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This paper investigates the consensus problem for a class of fractional-order uncertain multiagent
systems with general linear node dynamics. Firstly, an observer-type consensus protocol is
proposed based on the relative observer states of neighboring agents. Secondly, based on property
of the Kronecker product and stability theory of fractional-order system, some sufficient conditions
are presented for robust asymptotical stability of the observer-based fractional-order control
systems. Thirdly, robust stabilizing controllers are derived by using linear matrix inequality
approach and matrix’s singular value decomposition. Our results are in the form of linear
matrix inequalities which can easily be solved by LMI toolbox in MATLAB. Finally, a numerical
simulation is performed to show the effectiveness of the theoretical results.

1. Introduction

The coordination problem of multiagent dynamical systems have attracted an increasing
attention in recent years due to its applications in sensor networks, robotic teams,
satellites formation [1–3]. Particularly, the consensus of multiagent systems, which has been
extensively studied in the past few years [4–8].

Note that for most of aforementioned results, the agent dynamics is assumed to be
first-order, second-order, or high-order integrators, which may be restrictive in many cases.
Recently, consensus of multiagent systems with general linear node dynamics has received
dramatic attention [9–11], the output feedback consensus problem is studies in [9] for
high-order linear system, the consensus is reached if there exists a stable compensator. In
[10], the consensus problem of multiagent systems with general form of linear dynamics is
investigated under a time-invariant communication topology, an observer-type consensus
protocol based on relative output measurements between neighboring agents has been
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proposed. Li et al. [11] investigate the consensus problems for multiagent systems with
continuous-time and discrete-time linear dynamics, distributed reduce-order consensus
protocols have been proposed based on the information of relative outputs of neighboring
agents. In the above-mentioned works on consensus of multiagent systems, the systems
are described by an integer-order dynamics, but many phenomena in nature cannot be
explained in the framework of integer-order dynamics, for example, the synchronized
motion of agents in fractional circumstances, such as molecule fluids and porous media, the
stress-strain relationship demonstrates non-integer-order dynamics rather than integer-order
dynamics [12]. In addition, fractional-order systems provide an excellent instrument for the
description of memory and hereditary properties of various materials and processes, such as
dielectric polarization, electrode-electrolyte polarization, and visco-elastic systems [13–16].
For the fractional-order dynamical systems, it is very difficult and inconvenient to construct
Lyapunov functions, because there exist substantial differences between fractional-order
differential systems and integer-order differential ones. As a way of efficiently solving
the robust stability and stabilization problem, the linear matrix inequality approach is
presented [17–20], which provides the designing method of state feedback controllers
for fractional-order systems. A recent study [21] investigates the distributed formation
control problem for multiple fractional-order systems under dynamic interaction, sufficient
conditions on the network topology are given to ensure the formation control. In [21], the
coordination algorithms for networked fractional-order systems are studied when the fixed
interaction graph is directed, the coordination algorithms for integer-order system can be
considered a special case of those for fractional-order systems. Only two of the above studies
considered fractional-order multiagent systems. In addition, in previous results, static
consensus protocols based on relative states of neighboring agents are used, which require
the absolute output measurement of each agent to be available, which is impractical in many
cases, the agent states in relatively large scale networks are not often completely available.
Thus, in many application, one often needs to estimate the agent states through available
measurements and then utilizes the estimated states to achieve certain design objectives such
as consensus of multiagent systems, synchronization of complex networks [22–25]. To date,
very little research effort has been done about the consensus problem for fractional-order
uncertain multiagent systems. The purpose of our study is to fill this gap.

Motivated by the above discussion, the consensus problem is investigated for a
class of fractional-order uncertain multiagent systems with general linear node dynamics.
An observer-type consensus protocol is proposed based on the relative observer states
of neighboring agents. Some sufficient conditions are presented for robust asymptotical
stability of the observer-based fractional-order control systems, and robust stabilizing
controllers are derived by using linearmatrix inequality approach andmatrix’s singular value
decomposition. Finally, an illustrative example is provided to demonstrate the effectiveness
of the proposed approach.

The main novelties of this study are summarized as follows: (1) a novel observer-
type consensus protocol is proposed based on the relative observer states of neighboring
agents. Different from [26], the observer state is used instead of the agent’s state in consensus
protocol, and the dynamic behavior of multiagent is described by fractional-order system; (2)
the uncertainty is considered in multiagent systems due to external disturbing factors such
as environment temperature, voltage fluctuation, and mutual interfere among components;
(3) the feedback gain matrices can be derived by matrix’s singular value decomposition, and
the consensus criteria are in the form of linear matrix inequalities which can be solved by
applying the LMI toolbox.
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The rest of this paper is organized as follows. In Section 2, preliminaries and problem
statement are given. In Section 3, the consensus conditions are derived by using linear matrix
inequality approach and matrix’s singular value decomposition. In Section 4, a simulation
example is provided to show the advantages of the obtained results. Conclusions are
presented in Section 5.

2. Preliminaries and Problem Statement

2.1. Graph Theory Notions

Let g = {v, ε,A} be a weighted directed graph of order N, with the set of nodes v =
{v1, v2, . . . , vN}, an edge set ε ⊆ v × v, and a weighted adjacency matrix A = (aij)N×N
with aij > 0 if (vj , vi) ∈ ε and aij = 0, otherwise. The neighbor set of node i is defined by
Ni = {j ∈ v | (vj , vi) ∈ ε}, and the in-degree and out-degree of node i are defined as

degin(i) =
N∑

j=1,j /= i

aij , degout(i) =
N∑

j=1,j /= i

aji. (2.1)

A diagraph is called balanced if degin(i) = degout(i) for all i ∈ v.
The Laplacian matrix L = (lij)N×N associated with the adjacency matrix A is defined

as

lij = −aij

(
i /= j

)
,

lii = −
N∑

j=1,j /= i

aij , (i = 1, 2, . . . ,N).
(2.2)

It is straightforward to verify that L has at least one zero eigenvalue with a
corresponding eigenvalue with a corresponding eigenvector 1, where 1 is an all-one column
vector with a compatible size.

2.2. Caputo Fractional Operator

With the development of fractional calculus, it has been found that many physical systems
show fractional dynamical behavior because of special materials and chemical properties,
which can be described more accurately using fractional-order calculus than traditional
integer-order calculus [27, 28]. Therefore, fractional-order calculus has become a hot research
issue in recent years. There are many definitions of fractional derivatives [29–31], such as
the Riemann-Liouville derivative and the Caputo derivative which are used in fractional
systems. In physical systems, Caputo fractional derivative is more appropriate for describing
the initial value problem of fractional differential equations, the Laplace transform of the
Caputo derivative allows utilization of initial values of classical integer-order derivatives
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with clear physical interpretations [17]. Therefore, the following Caputo fractional operator
is adopted in this paper for fractional derivatives of order α:

Dαx(t) =
1

Γ(m − α)

∫ t

t0

(t − τ)m−α−1x(m)(τ)dτ (m − 1 < α < m), (2.3)

where m ∈ Z+, Γ(·) is a gamma function given by Γ(z) =
∫∞
0 tz−1e−tdt.

In order to simulate the fractional-order multiagent systems, a predictor corrector
algorithm is introduced as follows.

The fractional-order differential equation is given by

Dαx(t) = f(t, x(t)) (0 ≤ t ≤ T, 0 < α < 1),

x(i)(0) = x
(i)
0 (i = 0, 1, 2, . . . , n − 1)

(2.4)

which is equivalent to the following Volterra integral equation:

x(t) =
�a�−1∑

i=0

ti

i!
x
(i)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f(τ, x(τ))dτ. (2.5)

Set h = T/N (N ∈ Z+) and tn = nh(n = 1, 2, . . . ,N), where h is the step size, T is
simulation time, and N is the number of sample points, (2.4) can be discretized as follows:

xh(tn+1) =
�a�−1∑

i=0

tin+1
i!

x
(i)
0 +

hα

Γ(α + 2)
f
(
tn+1, x

p

h(tn+1)
)

+
hα

Γ(α + 2)

n∑

j=0

aj,n+1f
(
tj , xh

(
tj
))
,

(2.6)

where

x
p

h(tn+1) =
n−1∑

i=0

tin+1
i!

x
(i)
0 +

1
Γ(α)

n∑

j=0

bj,n+1f
(
tj , xh

(
tj
))
,

aj,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nα+1 − (n − α)(n + 1)α+1
(
j = 0

)
(
n − j + 2

)α+1 +
(
n − j

)α+1 − 2
(
n − j + 1

)α+1 (
1 ≤ j ≤ n

)

1
(
j = n + 1

)
,

bj,n+1 =
hα

α

((
n − j + 1

)α − (
n − j

)α)
,

(2.7)

the estimation error of this approximation is e = maxj=0,1,...,N |x(tj) − xh(tj)| = O(hp), where
p = min(2, 1 + α).
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2.3. Problem Formulation

Consider multiagent systems ofN identical linear dynamical systems, the dynamics of agent
i is described by

Dαxi(t) = Axi(t) + Bui(t)
yi(t) = Cxi(t) (i = 1, 2, . . . ,N),

(2.8)

where 0 < α < 1 is the fractional order, xi(t) = (xi1(t), xi2(t), . . . , xin(t)) ∈ R
n is position state

vector of ith agent, ui(t) = (ui1(t), ui2(t), . . . , uim(t)) ∈ R
m is the control input, and yi(t) =

(yi1(t), yi2(t), . . . , yip(t)) ∈ R
p is the measured output.A, B, and C are some real matrices with

compatible dimensions, and

A = A0 + ΔA(t), B = B0 + ΔB(t), (2.9)

where ΔA(t) and ΔB(t) represent the parameter uncertainties satisfying the following
conditions:

ΔA(t) = DAFA(t)EA, ΔB(t) = DBFB(t)EB, (2.10)

and DA, EA, DB, and EB are some constant matrices with appropriate dimensions, FA(t)
and FB(t) are the uncertainties satisfying FT

A(t)FA(t) ≤ I, FT
B(t)FB(t) ≤ I, in which I ∈ R

n×n

denotes the identity matrix.

Remark 2.1. In [9–11], observer-based protocols are proposed for consensus of linear
multiagent systems with reduced order, where the multiagent systems are described by
integer-order systems, uncertainty is not considered. But in (2.1), every agent is required with
the same dynamics and uncertainties, which have certain conservation. In order to reduce this
conservation, we can consider a more general multiagent systems:

Dαxi(t) = Aixi(t) + Biui(t)

yi(t) = Cixi(t) (i = 1, 2, . . . ,N),

Ai = Ai0 + ΔAi(t), Bi = Bi0 + ΔBi(t),

(2.11)

where ΔAi(t) and ΔBi(t) represent the parameter uncertainties of ith agent satisfying the
following conditions:

ΔAi(t) = DAiFAi(t)EAi, ΔBi(t) = DBiFBi(t)EBi, (2.12)

for the abovemodel, we can get similar results, but themathematical treatment becomesmore
complicated, the important and meaningful research topics will be considered for our future
research.
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Based on the design idea of the observer, a Luenberger-type fractional-order linear
observer is constructed as follows:

Dαx̂i(t) = Ax̂i(t) + Bui(t) +K2
(
yi(t) − ŷi(t)

)
ŷi(t) = Cx̂i(t) (i = 1, 2, . . . ,N), (2.13)

where x̂i(t) and ŷi(t) are the state and the output of observer. K2 ∈ R
n×p is a feedback gain

matrix to be determined later.
Similar to [26], observer-type consensus protocol based on the relative observer states

between neighboring agents is given as

ui(t) = K1

∑

j∈Ni

aij

(
x̂i(t) − x̂j(t)

)
= −

∑

j∈Ni

lijK1x̂j(t) (i = 1, 2, . . . ,N), (2.14)

where K1 ∈ R
p×n is the feedback gain matrix to be designed.

Remark 2.2. It should be noticed that the consensus protocol (2.14) is based on the relative
states of the neighboring observers. To our best knowledge, it is novel for fractional-order
multiagent systems.

Substituting (2.14) into (2.8), and (2.13) respectively, and using Kronecker product,
(2.8) and (2.13) can be rewritten in the following compact form:

Dαx(t) = (IN ⊗A)x(t) − (L ⊗ BK1)x̂(t),

y(t) = (IN ⊗ C)x(t),

Dαx̂(t) = (IN ⊗A − L ⊗ BK1)x̂(t) + (IN ⊗K2C)(x(t) − x̂(t)),

ŷ(t) = (IN ⊗ C)x̂(t),

(2.15)

Let e(t) = x(t) − x̂(t), the closed-loop system is given by

Dαx̂(t) = (IN ⊗A − L ⊗ BK1)x̂(t) + (IN ⊗K2C)e(t)

Dαe(t) = (IN ⊗A − IN ⊗K2C)e(t)
(2.16)

which can be rewritten as

DαX(t) = AKX(t), (2.17)

where

X(t) =
[
x̂(t)
e(t)

]
, AK =

[
IN ⊗A − L ⊗ BK1 IN ⊗K2C

0 IN ⊗A − IN ⊗K2C

]
. (2.18)

In the following, an LMI-based designmethod is developed for the consensus of a class
of linear fractional-order uncertain multiagents. Before giving the main results, the following
definition and lemmas are introduced.
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Definition 2.3 (see [26]). The consensus problem of multiagent systems (2.8) is solved by
protocol (2.14) if the states of (2.8) satisfy

lim
t→∞

∥∥xi(t) − xj(t)
∥∥ = 0 (i = 1, 2, . . . ,N). (2.19)

Lemma 2.4 (see [32]). Let a ∈ R and A,B,C,D be matrices with appropriate dimensions. The
following properties can be proved by the definition of Kronecker product:

(1)a(A ⊗ B) = (aA) ⊗ B = A ⊗ (aB),

(2) (A ⊗ B)T = AT ⊗ BT ,

(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(4)A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

(2.20)

Lemma 2.5 (see [33]). Let A ∈ R
n×n be a real matrix, a necessary and sufficient condition for the

asymptotical stability of Dαx(t) = Ax(t) is

∣∣arg
(
spec(A)

)∣∣ >
απ

2
, (2.21)

where spec(A) is the spectrum of all eigenvalues of A, fractional order satisfying 0 < α < 2.

Lemma 2.6 (see [18]). Let A ∈ R
n×n and 0 < α < 1, then the fractional-order system Dαx(t) =

Ax(t) is asymptotically stable if and only if there exist two real symmetric positive definite matrices
Pk1 ∈ R

n×n(k = 1, 2) and two skew-symmetric matrices Pk2 ∈ R
n×n(k = 1, 2), such that

2∑

i=1

2∑

j=1

sym
{
θij ⊗

(
APij

)}
< 0,

[
P11 P12

−P12 P11

]
> 0

[
P21 P22

−P22 P21

]
> 0,

(2.22)

where

θ11 =
[
sin θ − cos θ
cos θ sin θ

]
, θ12 =

[
cos θ sin θ
− sin θ cos θ

]
,

θ21 =
[
sin θ cos θ
− cos θ sin θ

]
, θ22 =

[− cos θ sin θ
− sin θ − cos θ

]
,

(2.23)

and θ = απ/2.

Lemma 2.7 (see[34]). Let H and E be real matrices of appropriate dimensions with F(t) satisfying
FT (t)F(t) < I, and there exists positive scalar ε > 0, such that

HF(t)E + ETFT (t)HT < εHHT + ε−1ETE. (2.24)



8 Abstract and Applied Analysis

Recall that for any matrix Π ∈ R
m×n with full row rank, there exists a singular value

decomposition of Π as follows:

Π = U[S 0]V T , (2.25)

where S ∈ R
m×p is a diagonal matrix with positive elements in decreasing order, p = min{m,n},

U ∈ R
p×p and V ∈ R

n×n are unitary matrices. Then the following, lemma holds.

Lemma 2.8 (see [19]). Given matrix Π ∈ R
m×n with rank(Π) = p, assume that X ∈ R

n×n is a
symmetric matrix, there exists a matrix X ∈ R

m×n satisfying ΠX = XΠ if and only if X can be
expressed as

X = V

[
X11 0
0 X22

]
V T , (2.26)

where X11 ∈ R
m×m and X22 ∈ R

(n−m)×(n−m).

Remark 2.9. Aswe known, the existing results about stability of fractional-order deterministic
systems are based on Lemma 2.5, which cannot be applied directing to fractional-order
uncertain systems, because this method needs to compute all eigenvalues of system (2.17),
it is hard to yield all eigenvalues for fractional-order systems with uncertain parameters, the
paper can effectively avoid this difficulty by using Lemma 2.6.

3. Main Results

In this section, a sufficient condition is first derived for robust asymptotic stability of
uncertain fractional-order linear systems (2.17), based on the stability criterion, an LMI-
based approach is proposed for designing observer-type consensus protocol for the uncertain
fractional-order multiagent systems (2.8).

Theorem 3.1. For given two feedback gain matrix K1 ∈ R
p×n and K2 ∈ R

n×p, the uncertain
fractional-order multiagent systems (2.17) are asymptotically stable if there exist two positive matrices
Q1 ∈ R

n×n, Q2 ∈ R
n×n and four real positive scalars a1, a2, b1, and b2 such that the following linear

matrix inequality holds:

⎡
⎢⎢⎢⎢⎢⎣

Π1 ∗ ∗ ∗ ∗
Π2 −a1 ⊗ I4Nn ∗ ∗ ∗
Π2 0 −a2 ⊗ I4Nn ∗ ∗
Π3 0 0 −b1 ⊗ I4Nn ∗
Π3 0 0 0 −b2 ⊗ I4Nn

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.1)

where

Π1 =

⎡
⎢⎢⎣

Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗
0 0 Π11 ∗
0 0 Π21 Π22

⎤
⎥⎥⎦,
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Π2 =

⎡
⎢⎢⎣

IN ⊗ EAQ1 0 0 0
0 IN ⊗ EAQ2 0 0
0 0 IN ⊗ EAQ1 0
0 0 0 IN ⊗ EAQ2

⎤
⎥⎥⎦,

Π3 =

⎡
⎢⎢⎣

IN ⊗ EBK1Q1 0 0 0
0 0 0 0
0 0 IN ⊗ EBK1Q1 0
0 0 0 0

⎤
⎥⎥⎦,

Π11 = 2
(
IN ⊗A0Q1 + IN ⊗Q1A

T
0 − L ⊗ B0K1Q1 − LT ⊗Q1K

T
1B

T
0

)
sin θ

+ (a1 + a2)IN ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Π21 = 2
(
IN ⊗Q2C

TKT
2

)
sin θ,

Π22 = 2
(
IN ⊗A0Q2 + IN ⊗Q2A

T
0 − IN ⊗K2CQ2 − IN ⊗Q2C

TKT
2

)
sin θ + (a1 + a2) ⊗DAD

T
A.

(3.2)

Proof. It follows from Lemma 2.6 that the system (2.17) is asymptotically stable if there exist
two real symmetric positive definite matrices Pk1 ∈ R

2n×2n (k = 1, 2) and two skew-symmetric
matrices Pk2 ∈ R

2n×2n (k = 1, 2) such that the following linear matrix inequality holds:

Π =
2∑

i=1

2∑

j=1

sym
{
θij ⊗

(
AKPij

)}
< 0. (3.3)

Setting P11 = P21 = Q = diag{IN ⊗ Q1, IN ⊗ Q2} and P12 = P22 = 0, then (3.3) will
degenerate to the following inequality:

Π =
2∑

i=1

sym{θi1 ⊗ (AKQ)} < 0, (3.4)

then system (2.17) is asymptotically stable. By simple calculation, the following equality
holds:

AKQ =
[
IN ⊗A0Q1 − L ⊗ B0K1Q1 IN ⊗K2CQ2

0 IN ⊗A0Q2 − IN ⊗K2CQ2

]

+
[
IN ⊗DAFA(t)EAQ1 0

0 IN ⊗DAFA(t)EAQ2

]
+
[−L ⊗DBFB(t)EBK1Q1 0

0 0

]
.

(3.5)
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For the convenience of later analysis, we denote

Δ1 =
[
IN ⊗A0Q1 − L ⊗ B0K1Q1 IN ⊗K2CQ2

0 IN ⊗A0Q2 − IN ⊗K2CQ2

]
, (3.6)

Δ2 =
[
IN ⊗DAFA(t)EAQ1 0

0 IN ⊗DAFA(t)EAQ2

]
, (3.7)

Δ3 =
[−L ⊗DBFB(t)EBK1Q1 0

0 0

]
. (3.8)

We rewrite (3.5) as follows:

Π =
2∑

i=1

sym{θi1 ⊗ (AKQ)}

=
2∑

i=1

sym{θi1 ⊗Δ1} +
2∑

i=1

sym{θi1 ⊗Δ2} +
2∑

i=1

sym{θi1 ⊗Δ3}.
(3.9)

Based on Lemma 2.6, it follows from (3.5) that

2∑

i=1

sym{θi1 ⊗Δ1} = sym
{[

2 sin θ 0
0 2 sin θ

]
⊗Δ1

}

=

⎡
⎢⎢⎣

Π11 −Φ1 ∗ ∗ ∗
Π21 Π22 −Φ2 ∗ ∗
0 0 Π11 −Φ1 ∗
0 0 Π21 Π22 −Φ2

⎤
⎥⎥⎦,

(3.10)

where

Φ1 = (a1 + a2) ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Φ2 = (a1 + a2) ⊗DAD
T
A.

(3.11)

Note that θi1θT
i1 = I2 (i = 1, 2), for any real positive scalars a1 and a2, it follows from

(3.9) and Lemma 2.7 that

2∑

i=1

sym{θi1 ⊗Δ2}

=
2∑

i=1

sym
{
θi1 ⊗

{
IN ⊗

[
DA 0
0 DA

][
FA(t) 0
0 FA(t)

][
EAQ1 0
0 EAQ2

]}}
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=
2∑

i=1

sym
{
θi1 ⊗

{[
IN ⊗DA 0

0 IN ⊗DA

][
IN ⊗ FA(t) 0

0 IN ⊗ FA(t)

][
IN ⊗ EAQ1 0

0 IN ⊗ EAQ2

]}}

=
2∑

i=1

sym
{(

θi1 ⊗
[
IN ⊗DA 0

0 IN ⊗DA

])(
I2 ⊗

[
IN ⊗ FA(t) 0

0 IN ⊗ FA(t)

])

×
(
I2 ⊗

[
IN ⊗ EAQ1 0

0 IN ⊗ EAQ2

])}

≤
2∑

i=1

{
ai

(
θi1 ⊗

[
IN ⊗DA 0

0 IN ⊗DA

])(
θi1 ⊗

[
IN ⊗DA 0

0 IN ⊗DA

])T

+a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])}

=
2∑

i=1

{
ai

(
I2 ⊗

[
IN ⊗DAD

T
A 0

0 IN ⊗DAD
T
A

])

+a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])}
.

(3.12)

By the same argument, for any real positive scalars b1 and b2, one has

2∑

i=1

sym{θi1 ⊗Δ3}

≤
2∑

i=1

{
bi

(
I2 ⊗

[
LLT ⊗DBD

T
B 0

0 0

])

+b−1i

(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])T(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])}
.

(3.13)

Combined with (3.10)–(3.13), we can obtain

Π ≤ sym
{[

2 sin(θ) 0
0 2 sin(θ)

]
⊗Δ1

}
+

2∑

i=1

{
ai

(
I2 ⊗

[
IN ⊗DAD

T
A 0

0 IN ⊗DAD
T
A

])}

+
2∑

i=1

{
bi

(
I2 ⊗

[
LLT ⊗DBD

T
B 0

0 0

])}

+
2∑

i=1

a−1
i

(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])T(
I2 ⊗

[
IN ⊗DAQ1 0

0 IN ⊗DAQ2

])

+
2∑

i=1

b−1i

(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])T(
I2 ⊗

[
IN ⊗ EBK1Q1 0

0 0

])
,

(3.14)
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we can immediately obtain (3.14) from (3.1) by using the Schur complement. This completes
the proof.

Remark 3.2. If K1 and K2 are not given beforehand, owing to the existence of the nonlinear
terms such as K1Q1, K2CQ2, the matrix inequality (3.1) is not an LMI. However, applying
Lemma 2.8, it can be transformed into an LMI, and the main results are given in the following
theorem.

Theorem 3.3. Assume that singular value decomposition of output matrix C with full-row rank
is C = U[S 0]V T , then the closed-loop control system (2.17) under the observer-type consensus
protocol (2.14) is robust asymptotically stable, if there exist symmetric positive matrices Q1 ∈ R

n×n,
Q11 ∈ R

p×p,Q22 ∈ R
(n−p)×(n−p) and two matricesX1 ∈ R

p×n,X2 ∈ R
n×p, and four real positive scalars

a1, a2, b1, and b2 such that the following linear matrix inequality holds:

⎡
⎢⎢⎢⎢⎢⎣

Π1 ∗ ∗ ∗ ∗
Π2 −a1 ⊗ I4Nn ∗ ∗ ∗
Π2 0 −a2 ⊗ I4Nn ∗ ∗
Π3 0 0 −b1 ⊗ I4Nn ∗
Π3 0 0 0 −b2 ⊗ I4Nn

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.15)

where

Π1 =

⎡
⎢⎢⎢⎣

Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗
0 0 Π11 ∗
0 0 Π21 Π22

⎤
⎥⎥⎥⎦
,

Π3 =

⎡
⎢⎢⎣

IN ⊗ EBX1 0 0 0
0 0 0 0
0 0 IN ⊗ EBX1 0
0 0 0 0

⎤
⎥⎥⎦,

Π11 = 2
(
IN ⊗A0Q1 + IN ⊗Q1A

T
0 − L ⊗ B0X1 − LT ⊗XT

1B
T
0

)
sin θ

+ (a1 + a2)IN ⊗DAD
T
A + (b1 + b2)LLT ⊗DBD

T
B,

Π21 = 2
(
IN ⊗ CTXT

2

)
sin θ,

Π22 = 2
(
IN ⊗A0Q2 + IN ⊗Q2A

T
0 − IN ⊗X2C − IN ⊗ CTXT

2

)
sin θ + (a1 + a2) ⊗DAD

T
A,

Q2 = V

[
Q11 0
0 Q22

]
V T ,

(3.16)

then the feedback gain matrices are given by

K1 = X1Q
−1
1 , K2 = X2USQ−1

11S
−1U−1. (3.17)
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Proof. Since C = U[S 0]V T and Q2 = V
[
Q11 0
0 Q22

]
V T , from Lemma 2.5, there exists Q2, such

that CQ2 = Q2C, where Q2 = USQ11S
−1U−1, it is easy derived that Q

−1
2 = USQ−1

11S
−1U−1.

SettingK1Q1 = X1 andK2Q2 = X2, and (3.1) is inequivalent to (3.15). Moreover, the feedback
gain matrices are obtained by

K1 = X1Q
−1
1 ,

K2 = X2Q
−1
2 = X2USQ−1

11S
−1U−1.

(3.18)

Remark 3.4. Linear matrix inequality technique has attracted much more attention and has
wide applications because of its high performance in analysis and design in the control
systems, which in particular has a better advantage in dealingwith uncertain systems. Noting
that Theorem 3.3 provides an LMI-based method of designing feed-back gain matrices, that
is, K1 and K2 can easily be obtained by LMI toolbox.

In particular, if the position state of multiagent can be obtained, then we can select the
following consensus protocol:

ui(t) = −
∑

j∈Ni

lijKxj(t) (i = 1, 2 . . . ,N), (3.19)

substituting (3.19) into (2.8), we have

Dαx(t) = (IN ⊗A − L ⊗ BK)x(t),

y(t) = (IN ⊗ C)x(t).
(3.20)

Based on (3.20), the following consensus criteria can derived without proof.

Corollary 3.5. The fractional-order uncertain multiagent systems (3.20) can achieve consensus by
protocol (3.19) if there exist symmetric positive matrix Q ∈ R

n×n and a matrix X ∈ R
p×n, and four

real-positive scalars a1, a2, b1, and b2, such that

⎡
⎢⎢⎢⎢⎢⎣

Π̂1 ∗ ∗ ∗ ∗
Π̂2 −a1 ⊗ I2Nn ∗ ∗ ∗
Π̂2 0 −a2 ⊗ I2Nn ∗ ∗
Π̂3 0 0 −b1 ⊗ I2Nn ∗
Π̂3 0 0 0 −b2 ⊗ I2Nn

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.21)

where

Π̂1 =

[
Π̂11 ∗
0 Π̂11

]
,
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Π̂2 =
[
IN ⊗ EAQ 0

0 IN ⊗ EAQ

]
,

Π̂3 =
[
IN ⊗ EBX 0

0 IN ⊗ EAX

]
,

Π̂11 = 2
(
IN ⊗A0Q + IN ⊗QAT

0 − L ⊗ B0X − LT ⊗XTBT
0

)
sin θ,

(3.22)

then the feedback gain matrix is given as follows:

K = XQ−1. (3.23)

4. A Numerical Example

In this section, a numerical example is given to verify the effectiveness of proposed observer-
type consensus protocol in the preceding section.

Example 4.1. Consider fractional-order uncertain multiagent systems consisting of four
agents, the interaction diagraph is shown in Figure 1 with the weights on the connections.
The related parameters are given as follows:

A0 =

⎡

⎣
−0.4 0.35 −0.65
−0.9 −2.7 1.1
−0.5 −1.35 −2.25

⎤

⎦, B0 =

⎡

⎣
1.45
0.75
0.75

⎤

⎦ C =

⎡

⎣
1.5
2
1

⎤

⎦

T

,

DA =

⎡

⎣
−0.1 0.05 0.1
−0.1 −0.3 0.1
−0.15 −0.08 −0.4

⎤

⎦, EA =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, DB =

⎡

⎣
−0.01 0.05 0.01
−0.15 −0.08 −0.04
0 0 1

⎤

⎦,

EB =

⎡

⎣
0.1
0.15
0.15

⎤

⎦, FA(t) = FB(t) =

⎡

⎣
sin(0.1πt) 0 0

0 cos(0.1πt) 0
0 0 sin(0.1πt)

⎤

⎦.

(4.1)

For given fractional-order α = 0.9, by using the Matlab LMI toolbox in Theorem 3.3,
the feasible solution (3.15) is given as follows:

Q1 =

⎡

⎣
6.8316 −2.7412 −0.5239
−2.7412 5.3247 0.6660
−0.5237 0.6660 5.2857

⎤

⎦, Q11 = 11.7744, Q22 =
[
8.4600 1.9039
1.9039 6.1330

]

X1 =
[
0.0701 −0.0483 −0.1461], X2 =

[
0.8652 −2.9990 −2.7827]T

(4.2)

the gain matrices are given as follows:

K1 =
[
0.0075 −0.0019 −0.0267], K2 =

[
0.0735 −0.2547 −0.2363]T . (4.3)
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Figure 1: The topology structure of the agents.
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Figure 2: The position curves xi(t) (i = 1, 2, 3, 4) for fractional-order α = 0.9.

In the numerical simulation, the position state curves of four multiagents are shown
in Figure 2 with random initial state values, it can be seen that the consensus is achieved, and
the response of the error e(t) between the position state x(t) and its estimate x̂(t) are shown in
Figure 3, which converge to zero. Therefore, the numerical simulation perfectly supports our
theoretical results. To provided relatively complete information, the gain matrices are also
listed in Table 1 for different fractional orders.

Remark 4.2. If fractional order α = 1, multiagent systems (2.8) reduce to integer-order
multiagent systems as follows:

Dxi(t) = Axi(t) + Bui(t),
yi(t) = Cxi(t) (i = 1, 2, . . . ,N),

(4.4)

similar to the process of Section 2, we can obtain the following augment system:

DX(t) = AKX(t). (4.5)
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Figure 3: the error response e(t) between the position x(t) and its estimate x̂(t) for fractional-order α = 0.9.

Table 1: Controller gain matrices K1 and K2 for different fractional order α.

Fractional orders α Feedback gain matrices K1 and K2

0.4 K1 = [0.0031 − 0.0136 − 0.0953], K2 = [0.0137 − 0.2220 − 0.1835]T

0.5 K1 = [0.0173 − 0.0001 − 0.0160], K2 = [0.0728 − 0.2379 − 0.2279]T

0.6 K1 = [0.0127 − 0.0006 − 0.0255], K2 = [0.0686 − 0.2462 − 0.2304]T

0.7 K1 = [0.0097 − 0.0012 − 0.0281], K2 = [0.0691 − 0.2507 − 0.2326]T

0.8 K1 = [0.0082 − 0.0017 − 0.0275], K2 = [0.0716 − 0.2533 − 0.2348]T

0.9 K1 = [0.0075 − 0.0019 − 0.0267], K2 = [0.0735 − 0.2547 − 0.2363]T

0.99 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

0.999 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

0.9999 K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

α → 1− K1 = [−0.0098 − 0.0118 0.0852], K2 = [0.2423 − 0.1882 − 0.2746]T

Construct the following Lyapunov function:

V (t) = XT (t)PX(t), (4.6)

where P = diag{IN ⊗ P1, IN ⊗ P2}.
We can easily obtain similar results with Theorem 3.1 and Theorem 3.3, by using LMI

toolbox in MATLAB, two unknown matrices can be obtained as follows:

K1 =
[−0.0098 −0.0118 0.0852

]
, K2 =

[
0.2423 −0.1882 −0.2746]T , (4.7)

the results are consistent with corresponding fractional-order case in Table 1, when α → 1−.
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5. Conclusions

The study investigates the consensus for a class of fractional-order uncertain multiagent
systems. The consensus criteria are derived by applying the observer-type consensus protocol
and stability theory of the fractional-order system, and these criteria are in the form of linear
matrix inequalities which can be readily solved by applying the LMI toolbox. A numerical
example is provided to demonstrate the validity of the presented consensus protocol.
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