, inspired and motivated by Shioji and Takahashi [11], Zegeye et al. [4],
Marino and Xu [14], Li et al. [15], and Wangkeeree et al. [13], we prove the strong con-
vergence theorems of the iterative approximation methods (1.16) for the general class of
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the strongly continuous semigroup of asymptotically nonexpansive mappings in a reflexive
Banach space which admits a weakly continuous duality mapping J,, where ¢ : [0,00) —
[0, ) is a gauge function and A is a strongly positive bounded linear operator on a Banach
space E. The results in this paper generalize and improve some well-known results in Shioji
and Takahashi [11], Li et al. [15], and many others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E* be its dual space. We write x, — x
(resp., x,—*x) to indicate that the sequence {x,} weakly (resp., weak®) converges to x; as
usual x, — x will symbolize strong convergence. Let U = {x € E : ||x|| = 1}. A Banach space
E is said to uniformly convex if, for any € € (0,2], there exists 6§ > 0 such that, for any x,y € U,
llx = y|| > e implies [|(x + v)/2|| <1 - 6. It is known that a uniformly convex Banach space is
reflexive and strictly convex (see also [16]). A Banach space E is said to be smooth if the limit
lim; o ((|x + ty|| — ||x||) /) exists for all x,y € U. It is also said to be uniformly smooth if the
limit is attained uniformly for x, y € U.

Now we collect some useful lemmas for proving the convergence result of this paper.

The first part of the next lemma is an immediate consequence of the subdifferential
inequality and the proof of the second part can be found in [10].

Lemma 2.1 (see [10]). Assume that a Banach space E has a weakly continuous duality mapping J,
with gauge .

(i) For all x,y € E, the following inequality holds:

O([lx + yll) < D(Uxll) + (. Jp (x + ))- (2.1)
In particular, forall x,y € E,

[l + y]I* < Il +2(y, T (x + y)). (2.2)

(ii) Assume that a sequence {x,} in E converges weakly to a point x € E.

Then the following identity holds:

lim sup @(||x, — y||) = limsup @(||x, — x||) + P(||ly — x||), Vx,y €E. (2.3)

n—oo n—oo

The next valuable lemma is proved for applying our main results.

Lemma 2.2 (see [13, Lemma 3.1]). Assume that a Banach space E has a weakly continuous duality
mapping J, with gauge ¢. Let A be a strong positive linear bounded operator on E with coefficient

¥>0and 0 < p < (DA™ Then |[1 - pAll < p(1) (1 - pY).

In the following, we also need the following lemma that can be found in the existing
literature [17, 18].
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Lemma 2.3 (see [18, Lemma 2.1]). Let {a,} be a sequence of a nonnegative real number satisfying
the property

ap1 < (1 - Yn)an + Yn,ﬁnl n>0, (24)

where {y,} C (0,1) and {B,} C R such that 377y, = oo and limsup,  f, < 0. Then {a,}
converges to zero, as n — co.

3. Main Theorem

Theorem 3.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1]. Let S = {T(s) : s > 0} be a strongly continuous
semigroup of asymptotically nonexpansive mappings on E with a sequence {L;} C [1,00) and
F(S8) #0. Let f € I1g with coefficient a € (0,1), let A be a strongly positive bounded linear operator
with coefficient y > 0and 0 <y < ¢(1)y/a, and let {a, } and {t,,} be sequences of real numbers such
that 0 < ay, < 1, t,, > 0. Then the following holds.

(1) If ((1/tn) fé” Lyds—1)/a, < @(l)y—ya,forall n >0, then there exists a sequence {y,} C
E defined by

tn
Yn=anyf(yn) + I - a"A)tlJ T(s)ynds, n>0. (3.1)
nJo

(ii) Suppose, in addition, that S is almost uniformly asymptotically regqular and the real
sequences {a, } and {t,} satisfy the following conditions:

(B1) limy, o t, = 00;
(B2) lim,, , , a, = 0;
(B3) limy, o ((1/ts) f¢" Ly ds —1)/a,, = 0.

Then {y,} converges strongly as n — oo to a common fixed point X in F(S) which solves the
variational inequality:

((A-yf)%, J,(R-2)) <0, zeF(S). (3.2)

Proof. We first show the uniqueness of a solution of the variational inequality (3.2). Suppose
both X € F(S) and x* € F(S) are solutions to (3.2), then

((A=yf)X, Jp(%-x")) <0,
((A=yf)x*, Jo(x* = X)) <O.

(3.3)

Adding (3.3), we obtain

((A=yf)x - (A-yf)x", J,(X-x")) <0. (3.4)
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Noticing that for any x,y € E,

((A-yf)x=(A=y)y. Jp(x-v))
=(A(x =) Jpy(x=y)) = v{(fx) = f(y). Jp(x - ¥))
>Yllx = yllolx=yll) = vllf ) = FO [ To(x = v
270(||lx = yll) - ya®(||x - y||)
= -ya)®([lx-yll)
> (rp(1) = ya)@(||x - y|) > 0.

(3.5)

Therefore X = x* and the uniqueness is proved. Below, we use X to denote the unique solution
of (3.2).
Since lim, ., a, = 0, we may assume, without the loss of generality, that a, <

e(IAI
For each integer n > 0, define a mapping G, : E — E by

tn
Gn(y) = anyf(y) + I - “nA)% fo T(s)yds, VYye€E. (3.6)

We show that G, is a contraction mapping. For any x,y € E,

1Ga(x) = Ga (W)

1 (" 1 ("™
anyf(x)+ I - anA)a Jo T(s)xds—anyf(y)-(I- anA)a Jo T(s)yds

(I - a,A) (tl f: T(s)x ds - tl f ; T(s)y ds> '

(1 ("
< el -yl + o)1) ([ s -

<y (f(x) = f () || +

(3.7)

1 (" _1 ("
= <anya+<p(1)t—f0 Ls ds—(p(l)anyt— Io L ds> || — vl

1 (™ 1 (™
<—f Lsds—an<(p(1)?—j Lsds—ya>>||x—y||.
tw Jo tw Jo

Since 0 < ((1/t,) fo" Lsds—1)/a, < (1)y — ya, we have

IN

o (/) [ Lods—1
ay

tn
<p(l)y-ya< (P(l)?tl J‘ Lsds - ya. (3.8)
nJo
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It then follows that 0 < ((1/t,) [ Ls ds — an(¢(1)y(1/t,) fé” Lsds — ya)) < 1. We have G, is
a contraction map with coefficient ((1/t,) fo" Lgds — a, (p(1)y(1/t,) fé" Lgds —ya)). Then, for
each n > 0, there exists a unique y,, € E such that G, y, = y,, that s,

tn
Yn=anyf(yn) + I - a"A)tlJ T(s)ynds, n>0. (3.9)
nJo

Hence (i) is proved.
(ii) We first show that {y,} is bounded. Letting p € F(S) and using Lemma 2.2, we
can calculate the following;:

t

ly. - pll =

oy f () + (1= )L [ TGy ds _pH

0

any f(Yn) —any f(p) + any f(p)

tn

+(I- anA)%f

T(s)ynds - (I — a,A)p — (anA)PH
0

< any || f(yn) = F(P)| +anllyf(p) - A(P)||

ftn T(s)pds

ol 1
+(p(1)(1—any)“t—f0 T(S)Yn ds—t— .

n

t (3.10)
1 (™
< anyally. - p|| + |y f(p) - Ap) || + (1) (1 - anr)a fo Lyds||y. - p||

1 ("
< anyallyn=pll +anllyf(p) - A@) | + o) fo Lsds|ly. - p|
1 ("
~oFy [ "Ldsly-pl
1 ("™
< auyallyn =pl +allvf(r) =A@+ - [ "Ledsllyn

1"
~pFy [ "Ledsllya—pl.

Thus, we get that

allyf(p) ~ AW ‘
1—ayya — (1/ty) o Ls + p(Dan¥(1/ty) [ Ls ds

ly.—pll < (3.11)
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Calculating the right-hand side of the above inequality, we have

a|lyf(p) = A(p)||
1-apya— (1/t) o Ls + o(V)any(1/ty) [ Ls ds + p()any

_ an|lyf(p) - Alp)ll
1-apya— (1/t) f§ Ls + 9V an¥(1/ty) o Ls ds + (1) ¥ — (1)t}

rf(p) - Al

ay|

)T — anay +1— (1/t) [ Lods + p(Dan7(1/ta) " Lods - gDy~ C12)
_ anllyf(p) - Alp)|l
a0 (p()F - ay) = (1/ta) [ Lods = 1) + p(Dan7((1/ta) [y Lods ~ 1)
_ aullyf(p) - AP .
an(p(1)y —ay) - (1 - p(D)any) <(1/tn) Jo' Leds = 1)
Thus, we get that
—A
- /) - AWl (3.13)

< 7
< Y- ar) — (- a)ds

where d,, = ((1/tn)fé" Lyds — 1)/a,. Thus, there exists N > 0 such that ||y, — p|| <
lyf(p) = Ap)|l/ (p(1)y — ya), for all n > N. Therefore, {y,} is bounded and hence { f(v,)}
and {(1/t,) fé" T(s)yn ds} are also bounded.

Let 6, (y,) = (1/tn) jé” T(s)y, ds. Then, from (3.1), we get

[y = 81, (yu) || = anllyf (yn) = A8y, (yn)[| — 0 as n— oo. (3.14)

Since S is almost uniformly asymptotically regular and (3.14), we have

|y = T(h)y||
<Ny = 61, () || + 1|6t (yn) = T(W)St, (ya) | + | T(R)64, (yn) = T(h) | (3.15)
< Nlyn = 61, (yn) | + |6t (vn) = T(0)St, (Yn) || + Ls||6t, () = Y]l — O

It follows from the reflexivity of E and the boundedness of sequence {y,} that there exists
{yn;} which is a subsequence of {y,} converging weakly to w € E as j — oco. Since J,, is
weakly sequentially continuous, we have by Lemma 2.1 that

limsup ®( ||y, - y||) = limsup ®(||y, ~w0||) + D(ly - w])), VxeE (314

j—ooe jooe
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Let

H(x) =limsup (I)<|

jooo

Yn; = y||) Vy € E. (3.17)

It follows that
H(y) = Hw) +O(|ly -wl|), VyeE. (3.18)
For h > 0, from (3.15) we obtain

H(T (h)w) = limsup (I)<

jooe

Yn, — T(h)w”) = limsupCD<||T(h)ynj - T(h)w“>
j—o

(3.19)
< 1115;};) ([, - w||> - H(w).
On the other hand, however,
H(T(h)w) = H(w) + ©(|T (h)w - w])). (3.20)
It follows from (3.19) and (3.20) that
O(|T(h)w -w|) = H(T (h)w) - H(w) <0. (3.21)

This implies that T(h)w = w for all h > 0, and so w € F(S5). Next, we show that y,, — w

as j — oo. In fact, since @(t) = fé p(t)dt, forallt > 0, and ¢ : [0,00) — [0, 00) is a gauge
function, then for 1 > k >0, ¢(kx) < ¢(x) and

kt

D(kt) = | @(r)dr =k J‘t p(kx)dx <k J.t p(x)dx = kD(t). (3.22)
0 0 0
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Following Lemma 2.1, we have

tn
T(s)y,ds— (I —a,A)w

mmw—wm=®<

(I- anA)% fo

+a,(yf(yn) —vf(w) +yf(w) - A(w)) “>

ty
< (I)(“ (I- tan)é fo T(s)ynds — (I — anA)w + any (f (yu) — f(w)) H>
+an(y f(w) = Aw), Jp (yn - w))

tn t,
< ¢><90(1)(1 - any) Htl fo T(s)ynds— tl fo T(s)wds

+apyal||y, - w||>
+ any (f (W) = f(w), Jy(yn - w))

1 ("
< CD<(P(1)(1 —anY)<EJ‘O Ls dS> ”yn—w” +¢xn}ra”yn_w”>

+an(y f(w) = A(w), J, (yn — w))

1 (f
<o [oa-am (i [} as) waralls.-u)
) — A, Ty (3 )

tn
<[owa-am (i [ 1as) s auna]ovn -l

+ an(yf(w) = A@w), Jy (yn = w))-

(3.23)
This implies that
1
DO(||lyn—w||) < Ay Yf(w)_A(w)r] Yn—w)),
( b 1-¢(1)(1-a.y) ((1/tn)f(§” L, ds) +anya < o )
(3.24)
also
1
O(||yn —wl|) < o7 —ay) (A —ar)an (rf(w) = A@w), Jo(yn - w)), (3.25)
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where d,, = ((1/t,) fo" Lsds —1)/a,. Now observing that y,;, — w implies J,(y», — w) —*0,
we conclude from the above inequality that

Yoy~ w) =0 asj— oo (3.26)

o

Hence y,, — wasj — oo. Next, we prove that w solves the variational inequality (3.2). For
any z € F(S), we observe that

1 [t 1 [t
<<yn s jo T(s)Yn ds) - <z s 4[0 T(s)z ds),]l,, (Yn - z)>

1 ty 1 tn
=yt 2) - ([ Towas L[ Tz 0n-2) )
nJo nJo
1 (" 1 ("
() - | L[ ownas= L [ 1z, 9
nJo nJo
(3.27)
1 ("
> @y~ 2l) - - | Ledsllyn - 2y (-2
1 ("
= 0(lyn -2l - - [ Lo 21
nJo
1 (™
_ (1_t_f Lsds>¢)(||yn—z||).
nJo
Since
ty
ynzanyf(yn)+(1—anA)tlf T(s)ynds, (3.28)
nJo

we can derive that

=10 = (2 [ Tomas) + (a0 -a (L[ Tomas) ).

(3.29)
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Since @ is strictly increasing and ||y, —p|| £ M for some M > 0, we have ©(|ly, —pl|) < D(M).
Thus

((A=7f)(Yn) Jo(yn = 2))

1 1 (" 1 (b
= —‘X—n<<y,1 "t fo T(s)Yn ds> - (z “r J‘o T(s)z ds>,]¢(yn - z)>
1 (B
+ <A(yn) - A<E Io T(8)Yn ds>,]q,(yn - z)>

(1/8) f Leds 1 L
O (4 -a( [ 10mas) 102 )

(1/ty) [y Lods =1 "
< < Oa ><I)(M) + <A<yn - éf T(s)yn d5>r]<p(yn - Z)>'

n 0

(3.30)
Notice that
1 (M 1 (M
Yn; — Z . T(s)yn, ds — w - Z fo T(s)ywds=w-w =0. (3.31)
Now using (B3) and replacing n with n; in (3.30) and letting j — oo, we have
((A=yf)w, Jo(w - 2)) <0. (3.32)

So, w € F(S8) is a solution of the variational inequality (3.2), and hence w = X by the
uniqueness. In a summary, we have shown that each cluster point of {y,} (atn — oo) equals
X. Therefore, y, — X as n — oo. This completes the proof. O

If A = I, the identity mapping on E, and y = 1, then Theorem 3.1 reduces to the
following corollary.

Corollary 3.2. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1]. Let S = {T(s) : s > 0} be a strongly continuous
semigroup of asymptotically nonexpansive mappings on E with a sequence {L;} C [1,00) and
F(8)#0. Let f € I1g with coefficient & € (0,1) and let {a,} and {t,} be sequences of real numbers
such that 0 < a, < 1 and t, > 0. Then the following holds.

() If (1/t,) fé" Lyds-1<a,(1-a), forall n € N, then there exists a sequence {y,} defined
by

tn
Yn=anf(yn) + (1 - (xn)% fo T(s)ynds, n>0. (3.33)
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(ii) Suppose, in addition, that S is almost uniformly asymptotically reqular and the real
sequences {a, } and {t,} satisfy the following:

(B1) lim,,, » t;, = 00;
(B2) limy, , oo a4, = 0;
(B3) limy, o ((1/ts) [ Ly ds —1)/a,, = 0.

Then {y,} converges strongly as n — oo to a common fixed point X in F(S) which solves the
variational inequality:

((I- )X, J,(%-2)) <0, zeF(S). (3.34)

If E := H is a Hilbert space and S = {T(s) : s > 0} is a strongly continuous semigroup
of nonexpansive mappings on H, then we have L; = 1 and Theorem 3.1 reduces to the
following corollary.

Corollary 3.3 (see [15, Theorem 3.1]). Let H be a real Hilbert space. Suppose that f : H — H is
a contraction with coefficient a € (0,1) and S = {T(s) : s > 0} a strongly continuous semigroup of
nonexpansive mappings on H such that F(S) # 0. Let A be a strongly positive bounded linear operator
with coefficient y > 0 and let {a,,} and {t,,} be sequences of real numbers such that 0 < a, <1, t, > 0
such that lim,, _, o, t, = oo and lim, _, o, a, = 0, then for any 0 < y < y/a, there is a unique {y,} in
H such that

t

Yn=anyf(yn) + I - anA)% f ' T(s)ynds, n>0 (3.35)

0

and the iterative sequence {y,} converges strongly as n — oo to a common fixed point X in F(S)
which solves the variational inequality:

((A-yf)x,x-2z)<0, ze€F(3). (3.36)

Theorem 3.4. Let E be a reflexive strictly convex Banach space which admits a weakly continuous
duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1]. Let S = {T(s) : s > 0} be
a strongly continuous semigroup of asymptotically nonexpansive mappings on E with a sequence
{Lt} C [1,00) and F(S)#0. Let f € Ilg with coefficient a € (0,1); let A be a strongly positive
bounded linear operator with coefficient y > 0 and 0 <y < ¢(1)y/a. For any xo € C, let the sequence
{xn} be defined by

ty
Xne1 = Y f(xn) + (L - aan)fl j T(s)x,ds, n>0. (3.37)
nJo

Suppose, in addition, that S is almost uniformly asymptotically regular. Let {a,} and {t,} be
sequences of real numbers such that 0 < a, <1, t, >0,

(C1) lim,, , o t,, = o0;

(C2) limy oy, =0, Jprpay = 0;

(C3) Timy— oo ((1/4,) [ Ly ds = 1) /at, = .
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Then {x,} converges strongly as n — oo to a common fixed point X in F(S) which solves the
variational inequality (3.2).

Proof. First we show that {x,} is bounded. By condition (C3) and given 0 < € < ¢(1)y — ay

there exists N > 0 such that ((1/t,) fé” Lsds—1)/a, <eforalln> N. Thus

tn tn
(1-91)yan,) <tl J‘ Lods— 1> < 1 I Lids—1<¢ay,, (3.38)
nJo

nJo

for all n > N. Since lim,_,, a, = 0, we may assume, without the loss of generality, that
a, < (D[]

Claim that [|x, — p|]| £ M, n > 0, where M = max{||xo — pl,..., lxn = pll |l f(p) -
pll/ (@)Y —ay - €)}.

Let p € F(S). Then from (3.56) we get that

t

aﬂﬂ%wu—%m%L

12nia =Pl =

' T(s)x,ds— p"

tn
< o f o) + A -ap) [

T(s)x,ds —a,A(p) - (I - ﬂnA)P"

< lany f (xn) = any f(p) + any f(p) — anA(p) ||

I -a,A) <tl J.: T(s)x,ds — tl J? T(s)p ds>

< lany f () = any f(p) + any f(p) — anA(p) ||

+

1 (" 1 (™
+ || - a,All J‘ T(s)x,ds - o J‘ T(s)pds

tnO nJo

(1"
<l ) =l sl =00 1 =a) (i [ Lt ) e
(1 ("
-l )l + (s 001 =) ([ 125) Y

1 1t
<anllyf(p) - Ap|| + <anar+ EJ; Lsds - p(Dany ;- fo L, ds> [l - 7|
<anllyf(p) - Apl|

ty
(v -owan( [ s =1) -antowr-an )~

0



16 Abstract and Applied Analysis

<an|lf(p) —pll + (1 - an(pQ)y - ay) +ean) ||x. - p||
= au| f(p) —pll + (1 - an (@)Y —ay —€))||lx. - p||

oo W@ =pll }
: {(<p<1>?—ar—e>’” ol

(3.39)

By induction,

If(p) - Pl ),HXN—P”}r ¥n > N, (3.40)

Xy — <maxy ————
Ien =l {(‘P(l)Y—“Y—E

and hence {x,} is bounded, so are {f(x,)} and {(1/t,) fo" T(s)x,ds}. Let &, (x,) =
(1/t,) fo" T(s)x, ds. Then, since a;, — 0asn — oo, we obtain that

lxns1 = 6, (xu) || = “n”Yf(xn) - Aby, (xn)” —0 asn-— oo. (341)

For any h > 0, we have

IT(R)Xns1 = Xnaall < NT(R)Xns1 = T(R) 6, (xn) | + [T (R)0r, (Xu) = 68, (Xn) | + 161, (%) = Xnaa|
< Lallxnea = 61, (xn) | + T ()64, (xn) = 61, (xu) | + 161, (xn) = X ],

(3.42)
it follows from (3.41) and S is almost uniformly asymptotically regular that
IT(h)xni1 = Xpa|| — 0 as n— oo. (3.43)
Next, we prove that
lim sup(y f (%) = AZ, Jo(xn = X)) < 0. (3.44)
Let {x,, } be a subsequence of {x,} such that
Jim (yf (%) - A%, J (¥, - )) = limsup(yf (%) - A, Jo (xs — ). (3.45)

n—oo

It follows from the reflexivity of E and the boundedness of sequence {x,,} that there exists
{xn,, } which is a subsequence of {x,, } converging weakly to w € E asi — oo. Since J,, is
weakly continuous, we have by Lemma 2.1 that

lim sup (D<

i— oo

Xy, —x||> = liriILs;lp(I)<|

xu, ~w|) + @(lx —wl), VxeE. (3.46)
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Let

H(x) = limsup (I)<

i— o0

X, —x“), Vx € E.
It follows that

H(x) = H(w) + ©(||x —w||), Vxe€E.
From (3.43), for each h > 0, we obtain

H(T(h)w) = lim sup (I><|

< limsup (I><|

i— o0

Xy, — w||> = H(w).
On the other hand, however,
H(T(h)yw) = H(w) + ®(||T (h)w - w||).

It follows from (3.49) and (3.50) that

O(|T(h)w - wl) = H(T(h)w) - H(w) < 0.

Xy, T(h)w”) = limsup @(”T(h)xnki - T(h)w”)

17

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

This implies that T (h)w = w for all h > 0, and so w € F(S). Since the duality map J, is single

valued and weakly continuous, we get that

limsup(y f (%) = A%, J,(x, ~ %)) = lim (yf (%) - AZ, J, (xn, = %)

n—oo

= lim (7f (%) - A%, J, (%0, - %) )

= <(A—Yf)f,](p(§—w)> <0

(3.52)

as required. Finally, we show that x, — X asn — oo. It follows from Lemma 2.1(i) that

tn
T(s)x,ds— (I —a,A)X

)

O(|xna - X|) = ¢’<

(I- anA)% fo

+a,(yf(xn) -y f(X) +7f(X) - AX))
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)

+anyal|x, - 55||>

- CD(“ a-may | T (@vads - (1 AF+ aur(Fxn) - F(D)
nJo

+ an(yf (%) = AR), Jy(yn - %))

n

tn ty
< <I)<tp(1)(1 - a,Y) H % fo T(s)x,ds — tl fo T(s)Xds

+ any(f (%) = f(%), Jp (yn = X))

(1 (" - -
< qJ(‘P(l)(l - “nY) <t_ IO L dS> ”xn - x” + an}/a”xn - x”)

+an(y f(X) = A(X), Jy(xn = X))
1 ("
< (D< l}p(l)(l - a,Y) (t_ I L ds> + anya] llacn = 5c'||>
nJo
+an(y f(X) = AX), Jy(xn = X))
1 ("
< [‘P(l)(l - an?) <E fo Ls d5> + an}/a]q)(”xn )
+an(y f(X) = A(X), Jy(xn = X))
ty
< [(1 - p(1)a,y) <% fo Lyds — 1> +1-a,(p)y - ya)]@(llxn - X))
+an(y f(X) = A), Jp(xn = %))
by
< (1 - an(p(V)F - ya))O(lxX - Z) + (1 - p(Da,7) <} fo Lyds - 1>M

+an(yf (%) — A(X), Jy(xn — X)),
(3.53)

where M > 0 such that ®(||x, — X||) < M. Put

sn = an(p(1)y - ya),

1= gMay\ [ (/tn) fy' Leds -1 1
n = ( o)y - ya >< 0 M o7 —1a)

(Yf(X) = AX), Jy(xn - X)).
(3.54)

Then (3.53) is reduced to

O(||xcn1 = XII) < (1 = 52)D([|xn = X||) + Sutn- (3.55)
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Applying Lemma 2.3 to (3.55), we conclude that ®(||x,+1 — X||) — 0 asn — oo; that is,
X, — X asn — oo. This completes the proof. O

If A = I, the identity mapping on E, and y = 1, then Theorem 3.4 reduces to the
following corollary.

Corollary 3.5. Let E be a reflexive strictly convex Banach space which admits a weakly continuous
duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1]. Let S = {T(s) : s > 0} be
a strongly continuous semigroup of asymptotically nonexpansive mappings from C into C with a
sequence {L;} C [1,00), F(S)#0. Let f € Ilg with coefficient a € (0,1) and the sequence {x,} be
defined by xo € C,

tn

Xp+1 = Anf(xy) + (1 - un)é Jo T(s)x,ds, n2>0. (3.56)

Suppose, in addition, that S is almost uniformly asymptotically regular. Let {a,} and {t,} be
sequences of real numbers such that 0 < a, <1, t, >0,

(C1) lim,,, o t,, = 00;
(C2) limy oy, =0, o2y = 0,
(C3) limyy— o0 (1/ty) [" Ly ds 1) /ey = 0.

Then {x,} converges strongly as n — oo to a common fixed point X in F(S) which solves the
variational inequality:

((I- )% J,(8-2)) <0, zeF(S). (3.57)

If E := H is a Hilbert space and S = {T(s) : s > 0} is a strongly continuous semigroup
of nonexpansive mappings on H, then we have L; = 1 and Theorem 3.4 reduces to the
following corollary.

Corollary 3.6 (see [15, Theorem 3.2]). Let H be a real Hilbert space. Suppose that f : H — H is
a contraction with coefficient a € (0,1) and S = {T(s) : s > 0} a strongly continuous semigroup of
nonexpansive mappings on H such that F(S) # (. Let A be a strongly positive bounded linear operator
with coefficient y > 0 and 0 < y <y /a and let the sequence {x,} be defined by xo € C,

t

Xper = any f(20n) + (I = oan)fl j "T(s)xnds, n>0. (3.58)

0

Let {a,} and {t, } be sequences of real numbers such that 0 < a,, <1, t, > 0,
(C1) lim,,, n t,, = 00;
(C2) limy oy ay =0, Doy = 0.
Then {x,} converges strongly as n — oo to a common fixed point X in F(S) which solves the

variational inequality:

((A-yf)x,x-2z)<0, ze€F(3). (3.59)
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