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A new concept of the asymptotically weak G-pseudo-Ψ-contractive non-self-mapping T : G �→ B
is introduced and some strong convergence theorems for the mapping are proved by using the
generalized projection method combined with the modified successive approximation method or
with the modified Mann iterative sequence method in a uniformly and smooth Banach space. The
proof methods are also different from some past common methods.

1. Introduction

Let B be a real Banach space with the norm ‖ · ‖, B∗ its dual space with the norm ‖ · ‖∗. As
usually, we introduce a dual product in B∗ × B by 〈x∗, x〉, where x∗ ∈ B∗ and x ∈ B. Let
J : B �→ B∗ be the normalized duality mapping J in B defined as

Jx =
{
f ∈ B∗ :

〈
f, x

〉
=
∥∥f∥∥∗‖x‖ = ‖x‖2

}
, ∀x ∈ B. (1.1)

It is clear that the operator J is well defined in a Banach space by the famous Hahn-Banach
theorem.

The concept of asymptotically nonexpansive mappings was first introduced by Goebel
and Kirk [1] in 1972 and then Schu [2] introduced the asymptotically pseudocontractive
mappings in 1991.

Definition 1.1. Let G be a nonempty subset of a real Banach space B and T : G �→ G be a
mapping.
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(1) The mapping T is said to be asymptotically nonexpansive, if there exists a number
sequence {kn} in [1,∞)with limn→∞kn = 1 such that

∥∥Tnx − Tny∥∥ ≤ kn
∥∥x − y∥∥, (1.2)

for all x, y ∈ G and n ≥ 1.

(2) The mapping T is said to be asymptotically pseudocontractive, if for all x, y ∈ G,
there exists a number sequence {kn} in [1,∞) with limn→∞kn = 1 and j(x − y) ∈
J(x − y) such that

〈
Tnx − Tny, j(x − y)〉 ≤ kn

∥∥x − y∥∥2
. (1.3)

(3) Themapping T is said to be asymptotically demi-pseudocontractive, if for all x ∈ G,
p ∈ F(T), there exists a number sequence kn in [1,∞) with limn→∞kn = 1 and
j(x − y) ∈ J(x − y) such that

〈
Tnx − p, j(x − p)〉 ≤ kn

∥∥x − p∥∥2
, (1.4)

where F(T)/= ∅ is the set of all fixed points of the mapping T .

The iterative approximation problems for asymptotically nonexpansive and pseudo-
contractive mapping T were studied by many authors and we always assume that the fixed
point set F(T) of the operator T is nonempty, such as see [1–6]. In 2011, Qin et al. [7]
introduced a new concept of the asymptotically strict quasi-Φ-pseudocontractive mapping
T : G → G. They combined the generalized projection ΠG to give a new iterative sequence
for the T and proved that the sequence converges strongly to a point x′ = ΠF(T)x0.

But, all these arguments are not enough if the operator T acts from G to B, which we
called non-self-mappings, and the iterative methods we used to be, such as Mann iterative
method and its some modifications, can not be used. Under this condition, it is natural for us
to try to consider the metric projection operator PG : B �→ G and the generalized projection
operator ΠG : B �→ G, and some authors have given relevant results and applications of the
operator PG and πG (see [8–11]).

Very recently, in 2012, Yao et al. [12] and Liou et al. [13] considered the non-self-
mapping T : G ⊆ H → H in a Hilbert spaceH. They also proved their new iterative sequence
for the T combined with the metric projection PG converges strongly to a point x′ = PVI(G,T)(0)
and the unique solution of a variational inequality, respectively.

Motivated and inspired by the said above, we first introduce a new concept of the
asymptotically weak G-pseudo-Ψ-contractive non-self-mapping T : G �→ B. Then, in a
uniformly convex and smooth Banach space, we prove some strong convergence theorems
for the mapping by using the generalized projection method and the modified successive
approximation method

xn+1 = (ΠGT)nxn, n = 1, 2, . . . , x1 ∈ G, (1.5)
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or the modified Mann iterative sequence method

xn+1 = QG

(
(1 − αn)xn + αnT(ΠGT)n−1xn

)
, n = 1, 2, . . . , x1 ∈ G, (1.6)

where QG : B �→ G is a sunny nonexpansive retraction. So, in some ways, our results extend
and improve some results of other authors (such as, see [1–5, 7, 9–13]), from self mappings
to non-self-mappings, from Hilbert spaces to Banach spaces.

2. Preliminaries
In the sequel, we will assume that B is a real uniformly convex and uniformly smooth (hence
reflexive) Banach space, then B∗ will be the same. If we denote by δB(ε) the modulus of
convexity of the Banach space B and by ρB(τ) its modulus of smoothness, then

δB(ε), ρB(τ), gB(ε) = ε−1δB(ε), hB(τ) = τ−1ρB(τ) (2.1)

are all continuous and increasing on their domains, respectively, and δB(0) = ρB(0) = gB(0) =
hB(0) = 0 (see [9]). Also, under the conditions the normalized duality operator

J : Jx =
1
2
grad

{
‖x‖2

}
(2.2)

is single-valued, strictly monotone, continuous, coercive, bounded, and homogeneous, but
not addible. In a Hilbert space, J is the Identity operator I : Ix = x.

Definition 2.1 (see [10, 11]). The operator PG : B �→ G ⊆ B is called metric projection operator
if it assigns to each x ∈ B its nearest point x ∈ G, that is, the solution x for the minimization
problem

PGx = x; x : ‖x − x‖ = infξ∈G‖x − ξ‖. (2.3)

The operator ΠG : B �→ G ⊆ B is called the generalized projection operator if it assigns
to each x ∈ B a minimum point x̂ ∈ G of the Lapunov function V (x, ξ) : B × B �→ [0,∞):

V (x, ξ) = ‖x‖2 − 2〈Jx, ξ〉 + ‖ξ‖2, (2.4)

that is, a solution of the following minimization problem:

ΠGx = x̂; x̂ : V (x, x̂) = infξ∈GV (x, ξ). (2.5)

Lemma 2.2 (see [10, 11]). The point x = PGx is the metric projection of x ∈ B on G ⊆ B if and only
if the following inequality is satisfied:

〈J(x − x), x − ξ〉 ≥ 0, ∀ξ ∈ G, (2.6)

and the operator PG is nonexpansive in Hilbert spaces.



4 Abstract and Applied Analysis

The point x̂ = ΠGx is the generalized projection of x ∈ B on G ⊆ B if and only if the following
inequality is satisfied:

〈Jx − Jx̂, x̂ − ξ〉 ≥ 0, ∀ξ ∈ G. (2.7)

Furthermore, the inequality below also holds:

V (ΠGx, ξ) ≤ V (x, ξ) − V (x,ΠGx), ∀ξ ∈ G. (2.8)

And thus, we have

V (ΠGx, ξ) ≤ V (x, ξ), ∀ξ ∈ G. (2.9)

Lemma 2.3 (see [8]). For all x, y ∈ B, if ‖x‖ ≤ R and ‖y‖ ≤ R, then the following inequality is
satisfied:

(2L)−1R2δB

(‖x − y‖
4R

)
≤ V (

x, y
) ≤ 4LR2ρB

(
4‖x − y‖

R

)
, (2.10)

where L : 1 < L < 1.7 is a constant.

In general, the operator PG andΠG are not nonexpansive in Banach spaces. It is easy to
see PG = ΠG in Hilbert spaces because of J = I. In a uniformly convex and uniformly smooth
Banach space, PG is well defined on a closed convex set G and ΠG is also well defined on a
closed convex setG from the properties of the functional V (x, ξ) and strict monotonicity of the
mapping J . More properties of the mappings J , V , PG, andΠG and some of their applications
can be found in [8–11].

Definition 2.4 (see [14]). Let B be a real Banach space, G ⊆ B be a subset. The operator QG :
B �→ G is called sunny nonexpansive retract if QG is nonexpansive, Q2

G = QG, and for any
x ∈ G, t > 0, tx + (1 − t)QGx ∈ G holds QG(tx + (1 − t)QGx) = QGx.

If B is a uniformly smooth Banach space and G ⊂ B, is a closed convex set, then the
unique sunny nonexpansive retract QG exists.

Definition 2.5. Let B be a real Banach space, G be a nonempty subset of B, and T : G �→ B
be a non-self-mapping. If there exists a sequence {kn} in [1,∞) with limn→∞kn = 1 and a
continuous increasing function Ψ(t) for all t > 0 with Ψ(0) = 0, limt→∞Ψ(t) = ∞, it is shown
as follows, respectively:

(1) The mapping T is said to be asymptotically weak G-Ψ-contractive mapping, if

V
(
T(ΠGT)n−1x, T(ΠGT)n−1y

)
≤ knV

(
x, y

) −Ψ
(
V
(
x, y

))
. (2.11)
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(2) The mapping T is said to be asymptotically weak G-quasi-Ψ-contractive mapping,
if

V
(
T(ΠGT)n−1x, x∗

)
≤ knV (x, x∗) −Ψ(V (x, x∗)), (2.12)

for all x, y ∈ G, x∗ ∈ F(T), and n ≥ 1, where F(T)/= ∅.
(3) The mapping T is said to be asymptotically weakG-Ψ-pseudocontractive mapping,

if

〈
T(ΠGT)n−1x − T(ΠGT)n−1y, j

(
x − y)

〉
≤ kn

∥∥x − y∥∥2 −Ψ
(∥∥x − y∥∥2

)
, (2.13)

for all x, y ∈ G, j(x − y) ∈ J(x − y).
(4) The mapping T is said to be asymptotically weak G-quasi-Ψ-pseudocontractive

mapping, if

〈
T(ΠGT)n−1x − x∗, j(x − x∗)

〉
≤ kn‖x − x∗‖2 −Ψ

(
‖x − x∗‖2

)
, (2.14)

for all x, y ∈ G, x∗ ∈ F(T), j(x − x∗) ∈ J(x − x∗), and n ≥ 1, where F(T)/= ∅.

Remark 2.6. It is clear that one can omit each operator ΠG in (2.11)–(2.14) if the mapping T
acts from G to G, that is, T : G �→ G ⊆ B is a self-mapping. So, the class of asymptotically
weak G-Ψ-contractive mappings contains that of asymptotically nonexpansive mappings
and the class of asymptotically weak G-Ψ-pseudocontractive mappings contains that of
asymptotically pseudocontractive mappings. Therefore, all the results and applications of
asymptotically nonexpansive mappings can be as a part of the asymptotically weak G-Ψ-
contractive mappings.

In order to prove our main results, we also need the following lemmas.

Lemma 2.7 (see [15]). Let {λn}, {αn}, {βn}, and {γn} be sequences of nonnegative numbers
satisfying the following conditions:

αn > 0,
∞∑
n=1

αn = ∞,
∞∑
n=1

βn <∞, lim
n→∞

γn
αn

= 0. (2.15)

Suppose the following recurse inequality holds:

λn+1 ≤
(
1 + βn

)
λn − αnψ(λn) + γn, n = 1, 2, . . . , (2.16)

where ψ(t) is a continuous strictly increasing function for all t > 0 with ψ(0) = 0, limt→∞ψ(t) = ∞.
Then λn → 0 as n → ∞.
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Lemma 2.8 (see [16]). Let B be a real Banach space and J be the normalized duality mapping. Then

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, (2.17)

for all x, y ∈ B and j(x + y) ∈ J(x + y).

3. Main Results

Theorem 3.1. Let B be a uniformly convex and uniformly smooth Banach space,G be a closed convex
subset of B, T : G �→ B be an asymptotically weak G-quasi-Ψ-contractive mapping with a sequence
{kn} ⊆ [1,∞),

∑∞
n=1(kn − 1) < ∞, and x∗ ∈ G is its fixed point. Then the iterative sequence

{xn} generated by the modified successive approximation method (1.5) is bounded for all n ≥ 1 and
converges strongly to x∗.

Proof. If x∗ ∈ F(T) is the fixed point of T in G, that is, Tx∗ = x∗, then we get by (1.5) and (2.8)
in Lemma 2.2 for x∗ ∈ G,

V (xn+1, x∗) = V
(
(ΠGT)nxn, x∗) = V

(
ΠGT(ΠGT)n−1xn, x∗

)

≤ V
(
T(ΠGT)n−1xn, x∗

)
.

(3.1)

We use the condition (2.12) of asymptotically weak G-quasi-Ψ-contractive of the operator T
and get

V (xn+1, x∗) ≤ knV (xn, x∗) − ψ(V (xn, x∗)) ≤ knV (xn, x∗)

≤ knkn−1V (xn−1, x∗) ≤ · · · ≤ knkn−1 · · · k1V1(x1, x∗).
(3.2)

Because
∑∞

n=1(kn −1) <∞, we know limn→∞knkn−1 · · · k1 = constant and {knkn−1 · · · k1}
is bounded, say by K : 1 ≤ knkn−1 · · · k1 ≤ K for all n ≥ 1.

It is obviously that V (x, ξ) = ‖x‖2 − 2〈Jx, ξ〉 + ‖ξ‖2 satisfies the inequality

(‖x‖ − ‖ξ‖)2 ≤ V (x, ξ) ≤ (‖x‖ + ‖ξ‖)2. (3.3)

Therefore by (3.2) and (3.3), we have

‖xn‖ − ‖x∗‖ ≤
√
knkn−1 · · · k1V1(x1, x∗) ≤

√
K(‖x1‖ + ‖x∗‖),

‖xn‖ ≤
√
K‖x1‖ +

(
1 +

√
K
)
‖x∗‖,

(3.4)

for all n ≥ 1, that is, the sequence {xn} is bounded.
The sequence of positive number {λn} defined by λn = V (xn, x∗) are bounded and

from (3.2) it satisfies the following inequality:

λn+1 ≤
(
1 + βn

)
λn − αnΨ(λn) + γn, n = 1, 2, . . . , (3.5)
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where βn = kn − 1,
∑∞

n=1 βn <∞, αn = 1,
∑∞

n=1 αn = ∞, γn = 0. So, using Lemma 2.7 we get

lim
n→∞

V (xn, x∗) = 0. (3.6)

Because R =
√
K‖x1‖ + (1 +

√
K)‖x∗‖ is a constant and ‖xn‖ ≤ R, ‖yn‖ ≤ R, we obtain

from the left part of the estimate of (2.10) in Lemma 2.3 the following:

0 ≤ lim
n→∞

2L−1R2δB

(‖xn − x∗‖
4R

)
≤ lim

n→∞
V (xn, x∗) = 0. (3.7)

By the properties of δB(ε), this implies

lim
n→∞

‖xn − x∗‖ = 0, (3.8)

that is, the sequence {xn} converges strongly to fixed point x∗.

Corollary 3.2. Let G be a closed convex set in B, T : G �→ B be an asymptotically weak G-Ψ-
contractive mapping with a sequence {kn} ⊆ [1,∞),

∑∞
n=1(kn − 1) < ∞, and x∗ ∈ G its fixed point.

Then the iterative sequence {xn} defined by modified successive approximation method (1.5) converges
strongly to x∗.

Proof. If we take y = x∗ ∈ G as the fixed point of T , then we have

T(πGT)n−1x∗ = T(πGT)n−2(πGTx∗) = T(πGT)n−2(πGx∗)

= T(πGT)n−2x∗ = · · · = Tx∗ = x∗.
(3.9)

So the asymptotically weak G-Ψ-contractive mapping T : G �→ B is also an
asymptotically weak G-quasi-Ψ-contractive mapping and the results of Theorem 3.1 still
hold.

Theorem 3.3. Let B be a real uniformly convex and uniformly smooth Banach space,G be a nonempty
closed convex subset of B, T : G �→ B be an asymptotically weak G-quasi-Ψ-pseudocontractive
mapping with a sequence {kn} ⊆ [1,∞),

∑∞
n=1(kn − 1) < ∞, and x∗ ∈ G its fixed point. Consider

the iterative sequence {xn} defined by the modified Mann iterative sequence method (1.6). Suppose
the sequence {xn} and {T(ΠGT)

n−1xn} are bounded, {αn} is a number sequence in (0, 1] satisfing the
conditions below:

∞∑
n=1

αn = ∞,
∞∑
n=1

α2n <∞, (3.10)

where QG : B �→ G is a sunny nonexpansive retraction. Then the iterative sequence {xn} converges
strongly to x∗.
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Proof. By the virtue of (2.17) in Lemma 2.8, it follows that

‖xn+1 − x∗‖2 =
∥∥∥QG

(
(1 − αn)xn + αnT(ΠGT)n−1xn

)
−QGx

∗
∥∥∥
2

≤
∥∥∥(1 − αn)xn + αnT(ΠGT)n−1xn − x∗

∥∥∥
2

=
∥∥∥(1 − αn)(xn − x∗) + αn

(
T(ΠGT)n−1xn − x∗

)∥∥∥
2

≤ (1 − αn)2‖(xn − x∗)‖2 + 2αn
〈
T(ΠGT)n−1xn − x∗, j(xn+1 − x∗)

〉

= (1 − αn)2‖(xn − x∗)‖2 + 2αn
〈
T(ΠGT)n−1xn − x∗, j(xn − x∗)

〉

+ 2αn
〈
T(ΠGT)n−1xn − x∗, j(xn+1 − x∗) − j(xn − x∗)

〉
.

(3.11)

Since {xn − T(PGT)n−1xn} is bounded, say by K, we have

‖(xn+1 − x∗) − (xn − x∗)‖ =
∥∥∥QG

(
(1 − αn)xn + αnT(PGT)n−1xn

)
−QGxn

∥∥∥

≤
∥∥∥(1 − αn)xn + αnT(PGT)n−1xn − xn

∥∥∥

= αn
∥∥∥xn − T(PGT)n−1xn

∥∥∥

≤ αnK.

(3.12)

From (3.10)we know limn→∞ αn = 0 and then one gets

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖(xn+1 − x∗) − (xn − x∗)‖ = 0. (3.13)

By using the uniform continuity of j = J in the uniformly convex and uniform smooth Banach
space B and the bound of the sequence {T(ΠGT)

n−1xn − x∗}, we have

γn :=
〈
T(ΠGT)n−1xn − x∗, j(xn+1 − x∗) − j(xn − x∗)

〉
→ 0, n → ∞. (3.14)
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Substituting (3.14) into (3.11) and using (2.14), we get

‖xn+1 − x∗‖2

≤ (1 − αn)2‖xn − x∗‖2 + 2αn
〈
T(ΠGT)n−1xn − x∗, j(xn − x∗)

〉
+ 2αnγn

≤ (1 − αn)2‖xn − x∗‖2 + 2αn
(
kn‖xn − x∗‖2 −Ψ

(
‖xn − x∗‖2

))
+ 2αnγn

=
(
1 + 2αn(kn − 1) + α2n

)
‖xn − x∗‖2 − 2αnΨ

(
‖xn − x∗‖2

)
+ 2αnγn

≤
(
1 + 2(kn − 1) + α2n

)
‖xn − x∗‖2 − 2αnΨ

(
‖xn − x∗‖2

)
+ 2αnγn.

(3.15)

Thus, the sequence of positive number {λn}∞
n=1

defined by λn = ‖xn − x∗‖2 satisfies the
recursive inequality

λn+1 ≤
(
1 + βn

)
λn − 2αnψ

(
‖xn − x∗‖2

)
+ 2αnγn, (3.16)

where βn = 2(kn − 1) + α2n,
∑∞

n=1 βn = 2
∑∞

n=1(kn − 1) +
∑∞

n=1 α
2
n <∞,

∑∞
n=1(2αn) = ∞, γn → 0 as

n → ∞. Therefore by the virtue of Lemma 2.7, it is clear that the assertion λn → 0 as n → ∞
holds, that is,

lim
n→∞

‖xn − x∗‖2 = 0, lim
n→∞

‖xn − x∗‖ = 0. (3.17)

Corollary 3.4. Let B be a real uniformly convex and uniformly smooth Banach space, G be a
nonempty closed convex subset of B, T : G �→ B be an asymptotically weak G-Ψ-pseudocontractive
mapping with a sequence {kn} ⊆ [1,∞),

∑∞
n=1(kn − 1) <∞, and x∗ ∈ G its fixed point. Consider the

iterative sequence {xn} defined by the modified Mann iterative sequence (1.6). Suppose the sequence
{xn} and {T(ΠGT)

n−1xn} are bounded, {αn} is a real number sequence in (0, 1] satisfying the
conditions (3.10). Then one has

lim
n→∞

‖xn+1 − xn‖ = 0, (3.18)

and the iterative sequence {xn} converges in norm to x∗.

Proof. Following Theorem 3.3, we can have the assertions of the corollary.

Remark 3.5. Because a Hilbert space must be a uniformly convex and uniformly smooth
Banach space, the above results still hold in a Hilbert space. In fact, if we notice ΠG = PG
in Hilbert spaces, we can abate some conditions in Corollary 3.4 and have the following
theorem.
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Theorem 3.6. Let G be a closed convex set of a Hilbert space H. T : G �→ H is said to be
an asymptotically weak G-quasi-Ψ-pseudocontractive mapping with a sequence {kn} ⊆ [1,∞),∑∞

n=1(kn − 1) <∞, and x∗ ∈ G its fixed point, if

∥∥∥T(PGT)n−1x − x∗
∥∥∥ ≤ kn‖x − x∗‖ − ψ(‖x − x∗‖), (3.19)

where Ψ is a continuous increasing function for all t > 0 with Ψ(0) = 0, limt→∞Ψ(t) = ∞. Consider
the new modified Mann iterative sequence {xn} defined by the modified Mann iterative sequence (1.6).
If the number sequence {αn} satisfies the conditions

0 < αn ≤ 1,
∞∑
n=1

αn = ∞, (3.20)

then the iterative sequence {xn} converges strongly to x∗.

Proof. Because PG = ΠG is nonexpansive in Hilbert spaces, {αn} satisfies (3.20) and the
operator T satisfies (3.19), we get

‖xn+1 − x∗‖ =
∥∥∥PG

(
(1 − αn)xn + αnT(PGT)n−1xn

)
− PGx∗

∥∥∥

≤
∥∥∥(1 − αn)xn + αnT(PGT)n−1xn − x∗

∥∥∥

=
∥∥∥(1 − αn)(xn − x∗) + αn

(
T(PGT)n−1xn − x∗

)∥∥∥

≤ (1 − αn)‖(xn − x∗)‖ + αn
∥∥∥T(PGT)n−1xn − x∗

∥∥∥

≤ (1 − αn)‖(xn − x∗)‖ + αn
(
kn‖(xn − x∗)‖ − ψ(‖(xn − x∗)‖))

= (1 + αn(kn − 1))‖(xn − x∗)‖ − αnψ(‖(xn − x∗)‖)
≤ kn‖(xn − x∗)‖ − αnψ(‖(xn − x∗)‖).

(3.21)

Denote λn = ‖xn − x∗‖ and we have the following inequality:

λn+1 ≤
(
1 + βn

)
λn − αnψ(λn) + γn, (3.22)

where βn = kn − 1,
∑∞

n=1 βn < ∞, αn ∈ (0, 1],
∑∞

n=1 αn = ∞, γn = 0. Therefore we know λn → 0
as n → ∞ by using Lemma 2.7, that is,

lim
n→∞

‖xn − x∗‖ = 0. (3.23)

Remark 3.7. It is clear that the above results, in some ways, extend and improve some results
of other authors (such as, see [1–5, 7, 9–13]), from self mappings to non-self-mappings, from
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Hilbert spaces to Banach spaces. And in the proof process, our methods are different from
some past common methods.
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