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Three-point boundary value problems of second-order differential equation with a p-Laplacian on
finite and infinite intervals are investigated in this paper. By using a new continuation theorem,
sufficient conditions are given, under the resonance conditions, to guarantee the existence of
solutions to such boundary value problems with the nonlinear term involving in the first-order
derivative explicitly.

1. Introduction

This paper deals with the three-point boundary value problem of differential equation with
a p-Laplacian

(
Φp

(
x′))′ + f

(
t, x, x′) = 0, 0 < t < T,

x(0) = x
(
η
)
, x′(T) = 0,

(1.1)

where Φp(s) = |s|p−2s, p > 1, η ∈ (0, T) is a constant, T ∈ (0,+∞], and x′(T) = limt→ T−x′(t).
Boundary value problems (BVPs) with a p-Laplacian have received much attention

mainly due to their important applications in the study of non-Newtonian fluid theory, the
turbulent flow of a gas in a porous medium, and so on [1–10]. Many works have been done
to discuss the existence of solutions, positive solutions subject to Dirichlet, Sturm-Liouville,
or nonlinear boundary value conditions.
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In recent years, many authors discussed, solvability of boundary value problems at
resonance, especially the multipoint case [3, 11–15]. A boundary value problem of differential
equation is said to be at resonance if its corresponding homogeneous one has nontrivial
solutions. For (1.1), it is easy to see that the following BVP

(
Φp

(
x′))′ = 0, 0 < t < T,

x(0) = x
(
η
)
, x′(T) = 0

(1.2)

has solutions {x | x = a, a ∈ R}. When a/= 0, they are nontrivial solutions. So, the problem in
this paper is a BVP at resonance. In other words, the operator L defined by Lx = (Φp(x′))′ is
not invertible, even if the boundary value conditions are added.

For multi-point BVP at resonance without p-Laplacians, there have been many exis-
tence results available in the references [3, 11–15]. The methods mainly depend on the
coincidence theory, especially Mawhin continuation theorem. At most linearly increasing
condition is usually adopted to guarantee the existence of solutions, together with other suita-
ble conditions imposed on the nonlinear term.

On the other hand, for BVP at resonance with a p-Laplacian, very little work has been
done. In fact, when p /= 2, Φp(x) is not linear with respect to x, so Mawhin continuation
theorem is not valid for some boundary conditions. In 2004, Ge and Ren [3, 4] established
a new continuation theorem to deal with the solvability of abstract equation Mx = Nx,
whereM,N are nonlinear maps; this theorem extends Mawhin continuation theorem. As an
application, the authors discussed the following three-point BVP at resonance

(
Φp

(
u′))′ + f(t, u) = 0, 0 < t < 1,

u(0) = 0 = G
(
u
(
η
)
, u(1)

)
,

(1.3)

where η ∈ (0, 1) is a constant andG is a nonlinear operator. Through some special direct-sum-
spaces, they proved that (1.3) has at least one solution under the following condition.

There exists a constant D > 0 such that f(t,D) < 0 < f(t,−D) for t ∈ [0, 1] and
G(x,D) < 0 < G(x,−D) or G(x,D) > 0 > G(x,−D) for |x| � D.

The above result naturally prompts one to ponder if it is possible to establish similar
existence results for BVP at resonance with a p-Laplacian under at most linearly increasing
condition and other suitable conditions imposed on the nonlinear term.

Motivated by the works mentioned above, we aim to study the existence of solutions
for the three-point BVP (1.1). The methods used in this paper depend on the new Ge-
Mawhin’s continuation theorem [3] and some inequality techniques. To generalize at most
linearly increasing condition to BVP at resonance with a p-Laplacian, a small modification
is added to the new Ge-Mawhin’s continuation theorem. What we obtained in this paper is
applicable to BVP of differential equations with nonlinear term involving in the first-order
derivative explicitly. Here we note that the techniques used in [3] are not applicable to such
case. An existence result is also established for the BVP at resonance on a half-line, which is
new for multi-point BVPs on infinite intervals [16, 17].

The paper is organized as follows. In Section 2, we present some preliminaries. In
Section 3, we discuss the existence of solutions for BVP (1.1)when T is a real constant, which
we call the finite case. In Section 4, we establish an existence result for the bounded solutions
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to BVP (1.1) when T = +∞, which we call the infinite case. Some explicit examples are also
given in the last section to illustrate our main results.

2. Preliminaries

For the convenience of the readers, we provide here some definitions and lemmas which
are important in the proof of our main results. Ge-Mawhin’s continuation theorem and the
modified one are also stated in this section.

Lemma 2.1. Let Φp(s) = |s|p−2s, p > 1. Then Φp satisfies the properties.

(1) Φp is continuous, monotonically increasing, and invertible. MoreoverΦ−1
p = Φq with q > 1

a real number satisfying 1/p + 1/q = 1;

(2) for any u, v � 0,

Φp(u + v) � Φp(u) + Φp(v), if p < 2,

Φp(u + v) � 2p−2
(
Φp(u) + Φp(v)

)
, if p � 2.

(2.1)

Definition 2.2. Let R2 be an 2-dimensional Euclidean space with an appropriate norm | · |. A
function f : [0, T] × R2 → R is called Φq-Carathéodory if and only if

(1) for each x ∈ R2, t �→ f(t, x) is measurable on [0, T];

(2) for a.e. t ∈ [0, T], x �→ f(t, x) is continuous on R2;

(3) for each r > 0, there exists a nonnegative function ϕr ∈ L1[0, T] with ϕr,q(t) :=
Φq(
∫T
t ϕr(τ)dτ) ∈ L1[0, T] such that

|x| � r implies
∣∣f(t, x)

∣∣ϕr(t), a.e. t ∈ [0, T]. (2.2)

Next we state Ge-Mawhin’s continuation theorem [3, 4].

Definition 2.3. Let X, Z be two Banach spaces. A continuous opeartor M : X ∩ domM →
Z is called quasi-linear if and only if ImM is a closed subset of Z and KerM is linearly
homeomorphic to Rn, where n is an integer.

Let X2 be the complement space of KerM in X, that is, X = KerM ⊕ X2. Ω ⊂ X an
open and bounded set with the origin 0 ∈ Ω.

Definition 2.4. A continuous operator Nλ : Ω → Z, λ ∈ [0, 1] is said to be M-compact in Ω if
there is a vector subspace Z1 ⊂ Z with dimZ1 = dimKerM and an operator R : Ω × [0, 1] →
X2 continuous and compact such that for λ ∈ [0, 1],

(I −Q)Nλ

(
Ω
)
⊂ ImM ⊂ (I −Q)Z, (2.3)

QNλx = 0, λ ∈ (0, 1) ⇐⇒ QNx = 0, ∀x ∈ Ω, (2.4)

R(·, 0) is the zero operator, R(·, λ)|Σλ
= (I − P)|Σλ

, (2.5)

M[P + R(·, λ)] = (I −Q)Nλ, (2.6)
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where P , Q are projectors such that ImP = KerM and ImQ = Z1, N = N1, Σλ = {x ∈ Ω,
Mx = Nλx}.

Theorem 2.5 (Ge-Mawhin’s continuation theorem). Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be two Banach
spaces, Ω ⊂ X an open and bounded set. Suppose M : X ∩ domM → Z is a quasi-linear operator
and Nλ : Ω → Z, λ ∈ [0, 1] isM-compact. In addition, if

(i) Mx/=Nλx, for x ∈ domM ∩ ∂Ω, λ ∈ (0, 1),

(ii) QNx/= 0, for x ∈ KerM ∩ ∂Ω,

(iii) deg(JQN,Ω ∩ KerM, 0)/= 0,

whereN = N1. Then the abstract equation Mx = Nx has at least one solution in dom M ∩Ω.

According to the usual direct-sum spaces such as those in [3, 5, 7, 11–13], it is difficult
(maybe impossible) to define the projectorQ under the at most linearly increasing conditions.
We have to weaken the conditions of Ge-Mawhin continuation theorem to resolve such
problem.

Definition 2.6. Let Y1 be finite dimensional subspace of Y .Q : Y → Y1 is called a semiprojector
if and only ifQ is semilinear and idempotent, whereQ is called semilinear providedQ(λx) =
λQ(x) for all λ ∈ R and x ∈ Y .

Remark 2.7. Using similar arguments to those in [3], we can prove that when Q is a semi-
projector, Ge-Mawhin’s continuation theorem still holds.

3. Existence Results for the Finite Case

Consider the Banach spaces X = C1[0, T] endowed with the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞},
where ‖x‖∞ = max0�t�T |x(t)| and Z = L1[0, T] with the usual Lebesgue norm denoted by
‖ · ‖z. Define the operator M by

M : domM ∩X −→ Z, (Mx)(t) =
(
Φp(x′(t))

)′
, t ∈ [0, T], (3.1)

where domM = {x ∈ C1[0, T],Φp(x′) ∈ C1[0, T], x(0) = x(η), x′(T) = 0}. Then by direct
calculations, one has

KerM = {x ∈ domM ∩X : x(t) = c ∈ R, t ∈ [0, T]},

ImM =

{

y ∈ Z :
∫η

0
Φq

(∫T

s

y(τ)dτ

)

ds = 0

}

.
(3.2)

Obviously, KerM � R and ImM is close. So the following result holds.

Lemma 3.1. LetM be defined as (3.1), thenM is a quasi-linear operator.
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Set the projector P and semiprojector Q by

P : X −→ X, (Px)(t) = x(0), t ∈ [0, T], (3.3)

Q : Z −→ Z,
(
Qy
)
(t) =

1
ρ
Φp

(∫η

0
Φq

(∫T

s

y(τ)dτ

)

ds

)

, t ∈ [0, T], (3.4)

where ρ = ((1/q)(Tq − (T − η)q))p−1. Define the operator Nλ : X → Z, λ ∈ [0, 1] by

(Nλx)(t) = −λf(t, x(t), x′(t)), t ∈ [0, T]. (3.5)

Lemma 3.2. Let Ω ⊂ X be an open and bounded set. If f is a Carathéodory function, Nλ is M-
compact in Ω.

Proof. Choose Z1 = ImQ and define the operator R : Ω × [0, 1] → KerP by

R(x, λ)(t) =
∫ t

0
Φq

(∫T

s

λ
(
f(τ, x(τ), x′(τ)) − (Qf

)
(τ)
)
dτ

)

ds, t ∈ [0, T]. (3.6)

Obviously, dimZ1 = dimKerM = 1. Since f is a Carathéodory function, we can prove
that R(·, λ) is continuous and compact for any λ ∈ [0, 1] by the standard theories.

It is easy to verify that (2.3)–(2.5) in Definition 2.3 hold. Besides, for any x ∈ domM ∩
Ω,

M[Px + R(x, λ)](t) =

(

Φp

[

x(0) +
∫ t

0
Φq

(∫T

s

λ
(
f
(
τ, x(τ), x′(τ)

)
dτ − (Qf

)
(τ)
)
dτ

)

ds

]′)′

= ((I −Q)Nλx)(t), t ∈ [0, T].
(3.7)

SoNλ is M-compact in Ω.

Theorem 3.3. Let f : [0, T] × R2 → R be a Carathéodory function. Suppose that

(H1) there exist e(t) ∈ L1[0, T] and Carathéodory functions g1, g2 such that

∣∣f(t, u, v)
∣∣ � g1(t, u) + g2(t, v) + e(t) for a.e. t ∈ [0, T] and all (u, v) ∈ R2,

lim
x→∞

∫T
0 gi(τ, x)dτ
Φp(|x|) = ri ∈ [0,+∞), i = 1, 2;

(3.8)

(H2) there exists B1 > 0 such that for all tη ∈ [0, η] and x ∈ C1[0, T] with ‖x‖∞ > B1,

∫T

tη

f
(
τ, x(τ) , x′(τ)

)
dτ /= 0; (3.9)
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(H3) there exists B2 > 0 such that for each t ∈ [0, T] and u ∈ Rwith |u| > B2 either uf(t, u, 0) �
0 or uf(t, u, 0) � 0. Then BVP (1.1) has at least one solution provided

α1 := 2q−2
(
Tp−1r1 + r2

)q−1
< 1, if p < 2,

α2 :=
(
2p−2Tp−1r1 + r2

)q−1
< 1, if p � 2.

(3.10)

Proof. Let X, Z, M, Nλ, P , and Q be defined as above. Then the solutions of BVPs (1.1)
coincide with those ofMx = Nx, whereN = N1. So it is enough to prove thatMx = Nx has
at least one solution.

Let Ω1 = {x ∈ domM : Mx = Nλx, λ ∈ (0, 1)}. If x ∈ Ω1, then QNλx = 0. Thus,

Φp

(∫η

0
Φq

(∫T

s

f
(
τ, x(τ), x′(τ)

)
dτ

)

ds

)

= 0. (3.11)

The continuity of Φp and Φq together with condition (H2) implies that there exists ξ ∈ [0, T]
such that |x(ξ)| � B1. So

|x(t)| � |x(ξ)| +
∫ t

ξ

∣∣x′(s)
∣∣ds � B1 + T‖x′‖∞, t ∈ [0, T]. (3.12)

Noting that Mx = Nλx, we have

x′(t) = Φq

(∫T

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)

,

x(t) = x(0) +
∫ t

0
Φq

(∫T

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)

ds.

(3.13)

If p < 2, choose ε > 0 such that

α1,ε := 2q−2
(
Tp−1(r1 + ε) + (r2 + ε)

)q−1
< 1. (3.14)

For this ε > 0, there exists δ > 0 such that

∫T

0
gi(τ, x)dτ � (ri + ε)Φp(|x|) ∀|x| > δ, i = 1, 2. (3.15)

Set

gi,δ =
∫T

0

(
max
|x|�δ

gi(τ, x)
)
dτ, i = 1, 2. (3.16)
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Noting (3.12)-(3.13), we have

∣
∣x′(t)

∣
∣ =

∣
∣
∣
∣
∣
Φq

(∫T

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)∣∣
∣
∣
∣
� Φq

(∫T

0

∣
∣f
(
τ, x(τ), x′(τ)

)∣∣dτ

)

� Φq

(∫T

0

(
g1(τ, x) + g2

(
τ, x′) + e(τ)

)
dτ

)

� Φq

(
(r1 + ε)Φp(|x|) + (r2 + ε)Φp

(∣∣x′∣∣) + g1,δ + g2,δ + ‖e‖L1

)

� α1,ε
∥
∥x′∥∥

∞ + Bδ,

(3.17)

where Bδ = 2q−2((r1 + ε)Bp−1
1 + g1,δ + g2,δ + ‖e‖L1)

q−1
. So

∥∥x′∥∥
∞ � Bδ

1 − α1,ε
:= B′. (3.18)

And then ‖x‖X � max{B1 + TB′, B′} := B.
Similarly, if p � 2, we can obtain ‖x‖X � max{B1 + TB̃′, B̃′} := B̃, where

B̃′ =

(
2p−2(r1 + ε)Bp−1

1 + g1,δ + g2,δ + ‖e‖L1

)q−1

1 − α2,ε
,

α2,ε =
(
2p−2Tp−1(r1 + ε) + (r2 + ε)

)q−1
.

(3.19)

Above all, Ω1 is bounded.
Set Ω2,i := {x ∈ KerM : (−1)iμx + (1 − μ)JQNx = 0, μ ∈ [0, 1]}, i = 1, 2, where

J : ImQ → KerM is a homeomorphism defined by Ja = a for any a ∈ R. Next we show
thatΩ2,1 is bounded if the first part of condition (H3) holds. Let x ∈ Ω2,1, then x = a for some
a ∈ R and

μa =
(
1 − μ

)1
ρ
Φp

(∫η

0
Φq

(∫T

s

f(τ, a, 0)dτ

)

ds

)

. (3.20)

If μ = 0, we can obtain that |a| � B1. If μ/= 0, then |a| � B2. Otherwise,

μa2 = a
(
1 − μ

)1
ρ
Φp

(∫η

0
Φq

(∫T

s

f(τ, a, 0)dτ

)

ds

)

=
(
1 − μ

)1
ρ
Φp

(∫η

0
Φq

(∫T

s

af(τ, a, 0)dτ

)

ds

)

� 0,

(3.21)

which is a contraction. So ‖x‖X = |a| � max{B1, B2} and Ω2,1 is bounded. Similarly, we can
obtain that Ω2,2 is bounded if the other part of condition (H3) holds.



8 Abstract and Applied Analysis

Let Ω = {x ∈ X : ‖x‖X < max{B(B̃), B1, B2} + 1}. Then Ω1 ∪ Ω2,1 (∪ Ω2,2) ⊂ Ω. It is
obvious that Mx/=Nλx for each (x, λ) ∈ (domM ∩ ∂Ω) × (0, 1).

Take the homotopy Hi : (KerM ∩Ω) × [0, 1] → X by

Hi

(
x, μ
)
= (−1)iμx +

(
1 − μ

)
JQNx, i = 1 or 2. (3.22)

Then for each x ∈ KerM ∩ ∂Ω and μ ∈ [0, 1], Hi(x, μ)/= 0, so by the degree theory

deg = {JQN,KerM ∩Ω, 0} = deg
{
(−1)iI,KerM ∩Ω, 0

}
/= 0. (3.23)

Applying Theorem 2.5 together with Remark 2.7, we obtain that Mx = Nx has a solution in
domM ∩Ω. So (1.1) is solvable.

Corollary 3.4. Let f : [0, T] × R2 → R be a Carathéodory function. Suppose that (H2), (H3) in
Theorem 3.3 hold. Suppose further that

(H1′) there exist nonnegative functions gi ∈ L1[0, T], i = 0, 1, 2 such that

∣∣f(t, u, v)
∣∣ � g1(t)|u|p−1 + g2(t)|v|p−1 + g0(t) for a.e. t ∈ [0, T] and all (u, v) ∈ R2.

(3.24)

Then BVP (1.1) has at least one solution provided

2q−2
(
Tp−1∥∥g1

∥∥
L1 +
∥∥g2
∥∥
L1

)q−1
< 1, if p < 2,

(
2p−2Tp−1∥∥g1

∥∥
L1 +
∥∥g2
∥∥
L1

)q−1
< 1, if p � 2.

(3.25)

If f is a continuous function, we can establish the following existence result.

Theorem 3.5. Let f : [0, T] × R2 → R be a continuous function. Suppose that (H1), (H3) in
Theorem 3.3 hold. Suppose further that

(H2′) there exist B3, a > 0, b, c � 0 such that for all u ∈ R with |u| > B3, it holds that

∣∣f(t, u, v)
∣∣ � a|u| − b|v| − c ∀t ∈ [0, T] and all v ∈ R. (3.26)

Then BVP (1.1) has at least one solution provided

2q−2
((

b

a
+ T

)p−1
r1 + r2

)q−1
< 1, if p < 2,

(

2p−2
(
b

a
+ T

)p−1
r1 + r2

)q−1
< 1, if p � 2.

(3.27)
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Proof. If x ∈ domM such that Mx = Nλx for some λ ∈ (0, 1), we have QNλx = 0. The conti-
nuity of f and Φq imply that there exists ξ ∈ [0, T] such that f(ξ, x(ξ), x′(ξ)) = 0. From (H2′),
it holds

|x(ξ)| � max
{
B3,

b

a

∥
∥x′∥∥

∞ +
c

a

}
. (3.28)

Therefore,

|x(t)| � |x(ξ)| +
∫ t

ξ

∣
∣x′(s)

∣
∣ds �

(
b

a
+ T

)∥
∥x′∥∥

∞ +
c

a
+ B1, t ∈ [0, T]. (3.29)

With a similar way to those in Theorem 3.3, we can prove that (1.1) has at least one solution.

Corollary 3.6. Let f : [0, T] × R2 → R be a continuous function. Suppose that conditions in
Corollary 3.4 hold except (H2) changed with (H2′). Then BVP (1.1) is also solvable.

4. Existence Results for the Infinite Case

In this section, we consider the BVP (1.1) on a half line. Since the half line is noncompact, the
discussions are more complicated than those on finite intervals.

Consider the spaces X and Z defined by

X =
{
x ∈ C1[0,+∞), lim

t→+∞
x(t) exists, lim

t→+∞
x′(t) exists

}
,

Z =
{
y ∈ L1[0,+∞),

∫+∞

0
Φq

(∫+∞

s

∣∣y(τ)
∣∣dτ
)
ds < +∞

}
,

(4.1)

with the norms ‖x‖X = max{‖x‖∞, ‖x′‖∞} and ‖y‖Z = ‖y‖L1 , respectively, where ‖x‖∞ =
sup0�t<+∞|x(t)|. By the standard arguments, we can prove that (X, ‖ · ‖X) and (Z, ‖ · ‖Z) are
both Banach spaces.

Let the operators M,Nλ, and P be defined as (3.1), (3.3), and (3.5), respectively,
expect T replaced by +∞. Set ω(t) = ((1 − e−(q−1)η)/(q − 1))

1−p
e−t, t ∈ [0,+∞) and define the

semiprojector Q : Y → Y by

(
Qy
)
(t) = w(t)Φp

(∫η

0
Φq

(∫+∞

s

y(τ)dτ
)
ds

)
, t ∈ [0,+∞). (4.2)

Similarly, we can show that M is a quasi-linear operator. In order to prove that Nλ is
M-compact in Ω, the following criterion is needed.

Theorem 4.1 (see [16]). Let M ⊂ C∞ = {x ∈ C[0,+∞), lim t→+∞x(t) exists}. Then M is rela-
tively compact if the following conditions hold:

(a) all functions from M are uniformly bounded;

(b) all functions from M are equicontinuous on any compact interval of [0,+∞);

(c) all functions fromM are equiconvergent at infinity, that is, for any given ε > 0, there exists
a T = T(ε) > 0 such that |f(t) − f(+∞)| < ε, for all t > T , f ∈ M.
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Lemma 4.2. Let Ω ⊂ X an open and bounded set with 0 ∈ Ω. If f is a Φq-Carathéodory function,
Nλ isM-compact in Ω.

Proof. Let Z1 = ImQ and define the operator R : Ω × [0, 1] → KerP by

R(x, λ)(t) =
∫ t

0
Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
)
dτ

)
ds, t ∈ [0,+∞). (4.3)

We just prove that R(·, λ) : Ω × [0, 1] → X is what we need. The others are similar and are
omitted here.

Firstly, we show that R is well defined. Let x ∈ Ω, λ ∈ [0, 1]. Because Ω is bounded,
there exists r > 0 such that for any x ∈ Ω, ‖x‖X � r. Noting that f is a Φq-Carathéodory
function, there exists ϕr ∈ L1[0,+∞) with ϕr,q ∈ L1[0,+∞) such that

∣∣f
(
t, x(t), x′(t)

)
�
∣∣ϕr(t), a.e. t ∈ [0,+∞). (4.4)

Therefore

|R(x, λ)(t)| =
∣∣∣∣∣

∫ t

0
Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
)
dτ

)
ds

∣∣∣∣∣

�
∫+∞

0
Φq

(∫+∞

s

(
ϕr(τ) + Υrω(τ)

)
dτ

)
ds < +∞, ∀t ∈ [0,+∞),

(4.5)

where Υr = Φp(
∫η
0 Φq(

∫+∞
s ϕr(τ)dτ)ds). Meanwhile, for any t1, t2 ∈ [0,+∞), we have

|R(x, λ)(t1) − R(x, λ)(t2)| �
∫ t2

t1

Φq

(∫+∞

s

λ
∣∣f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
∣∣dτ
)
ds

�
∫ t2

t1

Φq

(∫+∞

s

(
ϕr(τ) + Υrω(τ)

)
dτ

)
ds

−→ 0, as t1 −→ t2,

(4.6)

∣∣∣∣∣

∫ t2

t1

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
)
dτ

∣∣∣∣∣
�
∫ t2

t1

(
ϕr(τ) + Υrω(τ)

)
dτ −→ 0, as t1 −→ t2.

(4.7)

The continuity of Φq concludes that

∣∣R(x, λ)′(t1) − R(x, λ)′(t2)
∣∣ −→ 0, as t1 −→ t2. (4.8)

It is easy to see that limt→+∞R(x, λ)(t) exists and limt→+∞R(x, λ)′(t) = 0. So R(x, λ) ∈ X.
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Next, we verify that R(·, λ) is continuous. Obviously R(x, λ) is continuous in λ for any
x ∈ Ω. Let λ ∈ [0, 1], xn → x in Ω as n → +∞. In fact,

∣
∣
∣
∣

∫+∞

0

(
f
(
τ, xn, x

′
n

) − f
(
τ, x, x′))dτ

∣
∣
∣
∣ � 2

∥
∥ϕr

∥
∥
L1 ,

∣
∣
∣
∣
∣

∫ t

0

[
Φq

(∫+∞

s

f
(
τ, xn, x

′
n

)
dτ

)
−Φq

(∫+∞

s

f
(
τ, x, x′)dτ

)]
ds

∣
∣
∣
∣
∣
� 2
∥
∥ϕr,q

∥
∥
L1 .

(4.9)

So by Lebesgue Dominated Convergence theorem and the continuity of Φq, we can obtain

‖R(xn, λ) − R(x, λ)‖X −→ 0, as n −→ +∞. (4.10)

Finally, R(·, λ) is compact for any λ ∈ [0, 1]. LetU ⊂ X be a bounded set and λ ∈ [0, 1],
then there exists r0 > 0 such that ‖x‖X � r0 for any x ∈ U. Thus we have

‖R(x, λ)‖X = max
{‖R(x, λ)‖∞,

∥∥R′(x, λ)
∥∥
∞
}

� max
{∫+∞

0
Φq

(∫+∞

s

(
ϕr0(τ) + Υr0ω(τ)

)
dτ

)
ds,

Φq

(∫+∞

0

(
ϕr0(τ) + Υω(τ)

)
dτ

)}
,

|R(x, λ)(t) − R(x, λ)(+∞)| =
∣∣∣∣

∫+∞

t

Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
)
dτ

)
ds

∣∣∣∣

�
∫+∞

t

Φq

(∫+∞

s

(
ϕr0(τ) + Υr0ω(τ)

)
dτ

)
ds −→ 0,

uniformly as t −→ +∞,

∣∣R(x, λ)′(t) − R(x, λ)′(+∞)
∣∣ =
∣∣∣∣Φq

(∫+∞

t

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf
)
(τ)
)
dτ

)∣∣∣∣

� Φq

(∫+∞

t

(
ϕr0(τ) + Υω(τ)

)
dτ

)
−→ 0,

uniformly as t → +∞.

(4.11)

Those mean that R(·, λ) is uniformly bounded and equiconvergent at infinity. Similarly to
the proof of (4.3) and (4.6), we can show that R(·, λ) is equicontinuous. Through Lemma 4.2,
R(·, λ)U is relatively compact. The proof is complete.

Theorem 4.3. Let f : [0,+∞) × R2 → R be a continuous and Φq-Carathéodory function. Suppose
that
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(H4) there exist functions g0, g1, g2 ∈ L1[0,+∞) such that

∣
∣f(t, u, v)

∣
∣ � g1(t)|u|p−1 + g2(t)|v|p−1 + g0(t) for a.e. t ∈ [0,+∞) and all (u, v) ∈ R2,

∥
∥gi,q
∥
∥
L1 :=

∫+∞

0
Φq

(∫+∞

s

∣
∣gi(τ)

∣
∣dτ
)
ds < +∞, i = 0, 1, 2,

∥
∥g1
∥
∥
1 :=
∫+∞

0
tp−1
∣
∣g1(τ)

∣
∣dτ < +∞;

(4.12)

(H5) there exists γ > 0 such that for all ζ satisfying

f(ζ, u, v) = 0, f(t, u, v)/= 0, t ∈ [0, ζ), (u, v) ∈ R2, (4.13)

it holds ζ � γ ;

(H6) there exist B4, a > 0, b, c � 0 such that for all u ∈ R with |u| > B4, it holds

∣∣f(t, u, v)
∣∣ � a|u| − b|v| − c ∀t ∈ [0, γ], v ∈ R; (4.14)

(H7) there exists B5 > 0 such that for all t ∈ [0,+∞) and u ∈ Rwith |u| > B5 either uf(t, u, 0) �
0 or uf(t, u, 0) � 0. Then BVP (1.1) has at least one solution provided

max
{
2q−2
∥∥g1,q
∥∥
L1 , β1
}
< 1, if p < 2,

max
{∥∥g1,q

∥∥
L1 , β2
}
< 1, if p � 2,

(4.15)

where

β1 := 2q−2
((

b

a
+ γ

)p−1∥∥g1
∥∥
L1 +
∥∥g1
∥∥
1 +
∥∥g2
∥∥
L1

)q−1
,

β2 :=

(

22(p−2)
(
b

a
+ γ

)p−1∥∥g1
∥∥
L1 + 22(q−2)

∥∥g1
∥∥
1 +
∥∥g2
∥∥
L1

)q−1
.

(4.16)

Proof. Let X, Z, M, Nλ, P, and Q be defined as above. Let Ω1 = {x ∈ domM : Mx = Nλx,
λ ∈ (0, 1)}. We will prove that Ω1 is bounded. In fact, for any x ∈ Ω1, QNλx = 0, that is,

ω(t) Φp

(∫η

0
Φq

(∫+∞

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)
ds

)
= 0. (4.17)
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The continuity ofΦp and Φq together with conditions (H5) and (H6) implies that there exists
ξ � γ such that

|x(ξ)| � max
{
B4,

b

a
‖x′‖∞ +

c

a

}
. (4.18)

So, we have

|x(t)| � |x(ξ)| +
∣
∣
∣
∣
∣

∫ t

ξ

x′(s)ds

∣
∣
∣
∣
∣
� max

{
B4,

b

a
‖x′‖∞ +

c

a

}
+
(
t + γ
)∥∥x′∥∥

∞, t ∈ [0,+∞).

(4.19)

If p < 2, it holds

|x(t)|p−1 �
((

b

a
+ γ

)p−1
+ tp−1

)
∥∥x′∥∥p−1

∞ +
( c
a
+ B4

)p−1
, t ∈ [0,+∞). (4.20)

Therefore

∣∣x′(t)
∣∣ =
∣∣∣∣Φq

(∫+∞

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)∣∣∣∣

� Φq

(∫+∞

0

(
g1(τ)|x(τ)|p−1 + g2(τ)

∣∣x′(τ)
∣∣p−1 + g0(τ)

)
dτ

)

� β1
∥∥x′∥∥

∞ + 2q−2
(
(c/a + B4)

p−1∥∥g1
∥∥
L1 +
∥∥g0
∥∥
L1

)q−1
, t ∈ [0,+∞)

(4.21)

concludes that

∥∥x′∥∥
∞ �

2q−2
(
(c/a + B4)

p−1∥∥g1
∥∥
L1 +
∥∥g0
∥∥
L1

)q−1

1 − β1
:= C. (4.22)

Meanwhile

|x(t)| =
∣∣∣∣∣
x(0) +

∫ t

0
Φq

(∫+∞

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)
ds

∣∣∣∣∣

� |x(0)| +
∫+∞

0
Φq

(∫+∞

s

(
g1|x|p−1 + g2

∣∣x′∣∣p−1 + g0
)
dτ

)
ds

� 2q−2
∥∥g1,q
∥∥
L1‖x‖∞ + C0

(4.23)

implies that

‖x‖∞ � C0

1 − 2q−2
∥∥g1,q
∥∥
L1

, (4.24)

where C0 = (b/a + γ + 22(q−2)‖g2,q‖L1)C + B4 + c/a + 22(q−2)‖g0,q‖L1 .
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If p � 2, we can prove that

∥
∥x′∥∥

∞ �

(
2p−2(B4 + c/a)p−1

∥
∥g1
∥
∥
L1 +
∥
∥g0
∥
∥
L1

)q−1

1 − β2
:= C̃,

‖x‖∞ �

(
b/a + γ +

∥
∥g2,q
∥
∥
L1

)
C̃ + B4 + c/a +

∥
∥g0,q
∥
∥
L1

1 − ∥∥g1,q
∥
∥
L1

.

(4.25)

So Ω1 is bounded. With the similar arguments to those in Theorem 3.3, we can com-
plete the proof.

5. Examples

Example 5.1. Consider the three-point BVPs for second-order differential equations

(
x′(t)
∣∣x′(t)

∣∣)′ = a2(t)x′(t) + a1(t)x2(t) sgnx(t) + a0(t), 0 < t < 1,

x(0) = x
(
η
)
, x′(1) = 0,

(5.1)

where ai(t) ∈ C1[0, 1], i = 0, 1, 2 with a1 = min |a1(t)| > 0.
Take

f(t, u, v) = a1(t)u2 sgnu + a2(t)v + a0(t),

g1(t, u) = |a1(t)|u2,

g2(t, v) = |a2(t)||v|,

(5.2)

and e(t) = |a0(t)|. Then, we have

∣∣f(t, u, v)
∣∣ � g1(t, u) + g2(t, v) + e(t), for (t, u, v) ∈ [0, 1] × R2

max
0�t�1

g1(t, x)
|x| = ‖a1‖L1 ∈ [0,+∞),

max
0�t�1

g1(t, x)
|x| = 0,

∣∣f(t, u, v)
∣∣ � a1|u| − ‖a2‖∞|v| − ‖a0‖∞, for (t, |u|, v) ∈ [0, T] × [1,+∞) × R,

uf(t, u, 0) = a1(t)|u|3 + a0(t)u � 0, for (t, |u|) ∈ [0, 1] ×
⎡

⎣

√
‖a0‖∞
a1

,+∞
⎞

⎠.

(5.3)

By using Theorem 3.5, we can concluded that BVP (5.1) has at least one solution if

(‖a2‖∞
a1

+ 1
)2

‖a1‖∞ <
1
2
. (5.4)
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Example 5.2. Consider the three-point BVPs for second-order differential equations on a half
line

x′′(t) + e−αtp(t)x(t) + q(t) = 0, 0 < t < +∞,

x(0) = x
(
η
)
, lim

t→+∞
x′(t) = 0,

(5.5)

where α > (1+
√
5)/2, p(t) = max{sin βt, 1/2} and q(t) continuous on [0,+∞)with q(t) > 0 (or

q(t) < 0) on [0, 1) and q ≡ 0 on [1,+∞).
Denote f(t, u) = e−αtp(t)u+ q(t). Set g1(t) = e−αt, g0(t) = q(t). By direct calculations, we

obtain that ‖g1‖L1 = 1/α, ‖g1,q‖L1 = ‖g1‖1 = 1/α2 and ‖g0,q‖L1 � ‖g0‖L1 � ‖q‖∞. Furthermore,

∣
∣f(t, u)

∣
∣ �
∣
∣g1(t)

∣
∣|u| + ∣∣g0(t)

∣
∣,

∣∣f(t, u)
∣∣ � 1

2
e−α|u| − ∥∥q∥∥∞.

(5.6)

If there exists ξ ∈ [0,+∞) such that f(ξ, u) = 0, then ξ � 1. Otherwise

uf(ξ, u) = e−αξp(ξ)u2 � 1
2
e−αξu2 > 0, ∀u ∈ R \ {0} (5.7)

which is a contraction.
Obviously max{1/α, 1/α + 1/α2} < 1. Meanwhile, it is easy to verify that condition

(H7) holds. So Theorem 4.3 guarantees that (5.5) has at least one solution.
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