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LetA be a linear operator in a Banach spaceX. We define a subspace ofX and a norm such that the
part ofA in such subspace generates an (a, k)-regularized resolvent family. This space is maximal-
unique in a suitable sense and nontrivial, under certain conditions on the kernels a and k.

1. Introduction

Inspired by the well-known Hille-Yosida theorem, Kantorovitz defined in 1988 a linear
subspace and a norm such that the restriction of A to this subspace generates a strongly
continuous semigroup of contractions (see [1]). This so-called Hille- Yosida space is maximal
unique in a suitable sense. The same problem has been considered in the context of strongly
continuous operator families of contractions by Cioranescu in [2]. In this case, the generation
theorem of Sova and Fattorini was fundamental for her work. Later, Lizama in [3] used the
generation theorem for resolvent families due to Da Prato and Iannelli (see [4]) as basis to
generalize the results of Kantorovitz and Cioranescu to the context of resolvent families of
bounded and linear operators. In this paper, also some applications to Volterra equations
were given.

It is remarkable that resolvent families do not include α-times integrated semigroups,
α-times integrated cosine functions, K-convoluted semigroups, K-convoluted cosine fami-
lies, and integrated Volterra equations. For a historical account of these classes of operators,
see ([5], page 234). Actually, these types of families are (a, k)-regularized. The concept of
(a, k)-regularized resolvent families was introduced in [6]. The systematic treatment based
on techniques of Laplace transforms was developed in several papers (see, e.g., [7–13]). The
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theory of (a, k)-regularized families has been developed in many directions and we refer to
the recent monograph of Kostić [14] for further information. In this context, the problem to
find maximal subspaces for generation of (a, k)-regularized families remained open in case
k(t)/= 1. In this paper, we are able to close this gap generalizing, in particular, [1, 2, 6].

In this work, wewill use the generation theorem for (a, k)-regularized resolvent family
(see [6]) to show that there exists a linear subspace Za,k in X and a norm | · |a,k majorizing
the given norm, such that (Za,k, | · |a,k) is a Banach space, and the part of A in Za,k generates
a (a, k)-regularized resolvent family of contractions in Za,k. Moreover, the space (Za,k, | · |a,k)
is a maximal-unique in a sense to be defined below. Concerning the non-triviality of Za,k, we
prove that it contains the eigenvectors corresponding to non-positive eigenvalues of A. We
close this paper with illustrative examples concerning the cases a(t) = tα−1 and k(t) = tβ in
some region α > 0 and β > 0.

This paper is organized as follows. In the first section, we recall the definition as well
as basic results about (a, k)-regularized families.

In Section 2, we show the existence of the maximal subspace such that the part of A in
this subspace generates an (a, k)-regularized family. We prove that such subspace is a Banach
space with the norm defined below. The maximality is also proved and we show how this is
used to obtain a relation with the Hille-Yosida space corresponding to the semigroup case.

In Section 3, we present some applications of the theory developed in the preceding
section. Here we show the particular cases of generation corresponding to resolvent families,
cosine operator families, semigroups, α-times semigroups and α-times cosine operator
families. After that, we give concrete conditions on a given operator A to obtain the non-
triviality of the maximal spaces and hence the well posedness on these spaces, for the abstract
Cauchy problems of first and second order.

2. Preliminaries

In this section, we recall some useful results in the literature about (a, k)-regularized resolvent
families. Let us fix some notations. From now on, we take X to be a Banach space with the
norm ‖ · ‖. We denote by B(X) the Banach algebra of all bounded linear operators on X
endowed with the operator norm, which again is denoted by ‖ · ‖. The identity operator on X
is denoted by I ∈ B(X), andR+ denotes the interval [0,∞). For a closed operatorA, we denote
by σ(A), σp(A), ρ(A) the spectrum, the point spectrum, and resolvent of A, respectively.

Definition 2.1. Let k ∈ C(R+), k /= 0, and a ∈ L1
loc(R+) be given. Assume that A is a linear

operator with domain D(A). A strongly continuous family {R(t)}t≥0 ⊂ B(X) is called (a, k)-
regularized family on X having A as a generator if the following hold:

(a) R(0) = k(0)I;

(b) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(c) R(t)x = k(t)x +
∫ t
0 a(t − s)AR(s)x ds for all t ≥ 0 and x ∈ D(A).

In the case where k(t) ≡ 1, this definition corresponds to the resolvent family for the Volterra
equation of convolution type in [6]. Moreover, if, in addition, a(t) ≡ 1 then this family is a
C0-semigroup on X or if a(t) ≡ t is a cosine family on X.

We note that the study of (a, k)-regularized families is associated to a wide class of
linear evolution equation, including, for example, fractional abstract differential equations
(see [15]).
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Definition 2.2. We say that (R(t))t≥0 is of type (M,ω) if there exist constantsM ≥ 0 and ω ∈ R

such that

‖R(t)‖ ≤ Meωt (2.1)

for all t ≥ 0.

We will require the following theorem on generation of (a, k)-regularized families (see
[6]).

Theorem 2.3. LetA be a closed and densely defined operator on a Banach space X. Then {R(t)}t≥0 is
an (a, k)-regularized family of type (M,ω) if and only if the following hold:

(a) â(λ)/= 0 and 1/â(λ) ∈ ρ(A) for all λ > ω;

(b) H(λ) := k̂(λ)(I − â(λ)A)−1 satisfies the estimates

∥∥∥H(n)(λ)
∥∥∥ ≤ Mn!

(λ −ω)n+1
, λ > ω, n ∈ N0. (2.2)

In the case where k(t) ≡ 1, Theorem 2.3 is well known. In fact, if a(t) ≡ 1 then it is just
the Hille-Yosida theorem; if a(t) ≡ t, then it is the generation theorem due essentially to Da
Prato and Iannelli in [4]. In the case where k(t) = tn/n! and a(t) ≡ 1, it is the generation
theorem for n-times integrated semigroups [16]; if k(t) = tn/n! and a(t) is arbitrary, it
corresponds to the generation theorem for integrated solutions of Volterra equations due to
Arendt and Kellerman [17].

In order to give applications to our results we recall the following concepts of fractional
calculus. The Mittag-Leffler function (see, e.g., [18–20]) is defined as follows:

Eα,β(z) :=
∞∑

n=0

zn

Γ
(
αn + β

) =
1

2πi

∫

Ha

eμ
μα−β

μα − z
dμ, α, β > 0, z ∈ C, (2.3)

where Ha is a Hankel path, that is, a contour which starts and ends at −∞ and encircles the
disc |μ| ≤ |z|1/α counter clockwise. The function Eα,β is an entire function which provides a
generalization of several usual functions. For a recent review, we refer to the monograph [21].

An interesting property related with the Laplace transform of the Mittag-Leffler
function is the following (cf. [18], (A.27) page 267):

L
(
tβ−1Eα,β

(−ραtα)
)
(λ) =

λα−β

λα + ρα
, Reλ >

∣∣ρ
∣∣1/α; α > 0, β > 0, ρ ∈ R. (2.4)

Remark 2.4 (see [22]). If 0 < α < 2 and β > 0, then

Eα,β(z) =
1
α
z(1−β)/α exp

(
z1/α

)
+ εα,β(z),

∣∣arg(z)
∣∣ ≤ 1

2
απ ;

Eα,β(z) = εα,β(z),
∣∣arg(−z)∣∣ <

(
1 − 1

2
α

)
π,

(2.5)
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where

εα,β(z) := −
N−1∑

n=1

z−n

Γ
(
β − αn

) +O
(
|z|−N

)
, (2.6)

as z → ∞ with 2 ≤ N ∈ N. This implies that for each π(α/2) < ω < min{π,πα}, there is a
constant C := C(ω) > 0 such that

∣
∣Eα,β(z)

∣
∣ ≤ C

1 + |z| , ω ≤ ∣
∣arg(z)

∣
∣ ≤ π. (2.7)

3. The Maximal Subspace

In this section,X is a Banach space with norm ‖ ·‖. LetA be a linear operator and a ∈ L1
loc(R+)

and k ∈ C(R+), k /= 0. Assume that

â(λ) =
∫∞

0
e−λta(t)dt /= 0, ∀λ > 0, (3.1)

and 1/â(λ) ∈ ρ(A) for all λ > 0. Observe that we are implicitly assuming that the inequality
(2.2) holds with ω = 0. Let Ha,k(λ) := (k̂(λ)/â(λ))((1/â(λ)) −A)−1 for λ > 0, and define

Ya,k :=

⎧
⎨

⎩
x ∈ X : |x|a,k := sup

λj>0, nj ,l∈N0

∥∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
x

∥∥∥∥∥∥
< +∞

⎫
⎬

⎭
, (3.2)

where for l = 0 the product is defined as x. It is clear that | · |a,k is a norm on Ya,k.

Proposition 3.1. (Ya,k, | · |a,k) is a Banach space.

Proof. Let {xi} ⊂ Ya,k be a Cauchy sequence. We observe that ‖x‖ ≤ |x|a,k if x ∈ X. Then {xi}
is a Cauchy sequence on X. Let x := limi→∞xi.

First, we show that x ∈ Ya,k. Indeed, let λj > 0, nj, l ∈ N0 be fixed. Then

∥∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
x

∥∥∥∥∥∥
= lim

i→∞

∥∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
xi

∥∥∥∥∥∥

≤ lim sup
i→∞

|xi|a,k < +∞.

(3.3)

Second, we prove that {xi} converges to x ∈ Ya,k. Let ε > 0. There exists N := N(ε) ∈ N

such that |xi − xm|a,k < ε/2 for i,m > N. Since x = limi→∞xi in the norm of X, we also
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have ‖xm − x‖ < ε/2M where M > 0 is the constant given in (2.2). Hence for every λj > 0,
nj, l ∈ N0, we have by inequality (2.2)

∥
∥
∥
∥
∥
∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
(xi − x)

∥
∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
(xi − xm)

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
(xm − x)

∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
(xi − xm)

∥
∥
∥
∥
∥
∥

+
l∏

j=1

(
1
nj !

)

λ
nj+1
j

∥
∥∥H

(nj )
a,k

(
λj
)
(xm − x)

∥
∥∥

≤
∥∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,k

(
λj
)
(xi − xm)

∥∥∥∥∥∥

+M‖xm − x‖, i,m > N.

(3.4)

Taking supremum over all λj > 0, nj, l ∈ N0, we obtain

|xi − x|a,k ≤ |xi − xm|a,k +M‖xm − x‖ <
ε

2
+
ε

2
= ε, i > N. (3.5)

Therefore the sequence {xi} converges to x ∈ Ya,k in the norm | · |a,k. Consequently
(Ya,k, | · |a,k) is a Banach space.

Definition 3.2. Let AYa,k : D(AYa,k) ⊆ Ya,k → Ya,k be defined by AYa,kx := Ax, where

D
(
AYa,k

)
:= {x ∈ D(A) : x, Ax ∈ Ya,k}. (3.6)

This operator is sometimes called the part of A in Ya,k.
We denote

Za,k := D
(
AYa,k

)
, (3.7)

where the closure is taken in the norm | · |a,k.

Lemma 3.3. With the preceding definitions and hypothesis, we have

(a) AYa,k is a closed linear operator on Ya,k,

(b) (1/â(λ)) −AYa,k is invertible on Ya,k for each λ > 0,

(c) ‖H(n)
a,y(λ)‖B(Ya,k) ≤ n!/λn+1 for each λ > 0 and n ∈ N0, where Ha,y(λ) :=

(k̂(λ)/â(λ))((1/â(λ)) −AYa,k)
−1.
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Proof. Let λ > 0 be fixed. Since 1/â(λ) ∈ ρ(A), then

â(λ)

k̂(λ)

(
1

â(λ)
−A

)
Ha,k(λ)x = x, for each x ∈ X

Ha,k(λ)
â(λ)

k̂(λ)

(
1

â(λ)
−A

)
x = x, for each x ∈ D(A).

(3.8)

Note that AYa,k is closed because Ya,k is a Banach space and A is closed. So the first
part is done. Now, let y ∈ Ya,k be fixed. Since Ha,k(λ) : X → D(A), then Ha,k(λ)y ∈ D(A).
Moreover,

∣∣Ha,k(λ)y
∣∣
a,k := sup

∥
∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

nj

a,k

(
λj
)
Ha,k(λ)y

∥
∥∥∥∥∥

≤ ‖Ha,k(λ)‖ sup
∥∥∥∥∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

nj

a,k

(
λj
)
y

∥∥∥∥∥∥

= ‖Ha,k(λ)‖
∣∣y
∣∣
a,k < ∞,

(3.9)

therefore Ha,k(λ)y ∈ Ya,k. On the other hand, from identities above, we have

AHa,k(λ)y =
1

â(λ)
Ha,k(λ)y − k̂(λ)

â(λ)
y; (3.10)

thus AHa,k(λ)y ∈ Ya,k. Hence Ha,k(λ)y ∈ D(AYa,k), and we conclude that

â(λ)

k̂(λ)

(
1

â(λ)
−AYa,k

)
Ha,k(λ)y = y, for each y ∈ Ya,k. (3.11)

Now if y ∈ D(AYa,k) then, in particular, y ∈ D(A), and therefore,

Ha,k(λ)
â(λ)

k̂(λ)

(
1

â(λ)
−AYa,k

)
y = y. (3.12)

This proves the second assertion. In particular, ρ(AYa,k)/= ∅ and hence

Ha,y(λ) = Ha,k(λ)|Ya,k
, ∀λ > 0. (3.13)
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Finally, let y ∈ Ya,k, λ > 0, n ∈ N0 be fixed. We have

∣
∣
∣
∣
1
n!
λn+1Ha,y(λ)y

∣
∣
∣
∣
a,k

:= sup

∥
∥
∥
∥
∥∥

l∏

j=1

(
1
nj !

)

λ
nj+1
j H

nj

a,k

(
λj
)
(

1
n!
λn+1Ha,y(λ)y

)
∥
∥
∥
∥
∥∥

≤ sup

∥
∥
∥
∥
∥
∥

l+1∏

j=1

(
1
nj !

)

λ
nj+1
j H

(nj )
a,y

(
λj
)
y

∥
∥
∥
∥
∥
∥

≤ ∣
∣y
∣
∣
a,k,

(3.14)

where λj > 0 are arbitrary for 1 ≤ j ≤ l, λl+1 := λ and nl+1 := n. This proves the third part of
the lemma.

Lemma 3.4. Let Aa,k : D(Aa,k) ⊆ Za,k → Za,k be defined by Aa,kx := AYa,kx, where

D(Aa,k) :=
{
x ∈ D

(
AYa,k

)
: x,AYa,kx ∈ Za,k

}
. (3.15)

Then Aa,k is a closed operator such that D(Aa,k) = Za,k and

(a) (1/â(λ)) −Aa,k is invertible on Za,k for each λ > 0,

(b) ‖H(n)
a,k

(λ)‖B(Za,k) ≤ n!/λn+1 for each λ > 0 and n ∈ N0 where Ha,k(λ) :=

(k̂(λ)/â(λ))((1/â(λ)) −Aa,k)
−1.

Proof. We observe that Ha,k(λ) = Ha,y(λ)|Za,k
. Then the result is a direct consequence of ([5],

Lemma 3.10.2).

As a consequence, we obtain the main result of this section on the existence of (a, k)-
regularized families.

Theorem 3.5. Let A be a linear operator defined in a Banach space X and a ∈ L1
loc (R+) and k ∈

C(R+), k /= 0. Assume that 1/â(λ) ∈ ρ(A) for all λ > 0. Then there exist a linear subspace Za,k and a
norm | · |a,k such that (Za,k, | · |a,k) is a Banach space and Aa,k generates an (a, k)-regularized family
of contractions in Za,k.

Proof. According to our hypothesis, we can apply the generation theorem for (a, k)-
regularized family (see [6, Theorem 3.4]) and the result of Lemma 3.4.

Concerning the non-triviality of Za,k, we will prove that it contains the eigenvectors
corresponding to nonpositive eigenvalues of A.
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Let μ ∈ C be fixed. Let r(t, μ) be the unique solution to the scalar equation

r
(
t, μ

)
= k(t) + μ

∫ t

0
a(t − s)r

(
s, μ

)
ds. (3.16)

Thus, provided the kernels a(t) and k(t) are Laplace transformable, we have

Ha,k(λ) =
k̂(λ)
â(λ)

(
1

â(λ)
− μ

)−1
=
∫∞

0
e−λtr

(
t, μ

)
dt. (3.17)

We define

Ca,k :=
{
μ ∈ σ(A) : the map t −→ r

(
t, μ

)
, t ≥ 0 is bounded

}
. (3.18)

Proposition 3.6. Let x be an eigenvector of A corresponding to the eigenvalue α ∈ Ca,k. Then x ∈
Za,k.

Proof. Let x be an eigenvector of A corresponding to the eigenvalue α such that the map
t → r(t, α) is bounded. Let λ > 0 and n ∈ N be fixed. Then

∥∥∥∥
1
n!
λn+1H

(n)
a,k (λ)x

∥∥∥∥ =

∥∥∥∥∥
1
n!
λn+1

dn

dλn

[
k̂(λ)
â(λ)

(
1

â(λ)
− α

)−1
x

]∥∥∥∥∥

=
∥∥∥∥
1
n!
λn+1

dn

dλn

(∫∞

0
e−λtr(t, α)dt

)
x

∥∥∥∥

≤ 1
n!
λn+1

∫∞

0
tne−λt|r(t, α)|dt‖x‖

≤ sup
t≥0

|r(t, α)|‖x‖.

(3.19)

This implies that |x|a,k ≤ supt≥0|r(t, α)|‖x‖ and, consequently, x ∈ Za,k.

The following result shows us that the spaces Za,k are maximal-unique in a certain
sense.

Theorem 3.7. Under the same hypothesis of Theorem 3.5, if (Wa,k, ‖·‖a,k) is a Banach space such that
Wa,k ⊂ X, ‖·‖ ≤ ‖·‖a,k and the operator Ba,k = A|D(Ba,k) withD(Ba,k) := {x ∈ D(A) : x,Ax ∈ Wa,k}
generates an (a, k)-regularized family of contractions in Wa,k, then Wa,k ⊂ Za,k, | · |a,k ≤ ‖ · ‖a,k and
Ba,k ⊂ Aa,k.
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Proof. Suppose that (Wa,k, ‖ · ‖a,k), Ba,k are as in the statement of theorem. SinceHa,k(λ) is the
Laplace transform of the (a, k)-regularized family Sa,k(t) (t ≥ 0), we have that for x ∈ Wa,k,
λ > 0, and n ∈ N0

∥
∥
∥
∥
1
n!
λn+1H

(n)
a,k (λ)x

∥
∥
∥
∥ =

∥
∥
∥
∥
1
n!
λn+1

(
d

dλ

)n ∫∞

0
e−λtSa,k(t)x dt

∥
∥
∥
∥

≤ 1
n!
λn+1

∫∞

0
e−λt‖Sa,k(t)x‖dt

≤ 1
n!
λn+1

∫∞

0
e−λt‖Sa,k(t)x‖a,k dt

≤ 1
n!
λn+1

∫∞

0
e−λt‖x‖a,kdt

= ‖x‖a,k.

(3.20)

We conclude that for x ∈ Wa,k, |x|a,k ≤ ‖x‖a,k, that is, Wa,k ⊂ Ya,k. It follows that

D(Ba,k) := {x ∈ D(A) : x,Ax ∈ Wa,k} ⊂ {x ∈ D(A) : x,Ax ∈ Ya,k} := D
(
AYa,k

)
. (3.21)

Hence

Wa,k = D(Ba,k)
‖·‖a,k ⊂ D

(
AYa,k

)‖·‖a,k ⊂ D(Ba,k)
|·|a,k = Za,k. (3.22)

Finally, this implies that D(Ba,k) ⊂ D(Aa,k) and Ba,k ⊂ Aa,k.

The next result treats the “maximal property”. In order to obtain the analogous result
to the resolvent families case, we need more information about the function k(t).

Theorem 3.8. Let A be a linear operator defined in a Banach space X and k ∈ C1(R+), k /= 0 with
absolutely convergent Laplace transform for λ > 0. Assume that 1/â(λ) ∈ ρ(A) for all λ > 0. Suppose
that 1 ≤ k(0). Then Aa,k generates a strongly continuous semigroup of contractions on Za,k.

Proof. ByHille-Yosida theorem it is sufficient to have (α,∞) ⊂ ρ(Aa,k) and ‖λ(λ−Aa,k)‖B(Za,k) ≤
1 for all λ > α, for some real α.

In order to show this, we take n = 0 in the second part of Lemma 3.4 and obtain

∥∥∥∥∥
k̂(λ)
â(λ)

(
1

â(λ)
−Aa,k

)−1∥∥∥∥∥
B(Za,k)

≤ 1
λ
. (3.23)

Let μ := 1/â(λ). Then (3.23) gives

∥∥∥μ
(
μ −Aa,k

)−1∥∥∥ ≤ 1

λk̂(λ)
, (λ > 0). (3.24)
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Since â(λ) → 0 as λ → ∞, and limλ→∞λk̂(λ) = k(0) by the initial value theorem, we obtain

∥
∥
∥μ

(
μ −Aa,k

)−1∥∥
∥
B(Za,k)

≤ 1
k(0)

, (3.25)

for all μ sufficiently large. Since k(0) ≥ 1, we get ‖μ(μ−Aa,k)‖B(Za,k) ≤ 1 for μ sufficiently large,
which concludes the proof.

Remark 3.9. From the maximal uniqueness of Z1,1 and under the same hypothesis of
preceding theorem we obtain that Za,k ⊂ Z1,1, | · |1,1 ≤ | · |a,k and Aa,k ⊂ A1,1. Note that, in
particular, Za,1 ⊂ Z1,1 which include [3, Remark 2.10].

4. Applications

Taking k(t) ≡ 1 we obtain the main result in [3, Theorem 2.5].

Corollary 4.1 (see [6], Theorem 2.5). Let A be a linear operator defined in a Banach space X and
a ∈ L1

loc (R+), a/= 0 with absolutely convergent Laplace transform for λ > 0. Assume that 1/â(λ) ∈
ρ(A) for all λ > 0. Then there exist a linear subspace Za,1 and a norm | · |a,1 such that (Za,1, | · |a,1) is
a Banach space and the equation

u(t) = f(t) +
∫ t

0
a(s − t)Ak,1u(s)ds (4.1)

admits resolvent family of contractions on Za,1, where Ak,1 is defined in Lemma 3.4.

Taking k(t) ≡ 1 or k(t) ≡ t, we obtain from the preceding corollary the following.

Corollary 4.2 (see [1]). Let A be a linear operator on X such that (0,∞) ⊂ ρ(A). Then there exist a
linear subspace Z1 ⊂ X and a norm | · |1 such that (Z1, | · |1) is a Banach space and the restriction A1

of A to Z1 is the infinitesimal generator of a C0-semigroup of contractions on Z1.

Corollary 4.3 (see [2]). Let A be a linear operator on X such that (0,∞) ⊂ ρ(A). Let At be the
operator in Zt defined as above. Then At is the infinitesimal generator of a strongly continuous cosine
family of contractions on Zt.

Remark 4.4. Applying Theorem 3.5 with k(t) ≡ tβ/(Γ(β + 1)) we obtain corresponding results
for α-times integrated semigroups and β-times integrated cosine families taking a(t) ≡ 1 and
a(t) ≡ t, respectively.

Suppose that σp(A)/= ∅ and μ ∈ σp(A). In the following examples we search conditions
under which the function t → r(t, μ) is bounded. This ensure the non-triviality of the
subspace Za,k.
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Example 4.5. Let us consider k(t) := tβ/(Γ(β + 1)) and a(t) := tα−1/Γ(α). Let A be a closed
linear and densely defined operator on a Banach space X such that

(a) (0,∞) ⊂ ρ(A),

(b) σp(A) ∩ R− /= ∅,
(c) 0 < α < 2 and α ≥ β.

Let μ ∈ σp(A) ∩ R−. Then applying Laplace transform, we have that

r̂
(
λ, μ

)
=

λα−(β+1)

λα − μ
. (4.2)

It follows from (2.4) that

r
(
t, μ

)
= tβEα,β+1

(
μtα

)
,

(
μ < 0

)
. (4.3)

Take z = μtα with t > 0, then arg(z) = π . By Remark 2.4, for each π(α/2) < ω <
min{π,πα}, there is a constant C := C(ω) > 0 such that

∣∣Eα,β+1
(
μtα

)∣∣ ≤ C

1 +
∣∣μ
∣∣tα

, t > 0. (4.4)

Therefore

∣∣r
(
t, μ

)∣∣ =
∣∣∣tβEα,β+1

(
μtα

)∣∣∣ ≤ Ctβ

1 +
∣∣μ
∣∣tα

, t > 0. (4.5)

From here and part (c), it follows that r(t, μ) is a bounded function for t > 0. In particular,
Za,k ≡ Zα,β /= {0} by Proposition 3.6. Since (0,∞) ⊂ ρ(A), we have that 1/â(λ) = λ2 ∈ ρ(A)
for λ > 0. It follows from Theorem 3.5 that A is the infinitesimal generator of a strongly
continuous Laplace transformable (α, β)-resolvent family of contractions on Zα,β. Note in
particular that if α = 1 and β > 0, then A is the generator of β-times integrated semigroup
(Sβ(t))t≥0 on each subspace Z1,β for 0 < β ≤ 1. It means that the initial value problem

u′(t) = Au(t), t ≥ 0,

u(0) = u0

(4.6)

is well posed in the sense that there exists a strongly continuous family of linear operators
(Sβ(t))t≥0 on a subspace Z1,β of X such that for all initial values u0 ∈ Z1,β there exists a unique
classical solution of (4.6).

Example 4.6. Let us consider k(t) := tβ/(Γ(β + 1)) and a(t) := tα−1/Γ(α) when α = 2, that is,
a(t) := t. Let A be a closed linear and densely defined operator on a Banach space X such
that

(a) (0,∞) ⊂ ρ(A),

(b) σp(A) ∩ R− /= ∅,
(c) 0 < β ≤ 1.
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Let μ ∈ σp(A) ∩ R−. Then

r̂
(
λ, μ

)
=

λ1−β

λ2 − μ
=

λ

λ2 − μ

1
λβ

. (4.7)

Letω2 := −μ. First, we consider β = 1. In this case, if we take inverse Laplace transform,
we obtain

r
(
t, μ

)
=

1
ω

sin(ωt). (4.8)

Obviously, this function is bounded for t ≥ 0 and μ = −ω2 < 0.
Now, we consider 0 < β < 1. In this case

r
(
t, μ

)
=
∫ t

0

sβ−1

Γ
(
β
) cos(ω(t − s))ds

=
1

Γ
(
β
)

{

cos(ωt)
∫ t

0
sβ−1 cos(ωs)ds + sin(ωt)

∫ t

0
sβ−1 sin(ωs)ds

}

.

(4.9)

Remember that the incomplete Gamma function is defined by

Γ(a, z) :=
∫∞

z

e−tta−1dt. (4.10)

About the asymptotic behavior, we know that (see [23, formula (8.357)])

Γ(a, z) := za−1e−z
[
1 +O

(
|z|−1

)]
, (4.11)

as |z| → ∞ and −3π/2 < arg(z) < 3π/2.
It can be verified that the following formulas holds (see [23, formula (2.632)]):

∫ t

0
sβ−1 sin(ωs)ds = − 1

2ωβ

[
exp

[
iπ

2
(
β − 1

)
]
Γ
(
β,−iωt

)

+ exp
[
iπ

2
(
1 − β

)
]]

Γ
(
β, iωt

)
,

(
β < 1

)
,

∫ t

0
sβ−1 cos(ωs)ds = − 1

2ωβ

[
exp

(
iβπ

2

)
Γ
(
β,−iωt

)
+ exp

(
iβπ

2

)
Γ
(
β, iωt

)
]
.

(4.12)

Note that arg(iωt) = π/2 and arg(iωt) = −π/2, so we can apply (4.11). Then, for t
sufficiently large, we obtain that

∣∣Γ
(
β, iωt

)∣∣ =
∣∣Γ
(
β,−iωt

)∣∣ ≤ ωβ−1tβ−1
[
1 +O

(
|ωt|−1

)]
. (4.13)
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The boundedness follows from the fact that β < 1. Therefore, for t sufficiently large

∣
∣r
(
t, μ

)∣∣ ≤ M
[∣∣Γ

(
β, iωt

)∣∣ +
∣
∣Γ
(
β,−iωt

)∣∣] ≤ K, (4.14)

whereK depends onω and β. Since (0,∞) ⊂ ρ(A), we have that λ2 ∈ ρ(A) for λ > 0. It follows
from Theorem 3.5 that A is the infinitesimal generator of β-times integrated cosine function
(Cβ(t))t≥0 of contractions on Z2,β for 0 < β ≤ 1. As in the above example, it now means that
the initial value problem

u′′(t) = Au(t), t ≥ 0,

u(0) = u0,

u′(0) = 0

(4.15)

is well posed in the sense that there exists a strongly continuous family of linear operators
(Cβ(t))t≥0 on a nontrivial subspace Z2,β of X such that for all initial values u0 ∈ Z2,β there
exists a unique classical solution of (4.15).
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