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We consider a class of discontinuous Liénard systems and study the number of limit cycles bifur-
cated from the origin when parameters vary. We establish a method of studying cyclicity of the
system at the origin. As an application, we discuss some discontinuous Liénard systems of special
form and study the cyclicity near the origin.

1. Introduction and Main Results

As well known, Liénard systems describe the dynamics of systems of one degree of freedom
under existence of a linear restoring fore and a nonlinear dumping. In the first half of the last
century models based on the Liénard system were important for the development of radio
and vacuum tube technology. Nowadays the system is widely used to describe oscillatory
processes arising in various studies of mathematical models of physical, biological, chemical,
epidemiological, physiological, economical, and many other phenomena (see Glade et al. [1],
Llibre [2] and references therein). Further, quadratic systems and some other systems can be
transformed into Liénard systems by suitable changes, see for instance Han et al. [3], Cherkas
[4], Gasull [5], Giné, and Llibre [6]. As we have seen, the main concern on Liénard systems
is the center and focus problem and the number of limit cycles, see [7-17], and references
therein. Here, we briefly list some known results related to our study in this paper. Consider
a Liénard system of the form

x=y-F(x),
(1.1)
y = _g(X),

where we suppose that the functions F and g satisfy two assumptions below.
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(I) There exists a positive number &y such that F is continuous for |x| < g9 with F(0) =0
and g is continuous for 0 < |x| < gy with xg(x) > 0, and lim, ¢ g(x), limy_,o-g(x)
existing.

(II) For |x| < eo, |[F(x)| < a11/G(x), where 0 < a; < V8 and G(x) = [ g(u)du.
Obviously, if g(0) = 0, system (1.1) has a singular point at the origin. By Han and
Zhang [12], the origin is a generalized singular point if g(0) #0. For example, the
following system:

,~1), x>0,
(gy=q ¥ (12)
(y,1), x<0

has a generalized center at the origin.

Under the condition (I), the equation G(x) = z has two solutions x = x;(z) > 0 and
x =x2(z) <0for0 < z « 1. Let Fi(z) = F(xi(z)),i = 1,2. Then in 1952, Filippov proved the
following theorem (see Chapter 5 of Ye [15]).

Theorem 1.1. Let (I) and (II) be satisfied. Further suppose g in (1.1) is continuous at x = 0. Then
system (1.1) has a stable focus (resp., center, unstable focus) if

F>(z) = Fi(z) <0 (resp.,=0,>0) for 0 < z < 1. (1.3)

In 1985, Han [10] obtained the following.

Theorem 1.2. Consider the system

£=h(y) - F(x),

(1.4)
y= _g(x)/
where h, F, and g are continuous functions satisfying
(i) h(y) = (sgny)|y|™ + O(y™") with m > 0,
(ii) xg(x) > 0 for 0 < |x| < 1 and
|F(x)] < c[G(x)]™ ™D for |x| < 1, (1.5)

where 0 < ¢ < (m+1)((m + 1) /m)™ ™. Let a(x) = —x+0(x?) satisfy G(a(x)) = G(x)
for |x| « 1. Then system (1.4) has a stable focus (resp., center, unstable focus) if

F(a(x))—F(x) <0 (resp.,=0,>0) (1.6)

for |x| <« 1.
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For center conditions, in 1976, Cherkas [7] proved the following.

Theorem 1.3. Let the functions F and g in system (1.1) be polynomials in x with

F(0) =g(0) =0, g'(0) > 0. (1.7)
Then the origin is a center of system (1.1) if and only if the equations

F)=F(y),  Gx)=G(y) (1.8)

have a unique solution y = a(x) < 0 for x > 0 sufficiently small.

From Cherkas [7], one can see that the above result is also true for analytic system
(1.1). In 1998, Gasull and Torregrosa [9] studied the center problem for analytic systems of
form (1.4) using the Cherkas’ method, generalized Theorem 1.3 to (1.4) and presented inte-
resting applications to some polynomial systems. Then in 2006, Cherkas and Romanovski [8]
gave a necessary and sufficient condition for a Liénard system with nonlinearities of degree
six to have a center at the origin. About Theorem 1.2, we have the following two remarks.

Remark 1.4. By the variable change

u = (sgnx)4/2G(x) (1.9)

and the scaling of the time dr = (g(X(u))/u)dt, we can obtain from (1.4)

it = h(y) - F(X(w),
v =-u,

(1.10)

where X (u) satisfies |u| = \/2G(X (1)), uX(u) > 0. Thus, Theorem 1.2 is also true if g(x) is not
continuous at x = 0.

Remark 1.5. If F and g are C* with ¢’(0) > 0. Then F(a(x)) — F(x) in (1.6) has the form

F(a(x)) - F(x) = > B;x/. (1.11)
=1

In this case, Han [11] proved thatif B; =0 for j = 1,...,2k -1 (k > 1), then By, = 0, and the
origin is a focus of order k if Bk #0 in addition. Further, if a vector parameter a appears in
F, then B; = Bj(a) and

By = O(|By, Bs, ..., Bok-1]) (1.12)

for all a and any k > 1.
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In this paper, we consider the following discontinuous Liénard system:

5C=h(]/)—F(x,a),

y = _g(x/ b)/

(1.13)

where (a,b) € R™ with n; being an integer, h(y) is a C* function satisfying h(y) = y + O(y?)
and

F(x,a), x>0, (x) = { NN (1.14)

Flxa) = { F(x,a), x<0,

g (x,b), x<0,

where F*,g* and F~, g~ are C* on [0,x¢], and [-xo,0], respectively, with xo > 0. Further,
suppose there exist integers m > 1, n > 1, k > 0,1 > 0 such that

F'(x,a) = ZF;'(a)xj, g (x,b) = Zg;’(b)xf, gr(b) >0 (1.15)

j>m j=k

for0 < x <« 1and

F(x,a)= Y F (0%, g (xb)=g ®)(x)'+ Y g b)), gb)<0 (1.16)

i>n 141

for0 < —-x <« 1.
Let

x G*(x,b), 0<x<x,
G(x,b) = L g(u,b)du = (1.17)

G (x,b), 0<-x<ux,
where

b HORS
G'(x,b) = 80 o, > & 7 e

4

k+1 S j+1
) (1.18)
- &0 a $j j+1
G (x,b) = (%) +j§1]_+1x

for 0 < x <« 1and 0 < —x <« 1, respectively.

This paper is devoted to studying the local property of system (1.13) at the origin
and the number of limit cycles bifurcated from the origin as (a, b) varies. The authors [13]
considered system (1.13) for the case m = n = k = = 1 and studied the center focus problem.
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It is easy to prove that for system (1.13) under (1.15) and (1.16), the condition (ii) of Theo-
rem 1.2 is equivalent to the following;:

(Hy) m> (k+1)/2) or m = ((k +1)/2), IFi(a)] < c((gf 1))/ (k+1))"?, o)
(Hy) n> ((1+1)/2) or n=((1+1)/2), |F;(a)| < c((~g (b)) /(1 +1))"?, '
where 0 < ¢ < 2+/2. For convenience, introduce
r= ’;:11 - g, (1.20)

where p, g are relatively prime numbers, that is, (p,q) = 1. Then it is easy to see that there
must exist an integer 7 € [0, p — 1] such that (n + 1) is an integer, and our main results are
the following.

Theorem 1.6. Let (1.15), (1.16), (H), and (H,) hold. Then

i) F~(a(x),a) — F*(x, a) can be expressed as
P

F_(u(x, b)/ a) - F+(x/ a) = ZBj(a/b)xkj/ (121)

21
where a(x,b) = ~[((1+1)g; (b)) /(~(k+1)g7 ()] “Vx" (1+0(1)) satisfies G~ (a(x, b),
b) = G*(x,b) for x > 0small and k; € {(n+i)r+jl0<i<p-1,i#n,j>0}U{jlj >
min{m, (n+n)r}} fort > 1 withmin{nr,m} =k; <k, <---.

(ii) If there exist (ap, bp) € R™ and s(> 1) such that Bs.1(ao, by) #0 and

9(B1,Ba, ..., By)

Bj(ao,bo) =0, j=1,...,s, rank 3@, b)

(a0, bo) =s, (1.22)

where ny > s, then system (1.13) has cyclicity s near the origin for all (a, b) near (ap, by).

Theorem 1.7. Let (1.15), (1.16), (H;), and (H,) hold. If there exists s > 1 such that

F (a(x,b),a) =F*(x,a) asBi=By=---=B;=0 (1.23)

for x > 0 small and (1.22) is satisfied, then system (1.13) has cyclicity s — 1 at the origin for |a — ag| +
|b = bg| small.

In many cases, the function F in (1.13) is linear in a. Then the coefficients B;(a, b) (j >
1) in (1.21) are linear in a. Let there exist ayp € R™,by € R™ (n, + nz = n1) and integer s > 0
(s € np) such that

d(B1,Bs, ..., By)

o(ay, az,...,as) (a0, bo) #0 (1.24)

B]'(a(),bo)=0, j=1,2,...,5, det
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which implies that the linear equations B; = 0, j = 1,2,...,s of a have a unique solution of
the form

(all"'las) = (P(lls+1,...,an2,b) (125)
for b near by. Obviously, ¢ is linear in a,.1, ..., a,,. Further, let

Bssjltay,...a)=ptacn, an by = Li(@s1, -, any) Aj(b),  j=1,...,0 (1.26)

.....

for some integer o > 0. Then, we can obtain the following.

Theorem 1.8. Consider system (1.13), where the function F is linear in a € R™. Suppose (1.15),
(1.16), (H1), and (Hy) hold. Let there exist integers s > 0,0 > 0 and points ag = (aio, - .., an,0) € R™
and by € R™ such that (1.24) and (1.26) hold with

L,-(as+1,0,...,an2,0)7é0, j=1,...,0, A](bo) ZO, jzl,...,G—l. (127)

(i) If Ay (bo) #0 and

O(Ar..., A1)

3y, b V=L (1.28)

rank

then system (1.13) has cyclicity s + o — 1 limit cycles near the origin for all (a,b) near
(aOI bO)

(ii) If Ag(bo) = 0and F~(a(x),a) = F*(x,a)as (ay,...,as) = ¢(ass1,...,an,b), Aj(b) =0,
j=1,...,0with

a(Alr R AG)
o(by,...,bs)

rank (bo) = 0o, (1.29)

then system (1.13) has cyclicity s+o0—1 limit cycles at the origin for all (a, b) near (ayp, by).

The conclusion (i) of Theorem 1.8 can be proved in a similar manner to the proof of
Theorem 2 of [16] and (ii) can be verified by Theorem 1.7. Thus, we do not verify it here.
The proof of Theorems 1.6 and 1.7 is presented in Section 2. In Section 3, we give some
applications.

2. Proof of Theorems 1.6 and 1.7

In this section, we verify Theorems 1.6 and 1.7. Before proving them, we need to introduce
a bifurcation function d of system (1.13) and establish some preliminary lemmas, which will
be used in our proof. First, we have the following lemma.
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Lemma 2.1. Suppose (1.18) holds. Then the function a(x,b) defined in Theorem 1.6 has the form

p

a(x,b) = ZZaijxi”j (2.1)

i=1 j>0

for 0 < x < 1with arg = ~[((I +1)g{ (b)) /(- (k + 1)g,’(b))]1/(l+1).

Proof. Consider the equation
G (u,b) =G"(x,b) (2.2)

for 0 < -u < 1and 0 < x < 1. By (1.18), we can obtain

1 1/0+1)
o)\ (I+1)g ()
[G ()] = <—f’( )> e 3
+1 e (GG +Dg (b))
N 1/(1+1) 4 q 1/(1+1)
[G*(x, )]/ D) = <gk (b)> k7 | (’f + 1)81(10) ik (23)
k+1 jok+l (]+1)gk(b)

g+(b) 1/(1+1)
— <h> x(k+1)/(l+1)25jx] — Zvix]+r = ’U(X),

720 720

where vy = ((g7(b))/(k + 1))1/ D The implicit function theorem implies that the equation
[G(u,0)]V"Y =v has a unique solution

u=u"(v) = Zuivi (2.4)

i>1

for v > 0 small with uy = (I +1)/(-g (b)))"/ V. Let a(x, b) = u*(v(x)). Then, u = a(x, b) for
x > 0 sufficiently small is the solution of (2.2). Combining (2.3) and (2.4), the above formula
can be represented as

a(x,b) = Zui <Zv]-x7*r> = ZZaijxiHj

i21 720 i>1 j20
(2.5)
. . p . .
= Zzaijx(qz/iﬂ)+] = Zzaijxw]
i21 j20 i=1j>0

with a9 = vouy. Thus, the proof is ended. O
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Following the idea of Han [11], we have the following lemma.

Lemma 2.2. Let (1.15) and (1.16) hold. Then system (1.13) is equivalent to

u=v-K(v)F*(u,a,b),

(2.6)
U =-U,
where K(v) = (1/v/2) + O(v) € C*, and
Zf].*uzf/(k”), 0O<u<«xl,
-
Fuab) =1’ | 2.7)
S, 0<—u <
fon
with f, = Fj((k +1)/ Qg (0)™'*V and f; = (-1)"F, ((1+ 1)/ (-2g; 0)" .
Proof. Let H(y) = _[é/ h(u)du and make the transformation
u=1/G(x,b)(sgnx),
(2.8)

v=1\/H(y)(sgny),

together with the scaling of the time d7 = (g(X(u))h(Y (v))/2uv)dt to system (1.13) so that
(1.13) can be changed into

u=v-K(v)F*(u,a,b),
(2.9)

U =-U,

where K(v) = v/h(Y(v)) = (1/v/2) + O(v) € C®, F*(u,a,b) = F(X(u),a) and X(u),Y (v)
denote the inverse of the transformation (2.8). In fact, by (1.18) and similar to the proof of
Lemma 2.1, we can obtain

- (14
( ' o \ M
%x;ﬁﬂ]/(kﬂ), xt = <W> , 0<uxl, (2.10)
) 2j/(I+1 I+1 /()
Lgxﬂ”'](”' xI:_<W> , 0<-ux1.
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For 0 < u « 1, by (1.15) and (2.10), we have

j
F*(u, a,b) F* X+(u) a) ZF+(‘1) (Zx+ 21/(k+1)>

j>m i>1
= 3 frud/ e,

jzm

(2.11)

where f;, = Fj,((k +1)/2g; (b))™**V. Similarly, for 0 < —u < 1, by (1.16) and (2.10), we can
obtain

* _ - — _ — 2j/(1+1)
F*(u,a,b) = F (X (u),a) = Jgnf] w2700, (2.12)
where f, = (=1)"F, ((1 + 1)/ - 2g7 (b))"/"*!. This ends the proof. O

For a relation between the function F(x, a) in (1.13) and the function F*(u, a, b) in (2.6)
we have

Lemma 2.3. Suppose (1.15) and (1.16) hold. Then we have

(i) F~(a(x,b),a) — F*(x, a) has the form (1.21) for 0 < x < 1;
(ii) let Fo(u,a,b) = F*(—u,a,b) — F*(u, a,b). Then Fy can be expressed as

— ) 2k;/ (k+1)
Fo(u/a/b)_;A](a/b)u ! " 4 fO?’OSu<< 1’ (213)

where

Al(a,b)zBl(a,b)Nl(xf), Aj(a,b)=B]~(a,b)N]~(xf)+O(|Bl,B2,...,B]~_1|), j22
(2.14)

with N; (j > 1) are positive C* functions in x], and k;, j > 1, are as appeared in (1.21).

Proof. By (1.15), (1.16), and Lemma 2.1, we can have

F~(a(x,b),a) - F*(x,a) = ZF;(a) [ixirszi,-xf] - ZF;(a)xS

s>n i=1 7>0 s>m

s2n 7>0 s2m

= Zps—(a)x(q/p) [qul/pzaﬂjx]] Zp;(a)xs (2.15)

-1

'M“

i}
(e}

x(mHi)r ZBU (a,b)x/ - ZF+(a)x
j>0

1 s>m
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Since r(n + 1) is an integer, the above formula can be written as

p71 —_— o . ~ .
F(a(x,b),a) - F*(x,a) = D’ D'Bij(a,b)x"™ + > Bj(a,b)x/, (2.16)
i=0,i#1n j>0 j=T

where T = min{m,r(n + 17)}. Then we express (2.16) with respect to the power of x in
ascending order, yielding the form of (1.21). In addition, for k. defined in Theorem 1.6 there
must exist some integers i, and j, such that k; = (n + i;)r + j. Hence, we can obtain

B.(a,b) = Bij, ifir#7, B.(a,b) = By, ifi; =1 (2.17)

This completes the proof of the conclusion (i).
Now we prove the conclusion (ii). For u > 0 sufficiently small, (2.8) and (2.10) imply
that

G*(X*(u),b) = G (X (-u),b) = v’. (2.18)
Then noting that G™(a(x,b),b) = G*(x,b), we can get
X (~u) = a(X*(u)). (2.19)
By (2.11), (2.12) and the above formula, we have for u > 0 sufficiently small

Fo(u,a,b) = F*(-u,a,b) - F*(u,a,b) = [F (X (-u),a) - F (X" (u),a)]

= [F~(a(x,b),a) - F*(x, )] |,_x-(u)- (220)
Let
o) = X (u=072). (221)
Combining (2.10) and (2.21) gives that
p(u) = 2 xj W = xipu(1+0(n)). (2.22)

j=1
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Substituting the above formula into (1.21) or (2.16) yields that

F(a(x,b),a) - F* (x,a) S'Bj(a,b) () 1 (1+0(w))

j>1

p-1 _ (n+i)r+j
>'Bij(a,b) <Zx;r.“s>

i=0,i#1 j20 521

j
+ 1§]~(a, b) <Zx;ys> .
=T

s>1

x=¢p(p)

Note that

p-1 _ (n+i)r+j
> >'Bij(a,b) (Zx;#5>

i=0,i#7 >0 s>1

p-1 _ o x (n+i)r+j
Bij(a,b) (x-li-)(n+1)r+]‘u(n+l)r+] <1 + Zs—:lus>

s>1 X

(@, b) () " (1 + Zw)

s>1

Il
o}

Il
T
(=]
W
=
-
v
o
o]
S
~~
Q
N
S
N—r
=
>
3
T
X
3
3
X
N

where

B;O = (xI)(rH—i)rEiO/ B:} = (XT)(n+i)r+j§ij + o<|§i0/§i1/ (R Bi,j—l |> /j 2 1

withi=0,...,p - 1and i##. Similarly,

j
>.Bj(a,b) <Zx§#5> = Y B (a, by,

j>T s>1 j>T

where

B; = (XI)TET, B; = (X{)jg]' + O<|ET,§T+1,. . .,B]'_1

), i>T+1.

Combining (2.23), (2.24), and (2.26), we can obtain

p-1

F~(a(x,b),a) = F*(x,@)| oy = > .B;i(a,b)u™ 0 + 3 Bi(a,b)p.
i=0,i#1 j>0 j>T

11

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Similar to (1.21) and (2.16), the above formula can be rewritten as

F™(a(x,b),a) = F*(x,a)|—p = D Aj(a,b)u", (2.29)
j>1
where from (2.17)
A(a,b) =B}, ifir#n,  A(ab)=B; ifi;=1. (2.30)

From (2.25), (2.27), and the above equation, A; in (2.29) can be rewritten as the form of (2.14).
Further, combining (2.17), (2.20), and (2.29) yields (2.13). Thus, the proof is ended. O

Next, we establish the bifurcation function d of system (1.13). For the purpose, let
u =rcos6,v =rsinf. Then (2.6) can be translated into

ﬂ _ cosOK(rsin®)F*(rcos6,a,b)
d0  1-sinOK(rsinO)F*(rcos6,a,b)/r

= R*(,r,a,b). (2.31)

In a similar way to the proof of Lemma 2.3 of [13], it is easy to prove that

1 sm@K(rsm@)rF (rcosB,a,b) 20

(2.32)

for r > 0 small under (H;) and (H;), which shows that R*(0,r, a,b) in (2.31) is well defined.
Introduce

p=(k+1)1A+1), p=rF (2.33)
Then by (2.31) and (2.33), we can obtain

_pt? cos 0K (pf sin 0) F*(pP cos 6, a, b)
P 1-sinOK(pfsinO)F*(pfcosh,a,b)/pf

(2.34)
p  cosOK(pPsinO)Fi(6,p,a,b)
= x
P 1-sinOK(pfsinO)F;(6,p,a,b)

=R(6,p,a,b),

where F1(6,p,a,b) = pPF*(pP cos 0, a,b). Clearly, (2.34) is a 2zr-periodic equation in 6. By
(2.7), we have

S f (cos 0)%/ k1) p2i/ k)PP cos6 > 0,

jzm

S fj Icos 6/ D pQi/ B DBF 056 < 0.

j2n

Fi(6,p,a,b) = (2.35)
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P
p=p(0 po ab)
PO_—/ P2
p— |
0 0
.7 =2 23
9——5 2 9 2

Figure 1

From (2.33) and (2.35), it is easy to see that F; is C* in p for any given 6. Let p(6, po, a, b)
denote the solution of (2.34) satisfying p(r/2, po, a,b) = po. For convenience, let

ar 3ar
p(—E,po, a, b) =p1, p<7,po, a, b) = po. (2.36)
Define a function as follows:
a 3ar
d(po,a,b) = P(‘ErPOI a, b) - P(TIPOI a, b) =p1-p2. (2.37)

It is obvious that system (1.13), (2.6), (2.31), or (2.34) has a periodic orbit near the origin if
and only if d(po, a, b) in (2.37) has a zero in pg for py > 0 sufficiently small. See Figure 1.

Hence, the function d in (2.37) is called a displacement function or bifurcation function
of system (1.13), (2.6), (2.31), or (2.34). About the bifurcation function d, we have.

Lemma 2.4. Let (1.15), (1.16), (H1), and (Hz) hold. Then the bifurcation function d in (2.37) has
the form

d(po,a,b) = >.Cja,b)py (1+d;(po)), (2.38)

21
where rj = 2(1 + 1)k; — kl - k — L are positive integers satisfying 1 <ry <ry <---,

Ci(a,b) = Bi(a,b)Ni (f,,, fm),

(2.39)
Cj(a,b) = B](a,b)N;(f;,f;J + O(lB],Bz,.. '/Bj—ll)/ ] >2

with N7 € C*, N;j(0,0) > 0 for j > 1 and d; (j > 1) are C* functions in po satisfying d;(0) = 0.

Proof. Denote p by p(6, po,a,b) = p(or — 6, po, a,b). Then

p(5pvab)=p(F.pvab),  B(-F.poab) =p<37‘7r,po, a,b) =pr  (240)
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and it satisfies
dp

P _R(r- 241
25 = “R(r-0,p,ab). (2.41)

Let ﬁ(@, p,a,b) = —=R(or — 0,p, a,b). Then we can obtain that p(6, py, a, b) is a solution of the
equation

dp =
- 242
26 = R(6,p,a,b) (2.42)

satisfying p(or/2,po, a,b) = po. Let 0 € [-xr/2,r/2]. Thenxr — 0 € [ /2,37 /2] and

R(8,p,a,b) = Ri(0,a,b)p @/ &D-08%1 (11 O(p)),

- B (2.43)
R(6,p,a,b) =Ri1(6, a, b)p(@n/(+1)-Dp+l (1+0(p)),
where
K(0) fr, (cos @)@/ K+ )H o k+1
ﬂ 7 2 4
Ri(6,a,b) = 1 K(0) f:,cos20 k+1
, m=——-,
B(1—sin6 cos OK(0) frr,) 2
(2.44)
(KO f;
B B (p)fn (cos 0) 2/ BN HTl’
Ri(8,a,b) = 5 K(0) f, cos*0 I+1
_ , n= ——.
B(1—sin6 cos OK(0) f,, ) 2
Thus, by (2.43), (2.44) we have easily
po+ O<P(()(2m/(k+1))—1)ﬂ+1>’ " k ;— 1,
p(6,p0,a,b) = ol (2.45)
Po exp Ler/z Ri(u,a,b)du+0(p3), m= >

R(6,p(6,p0,a,b),a,b) —R(6,5(6,po, a,b),a,b) = [p(6, po, a,b) = p(6, po, a,b)| A(6, po)
(2.46)

by the mean value theorem, where A (8, py) = O(p(()(zn/(l+1)) D ). Further by (2.34) and (2.42),
we can obtain
R(6,p,a,b) - E(Q, p,a,b)

~ —cos 0K (pP sin0)p' P [F*(—pP cosB,a,b) — F*(pf cos6,a,b)]

~ B[1-sinOK (pf sin0)pPF*(pP cos 8, a,b)] [1 - sin OK (pf sin ) pPF*(—pFf cos 6, a, b)]
(2.47)
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which follows that by Lemma 2.3

R(8,p,a,b) - R(6,p,a,b) = —cos0p'PF, <pﬂ cos0,a, b>S(9,p), (2.48)

where S(0, p) is a C* function in p with

K(0) k+1 I+1
Tl m>T' n> T'
K(0) , mo Rl L
56,0) = | B(1 - sinB cos OK(0) f,) 2 2
’ K© ms Lo,
B(1-sinBcosOK(0)f)" 27 27
K (0) _k+1 I+1
| B(1-sinBcos0K(0) f;,) (1 -sin@cosOK(0) f)” 2 "'~ 2’

(2.49)

which implies S(8,0) > 0 by the above discussion. Then it follows from (2.13), (2.45), and
(2.48) that

R(6,p(6,p0,a,b),a,b) - E(G,p(@, po,a,b),a,b)

. _ 2.50
- YA, b)(COS8)((Zk]-/(k+1))+1)p(()2k]/(k+1))ﬁ+l qu 6,p0), (2.50)
j>1
where g; (j > 1) are C* functions in py with
k+1
5(6,0), m> ==,
g;(6,0) = (2.51)

2k; k+1
5(9,0)exp<k—+’1ﬁjj/21z1(u,a,b)du>, m==—,

which shows that g;(6,0) > 0 for all j > 1. Since p(6, p, a,b) and p(, p, a, b) satisfy (2.42) and
(2.34), respectively, using (2.46) we have

die(p -p)=(p-p)A(6,p0) +R(6,p,a,b) —R(6,p,a,b), (2.52)

where p = p(6,po,a,b) and p = p(0,po, a,b). Then noting (2.40), applying the formula of
variation of constants to the above equation yields

0
P(61P01 alb) _E(GIPOI a/b) = J‘ (R(61P(6/P1a1b)/a1b) - R(6/P(6/P0/a/b)/ a/b)>
/2

0
X exp <I A(r, po)dT> deé.
5

(2.53)
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Inserting (2.50) into the above formula and taking 8 = —or /2 give by (2.37) that

ar /2
d(po,a, b)=ZAj(a, b)Pézk,-/(ku))ml—ﬂJ' (cos )2/ )1 4 (g 0)
i>1 —r/2
! (2.54)
0
x exp (J A(r, 0)d7> (1+O0(po)) do,
5
which implies (2.38) by (2.33). Hence, The proof is completed. O

In the following part, we verify Theorems 1.6 and 1.7 using the above lemmas.

Proof of Theorem 1.6. One can see that the conclusion (i) is true by Lemmas 2.1 and 2.3. Now,
we prove the conclusion (ii). Obviously, it suffices to prove the following two points.

(1) There are at most s limit cycles near the origin for all (a, b) near (ay, by).

(2) There can appear s limit cycles in any given neighborhood of the origin for some
(a, b) arbitrarily close to (ao, bo).

In fact, noting that

Cs+1(aO/ bO) = Bs+1(”0; bO)N;+1 750 (255)

By our assumption, we have from (2.38) and (2.55)

s+1
d(po,a,b) = > Cj(a,b)py (1+d;(po)) + py>Q(po, a,b)
i1
(2.56)
s+1 , _
= >.Ci(a,b)pg (1+d;(p0)) = D,
7
where Q(po, a,b) = 3>, Cj(a, b)pg%”,
— — ,a, b Feorn—Ts
d] = d], ] =1,...,s, ds+1 = ds+l + %‘Doﬂz ”1, (257)
S+ 7

which implies Hi in (2.56) are C* in py satisfying E]-(O) = 0 for (a,b) sufficiently close to
(ao, bo).

We claim that D in (2.56) has at most s zeros in pg > 0 small for |a — ag| + |b — by| « 1.
We can proceed with the proof by induction on s.

First, when s = 1, from (2.56), we can obtain

Dy = (1+d(po) )pit [Cr(a,b) + Ca(a, b (1+ o (po) )|

= (1+di(po) )y e (po, a,b).

(2.58)
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Note that
ddi(po,a,b . B ,
1 (50 ) = Ca(a,b)py ™ 1 [(Tz —11) <1 +ds (po)> + pod,, (PO)], (2.59)
P0
which implies
ddy(po, a,b)
—, 70 2.60

for 0 < pp < 1 and (a, b) near (ay, by) since C(ao, by) = B2(ao, by) N; #0 by (2.55). Hence, by
Rolle’s theorem, the conclusion (1) is true for s = 1.
Assume that the conclusion (1) is true for s = i. That is by (2.56)

i+l

Di = 3.Ci(ab)pf (1+di(p0)) 261)

=1

has at most i zeros for py > 0 and |a — ap| + |b — by| sufficiently small with Cj.1(ao, bg) #0. Let
us prove that the conclusion (1) is also true for s = i + 1. Then from (2.56), we can obtain

i+2

Dict = 2,Ci(a,b)py (1+4)(p0) )
j=1
(2.62)
_ i+2 — . _ .
= py (1+d1(p0)) X.Cia, bypy s = piy (1+ (o) ) D,
j=1
where d; =1, df = (1+ di(p0))/(1+di(po)) =1+O(po), j=2,3,...,i+2. Then,
dDin & ri-n-1 po 4d;
= ri—11)Ci(a,b)p, dr+ 1
dpo ;(7 1)Cj(a, b)p, 17 % =7 dpo
(2.63)
i+l 7 N
= > Cilablpg (1+d;(po)),
j=1

where Ej(a,b) = (rjp1 —1)Cja(a,b), rj = rjn - —-1,j =1,...,i + L satisfying 1 < 71 <
- < 71 and c?j (po) is C* in py with c?j(O) = 0, which implies that dDj.1/ dpo has at most
i zeros in py > 0 small for (a,b) near (ag,by) by induction assumption since 6i+](ﬂ0,b0) =
(riva — 11)Cis2(ao, bo) # 0. Hence, by Rolle’s theorem, it follows that D;;; in (2.62) has at most
i+ 1 zerosin 0 < py < 1 for (a,b) near (ao, by). This ends the proof of conclusion (1).
Now, we verify the conclusion (2). For simplicity, we can assume (a,b) = a = (ai,
ay, ..., an). Further, by (1.22), without loss of generality, suppose

o(By,...,Bs)

det
@, a)

0. (2.64)
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Then we can fix a; = ajo for j =s +1,...,n; since n; > s. Consider the equations
B]=B](ﬁ), j=1,...,S. (265)
By the implicit function theorem, the equations have a unique set of solutions

@ = (Bi,...,B,Gsst, ..., An,), j=1,2,...,8 (2.66)

for @ near ap, which means B;(j =1, ..., s) can be taken as free parameters. Hence, by chang-
ing the sign of B,, Bs_1, ..., B; in turn such that

Bj1Bj <0, j=s+1,...,1,0<|B| < |By| < ---=|Bg| « 1, (2.67)

which follows that C; in (2.56) satisfy

CiiCi<0, j=5+1,...,,0< ||« [C] « < |C| < 1. (2.68)

This ensures that the bifurcation function d has s zeros in py for some (a,b) near (ay, by),
which implies the conclusion (2). This ends the proof. O

Proof of Theorem 1.7. From the proof of Theorem 1.6, it is easy to see B;(j = 1,...,5s) can be
taken as free parameters by (1.22), which implies C;(j = 1,...,s) can also be taken as free
parameters by the definition of C; in Lemma 2.4. From (1.23) and Lemma 2.4, we have

d(po,a,b) =0 whenC;=0, j=1,...,s (2.69)

for |a — ao| + |b - bo| sufficiently small since B; = 0 if and only if C; = 0, which means that the
coefficients C;(j > s + 1) in (2.38) satisfy

Cj(a,b)=0, j=s+1,5+2,... aslongas C;=---=C;=0. (2.70)

Since C; can be taken as free parameters, we can write
S
Cj(a/ b) = ZCiQij(ar b)/ (271)
i=1

where Q;; € C*,j > s + 1. Inserting (2.71) into (2.38) gives that

s
d(po, a,b) = > Cipy (1+¢;(po)), (2.72)
j=1
where
e]' (PO) =1+ d] (PO) + Z Q]'ipg_rj (1 + d,’ (PO)) for ] = 1, .., S, (273)

i>s+1
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We can easily prove d in (2.72) has at most s — 1 zeros for (a, b) near (ao, by) by induction s in
a similar way to the above proof. Further, we can choose C; satisfying

CiiCi<0, j=5,...,1,0< |G| K| < |G| x 1, (2.74)

which ensures that d in (2.72) has s — 1 zeros for (a, b) near (ao, bp). The proof is finished. O

From the proof of Theorems 1.6 and 1.7, we have immediately the following corollar-
ies.

Corollary 2.5. Let (1.15), (1.16), (H1), and (Hy) hold. If there exist a point (ay, by) and an integer
s > 1such that

Bj(ao,bo) =0, j=1,2,...,5, Bgu(ao,bo) <0 (resp.,>0), (2.75)
then the origin is a stable (resp., unstable) focus of system (1.13) for (a,b) = (ao, bo) and there has at

most s limit cycles at the origin for all (a,b) near (ag, by).

Corollary 2.6. Let (1.15), (1.16), (H1), and (Hy) hold. If there exists s > 1 such that

B] = O(|B1/BZI"'/BS|) (276)
for j > s+ 1, then for any given N > O there exists a neighborhood U of the origin such that for all
|Bj| <N, j=1,...,ssystem (1.13) has at most s — 1 limits cycles in U.

Further, about system (1.13), we have the below two remarks in order.

Remark 2.7. If the function h(y) in (1.13) has the form h(y) = hyy + O(y?) with h; > 0, we also
can obtain the same conclusions since this system is equivalent to the following:

. _h(y) F(x)
T T Th

8
o

(2.77)

Remark 2.8. When vector parameter a or b is constant in (1.13), Theorems 1.6 and 1.7 remain
true in this case.

3. Applications

In this section, we present some applications of our main results to systems of the form

x=y-F(x,a),
(3.1)
y = _g(xr b)/

where F, g satisfy (1.15) and (1.16).
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Example 3.1. First consider system (3.1) with

koo Saix, x>0,
Sbixl, x>0, =i
g(x,b) = §j=0 F(x,a) = (3.2)

m .
-1, x <0, Za]fxf, x <0,
i

where by >0and a = (af,...,a;,a;,...,a,,), b= (by,bi,..., bx). By Lemma 2.1, it is clear that

ko b
a(x,b) == —L_x/*1, 3.3
%m (3.3)

for x > 0 small. For any given N > 0, denote L(k, n, m) the cyclicity of system (3.1) near the
origin for |a| + |b| < N. We study the cyclicity of system (3.1) under (3.2) near the origin with
the following three cases.

Case 1. m =1, k,m,n > 1. In this case, we claim that L(k,n,1) = max{k + 1,n} — 1. In fact, by
(3.2) and (3.3), we have

kK ab; . n .
F~(a(x,b),a) — F"(x,a) = —Z_l—]x“l - Za}’x]
AR =1
(3.4)
max{k+1,n} )
= Z Bj(a,b)x’
=1

for 0 < x < 1. From (3.4) it is easy to see that F~(a(x,b),a) = F*(x,a) for 0 < x <« 1 if and
only if B; = 0 for j = 1,...,max{k + 1,n}, which shows that L(k,n,1) < max{n, k + 1} - 1by
Corollary 2.6. Thus we only need to prove that L(k,n,1) > max{n,k+1} -1. Forn < k+1, by
(3.4), we can obtain

a;b;._
j=1,...,n,  Biab)=—"1, j=n+1,..,k+1.  (35)

i1 .

a:b
Bi(a,b)= 1~ -a

Take (a,b) = (ao,go) such that a;.ro = (aybj-10)/j,j=1,...,m,bjo=0,j=mn,..., k and a;, #0.
Then by (3.5), we have

a(Bl/...,Bn/Bn+1/~..,Bk+1)| )
o(at,..., a5, by,... by) @)

Bj(ao,bp) =0, j=1,...,k+1, rank =k+1 (3.6)

which implies k limit cycles can appear near the origin for (a, b) near (ao,bo). Forn > k +1,
we can discuss similarly.
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Case2. k=2, m=2,n>1 Wewill see that L(2,2,1) =3, L(2,2,2) = L(2,2,3) =4, L(2,2,4) =
L(2,2,5)=5,and L(2,2,n) =n—1forn > 6.
In fact, combining (3.2) and (3.3) gives that

F(a(x,b),a) - F*(x,a)

2 n
=a (—box - %xz %xe') +a, <—b0x - %xz %x3> - Za}'xj a7
j=1 .

max{6,n}

= Z Bj(a, b)x/.

j=1

As before, it is easy to get that L(2,2,n) = n -1 for n > 6. For n < 5, we can discuss system
(3.1) case by case with respect to n.
For n =1, by (3.7) we can obtain

Bi(a,b) = —ajby — aj, By(a,b) = —1 a1b1 + azbé, Bs(a,b) = —la1 by + a; byby,
(3.8)
/2 1, 1 By
B4((1, b) =4a, §b0b2 + Zbl P B5((1, b) —azblbz, B(,(a, b) azb

From (3.8), it is easy to see that Bs = O(|By, B3, B4|), B¢ = O(|B,, B3, Bs|). By Corollary 2.6, one
can see that L(2,2,1) < 3. Further, from (3.8) we can have ay = (aj, a;,, a,,) with

+ - - _ b -
ajy = —apbo,  ay = 202 5y, a3570 (3.9)
such that
Bi(ao,b) = By(ap,b) =0, Bs(ao, b) = ajyA1(b),
By (ag, b) = a;yAa(b), (3.10)
Bs(ao, b) = aj,As3(b), Bg(ao, b) = ajyA4(b),
where

Aq(b) = b by b) = ( boby + b2>
1 FY 2 02
3 " 2b b2
(3.11)
N R WAL
e TN T sy
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Take b = Z;O = (boo, b1o, (3b%0/2b00)) with by #£0, big #0. Then by (3.11), we have

3

Ai(bo) =0, As(bo) = = 20, (3.12)
8byo
Note that
0(B1, By) _' -1 0 2 0A1 __1
det a(a{,ag) =10 b2 -by #0, b, - 3 (3.13)

Then by Theorem 1.8, we know that system (3.1) has cyclicity 3 for (a, b) sufficiently close to
(ao, bp). In other words, L(2,2,1) = 3. Similarly, we have L(2,2,2) = L(2,2,3) =4, L(2,2,4) =
L(2,2,5) =5.

Case 3. k = m = n,n = 1,2,3. We claim that L(n,n,n) = 3n -2 for n = 1,2,3. In fact, for
k = m =n, we have

n n bl . ] n .
F (a(x,b),a) - F*(x,a) = Za;< ZzT xit > - Yaix
=1 i=0 =1
! ! (3.14)

n(n+1)

= Z Bj(a, b)x/.
=1

From Cases 1 and 2, it is easy to see that L(1,1,1) =1, L(2,2,2) = 4. Fork =m = n = 3, Bj(a, b)
in (3.14) can be written as

Bi(a,b) = —ajby - aj, B> (a,b) = —la1 b + azb2 a;,

B3(I.1 b) —lal b2 + a2b0b1 bO - a;,

3

1 2 1 _
B4(a,b) ——a1b3+a2<§bob2+ Zb%) - §a3b(2)b1,

B5(a, b) = a£<1b0b3 + 1b1bz> — 115 (bgbz + §b()b%),
2 3 4
1 1 3 1
Bs(a,b) = a§<1b1b3 + §b§> -a; <b0b1b2 + Zbgb3 + 8b3>,

B7(11 b) 1a2b2b3 §b0b1b3 + El)’bobz + b2 b,

4 >
)

Bg(a b) 1 a2b2 a3 <%b0b2b3 + — 3 b b3 + = b1b2
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/1 3 1 _/3 1
Bg(ll, b) =—dag <Zb1b2b3 + Ebobg + ﬁbi), Blo(a, b) = —dag <3—2b1b§ + ﬁb§b3>’

1
Bn(a, b) = —1—a§b2b2, B12 = llgbg

5 64

(3.15)

From (3.15), it is easy to prove that B; = O(|By,...,Bg|),i = 9,...,12. Then by Corollary 2.6,
we have L(3,3,3) < 7. In order to prove L(3,3,3) =7, let for convenience

Z(b) = 36b5b1bs — 12bobib, — 32b5b; — 9by. (3.16)

Then we can find (a, b) = (ao, Eo) with Z(Eo) #0and

1 1
ajo = —abo, Ay = Eafobl ~ axbg, ay = _gafobZ + aybobr — azb;,
3.17
020, a5 = 3[1;01?3 (4b0b2 + 3b%) o = 2(1;0b3 (3bgbs + 2b1by) ( )
10 4 20 — Z(b) 4 30 — boZ(b)

forb = I;o such that
Bl<aolgo) =---=Bs <a0, Eo) =0, Bg <ﬂ0150> = a1 <Eo>,
B7<a0, Eo) = a{oAz <Eo>, Bg (ao, Eo> = aIOAgg (Eo), By (ao, Eo) = a{0A4 (Eo),

By <110,Eo> =a,As <Eo>, Bn<aolgo> =ale <Eo>, By (ao,go> = aI0A7(l;o>,

(3.18)
where
9 31,2 2 4 21.3 3 2 21.2 1 4
Al(b) = 21 _Eb0b3 - 6b0b1b2b3 + gbObZ + §b0b1b3 - 3b0b1b2 - Eblbz ,
9 2 2 2 2 4 3 31,2
Ba(b) = Zi (5 bibrb; — 3bobibab} — Sbobib} b33 ),
9 2 2 9 21.2 2 3 2 2 21,3
Aa(b) = Zy ( ~bibab — T bobib} — Bbubibibs — Jbibabs — Sb3D3 ),

(3.19)

2
8

2

%%—mem@—g

4
A4m=a< m@m—@%m—ﬁm%>

As(b) = 74 (—19—6b0b1b§ - Sbob3: ~ 262t} - %blbgbg,),

3 1 3 1
%wyaacgmg—zm%%) Aﬂmzz(—ﬁmﬁ—ﬂ?¢ﬁ®,
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with Z; = bs/byZ. Let’s choose by = (bgo, 0, (3/2)by,* b2, bsg) with byy > 0, bsg #0. Obviously,
Z(by) #0. Then by (3.19), we have
- - ~\ 36’
Ar(by) = Ax(by) =0,  As(by) = 0. (3.20)
1< 0) 2( 0> 3( O) 64b363 #
Note that
det 3(31/ BZ/ B3/ Bil/ B5) |(a b) b8/3b4/3750,
o(aj, a3, a},a;,a3) " C
(3.21)
A, A
det 0(Aq, Ay)

81 14/3,10/3
o(b1, bo) i, = b b~ 70

Then by Theorem 1.8, it is clear that 7 limit cycles can appear near the origin for (a,b) suf-
ficiently close (ao, bg). Then we have L(3,3,3) =7

Example 3.2. Consider system (3.1) with

g(x,b) = =9 ., (3.22)
“1+bix+byx?, x<0, j

Clearly, the origin is a center or focus by Theorem 1.2. Denote H (m, n) the cyclicity of system
(3.1) near the origin. By (3.22), we can obtain

x3

5 7 xZO/
G(x,b)=4 3 b,

b (3.23)
x4+ =224 253, x<0.
2 3

Using Lemma 2.1 and (3.23), for x > 0 small, we can solve from the equation G™(a(x,b), b)
G*(x,b)
: 1 1 b} b 5 5
a(x,b) ];a]x 3x + 18b1x (54 + 81>x <648b 486b1b2>
- (Lb —— b’y + —b2> (3.24)
1944 9721 729

5 3 2
+<3888b 1458b b2+6561b1b >x +0().
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Take m =4, n = 5. Combining (3.22) and (3.24), we can obtain
5 . .
F™(a(x,b),a) - F*(x,a) = > Bj(a,b)x)"" + > Bj(a,b)x*V™, (3.25)
j=1 j=6
where
Bl(a/b) = _a;/ BZ(IJ, b) = _ag - gaI/ B3(a/ b) = _aZI B4 - _a5/
1 1 1 1
Bs(a,b) = a1b1 + 9112, Be(a,b) = a1< 54b b2> 27a2b1 >
5 /5 1 1
Br(a,b) = <648b 486b1b2> " “2<3ﬂb 243b2> 51901+ g1
~ 1 5 1 /7
Bs(a,b) = “1< omt1 ™ 972b b2 = 7352 > +a2< 57201 243b1b2>
/1, 1 2
e (@bl + @bz " 2a3 %t
By(a,b) = ( 7 b+ ——bby + —— blb > + a'(ib > ——bPby + bz)
’ 3888 1458 6561 2\ 648 1 " 2187 1777 6561
7 4
- 3 -2 32, =
T (1458b 1458b1b2> T <1458 b+ 2187b2>’
(3.26)

which implies that B; = O(|By,...

lary 2.6. Now we prove that H(4,5) = 8. Suppose a = (aj,...,a:,a;,..
find

aO = (Ego, .. .,Ego,aio, e ,520),
where

T S +_1— - _ - - _ -
Ay = Ay = A5y = gy =0, azy = ‘gawr ayy = _Ealobl’ azy = ‘5“10172'
such that
By (ao, b) = By(ao, b) = B3(ao, b) = Bs(ao,b) = Bs(ao,b) = Bs(ao,b) = By(ao,b) =0,
a,
Bg(ao, b) = 162ﬂ1 Ao, By (ao, b) = @AL

,Bol), j > 10. Then we can obtain H(4,5) < 8 by Corol-
.,a;). Then we can

(3.27)

a0,
(3.28)

(3.29)
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where

1 5185
Aozb%<§b%+b2>, Alzbcl))<

1
22 2L 2h, ). .
310% ' 3 2> (3:30)

Solving the equation A¢ = 0 gives b = (big, —(1/ 2)bfo) = by, byp #0. Inserting by into (3.30)
gives

5185

Further, by (3.26) and (3.30), we have

/—1 0 0 0 0 0 0\
0 -1 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 -1 0 0 0
a(Ber21B3/B4rB5IB6/B7) — 0 0 0 0 1 0 0
o(a;, a3, a;, a3, a;, a3, a,) 9 330
0 0 0 0 b 1y (3:32)
5b2 o b 1927
1 2by 1 1
\0 0 0 0 =+3 5 &/
9, )
229 py) = b2, #0.
abz ( 0) 10#0

Hence, by the conclusion (i) of Theorem 1.8, it is easy to see that there exists cyclicity 8 when
(a,b) near (ag, by), which implies H(4,5) = 8.

Remark 3.3. In a similar way, for 1 < m < 4,2 < n <5, we can obtain H(m,n) = m+n -1 for
n#2, Hm,n)=m+n-2forn=2,m#2and H(2,2) = 3.
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