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The present paper deles with a fractional differential equation zαDα
zu(z) + zu′(z) + (z2 − a2)u(z) =∑∞

n=0anz
n+α, 1 < α ≤ 2, where z ∈ U := {z : |z| < 1} in sense of Srivastava-Owa fractional

operators. The existence and uniqueness of holomorphic solutions are established. Ulam stability
for the approximation and holomorphic solutions are suggested.

1. Introduction

Fractional calculus is a rapidly growing subject of interest for physicists and mathematicians.
The reason for this is that problems may be discussed in a much more stringent and elegant
way than using traditional methods. Fractional differential equations have emerged as a
new branch of applied mathematics which has been used for many mathematical models
in science and engineering. In fact, fractional differential equations are considered as an
alternative model to nonlinear differential equations [1–7].

The class of fractional differential equations of various types plays important roles and
tools not only in mathematics but also in physics, control systems, dynamical systems, and
engineering to create the mathematical modeling of many physical phenomena. Naturally,
such equations required to be solved. Many studies on fractional calculus and fractional
differential equations, involving different operators such as Riemann-Liouville operators,
Erdlyi-Kober operators, Weyl-Riesz operators, Caputo operators, and Grünwald-Letnikov
operators, have appeared during the past three decades with its applications in other field.
Moreover, the existence and uniqueness of holomorphic solutions for nonlinear fractional
differential equations such as Cauchy problems and diffusion problems in complex domain
are established and posed [8–15].

The present article deals with a nonhomogeneous fractional differential equation. The
nonhomogeneous fractional differential equations involving the Bessel differential equation
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which appears frequently in practical problems and applications. These equations have
proved useful in many branches of physics and engineering. They have been used in
problems of treating the boundary value problems exhibiting cylindrical symmetries.

In [1], Srivastava and Owa gave definitions for fractional operators (derivative and
integral) in the complex z-plane C as follows.

Definition 1.1. The fractional derivative of order α is defined, for a function f(z) by

Dα
zf(z) :=

1
Γ(1 − α)

d

dz

∫z

0

f(ζ)
(z − ζ)α

dζ; 0 ≤ α < 1, (1.1)

where the function f(z) is analytic in simply-connected region of the complex z-plane C

containing the origin, and the multiplicity of (z − ζ)−α is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.

Definition 1.2. The fractional integral of order α is defined, for a function f(z), by

Iαz f(z) :=
1

Γ(α)

∫z

0
f(ζ)(z − ζ)α−1dζ; α > 0, (1.2)

where the function f(z) is analytic in simply-connected region of the complex z-plane (C)
containing the origin, and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to
be real when (z − ζ) > 0.

Remark 1.3. From Definitions 1.1 and 1.2, we have D0
zf(z) = f(0), limα→ 0I

α
z f(z) = f(z) and

limα→ 0D
1−α
z f(z) = f ′(z). Moreover,

Dα
z{zμ} =

Γ
(
μ + 1

)

Γ
(
μ − α + 1

){zμ−α}, μ > −1; 0 ≤ α < 1,

Iαz{zμ} =
Γ
(
μ + 1

)

Γ
(
μ + α + 1

){zμ+α}, μ > −1; α > 0.
(1.3)

Further properties of these operators can be found in [10, 11, 13].

2. Nonhomogeneous Fractional Differential Equation

In this section, we will express the solution for the nonhomogeneous problem

zαDα
zu(z) + zu′(z) +

(
z2 − a2

)
u(z) =

∞∑

n=0

anz
n+α, 1 < α ≤ 2, (2.1)

where the radius of convergence of power series is at least ρ, for all z ∈ U and u : U → C.
Note that for α = 2, (2.1) reduces to the Bessel differential equation.
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Theorem 2.1. Consider the problem (2.1) with a2 < α, 1 < α ≤ 2, and there exists a constant δ > 0
satisfying the condition

|an+2| ≤
Γ(n + α + 1) +

(
n + α − a2)Γ(n + 1)

δΓ(n + 1)
|cn|, (2.2)

for all sufficiently large integers n, where

cn =

⎧
⎪⎨

⎪⎩

a0

Γ(α + 1) − a2
, n = 0
an − cn−2

Γ(n + α + 1)/Γ(n + 1) + (n + α) − a2
, n ≥ 1,

(2.3)

where c−1 = 0. Then every solution u : U → C of the fractional differential equation (2.1) can be
expressed by

u(z) = uh(z) +
∞∑

n=0

cnz
n+α, (2.4)

where uh(z) is a solution of the homogeneous

zαDα
zu(z) + zu′(z) +

(
z2 − a2

)
u(z) = 0. (2.5)

Proof. We assume that u : U → C is a function given in the form (2.4), and we define that
up(z) = u(z) − uh(z) =

∑∞
n=0cnz

n+α. Then, it follows from (2.2) and (2.3) that

lim
n→∞

∣
∣
∣
∣
cn+2
cn

∣
∣
∣
∣ = lim

n→∞
1

Γ((n + α + 1) + (n + α − a2)Γ(n + 1))/Γ(n + 1)

∣
∣
∣
∣
an+2 − cn

cn

∣
∣
∣
∣

= lim
n→∞

1
Γ((n + α + 1) + (n + α − a2)Γ(n + 1))/Γ(n + 1)

∣
∣
∣
∣
an+2

cn
− 1
∣
∣
∣
∣

≤ 1
δ
, δ > 0.

(2.6)

That is, the power series for up(z) converges for all z ∈ U. Hence, we see that
the domain of u(z) is well defined. We now prove that the function up(z) satisfies the
nonhomogeneous equation (2.1). Indeed, it follows from (2.3) that

zαDα
zup(z) + zu′(z) +

(
z2 − a2

)
up(z) =

∞∑

n=0

Γ(n + α + 1)
Γ(n + 1)

cnz
n+α +

∞∑

n=1

(n + α)cnzn+α

+
∞∑

n=0

cnz
n+α+2 −

∞∑

n=0

cna
2zn+α
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=
∞∑

n=0

Γ(n + α + 1)
Γ(n + 1)

cnz
n+α +

∞∑

n=1

(n + α)cnzn+α

+
∞∑

n=2

cn−2zn+α −
∞∑

n=0

cna
2zn+α

=
(
Γ(α + 1) − a2

)
c0z

α +
(
Γ(α + 2) + (α + 1) − a2

)
c1z

α+1

+
∞∑

n=2

[(
Γ(α + n + 1)
Γ(n + 1)

+ (α + n) − a2
)

cn + cn−2

]

zα+n

:=
∞∑

n=0

anz
n+α.

(2.7)

Hence up(z) is a particular solution of the nonhomogeneous equation (2.1). On the
other hand, since every solution to (2.1) can be expressed as a sum of a solution uh(z) of
the homogeneous equation and a particular solution up(z) of the nonhomogeneous equation,
every solution of (2.1) is certainly of the form (2.4).

3. Ulam Stability

A classical problem in the theory of functional equations is that if a function f approximately
satisfies functional equation E when does, there exists an exact solution of E which f
approximates. In 1960, Ulam [16] imposed the question of the stability of Cauchy equation,
and, in 1941, Hyers solved it [17]. In 1978, Rassias [18] provided a generalization of Hyers,
theorem by proving the existence of unique linear mappings near approximate additive
mappings. The problem has been considered for many different types of spaces (see [19–
21]). Recently, Li andHua [22] have discussed and proved the Hyers-Ulam stability of spacial
type of finite polynomial equation, and Bidkham et al. [23] have introduced the Hyers-Ulam
stability of generalized finite polynomial equation.

In this section, we consider the Hyers-Ulam stability for fractional differential equation
(2.1). Let H be the space of all analytic functions onU.

Definition 3.1. Let p be a real number. We say that

∞∑

n=0

anz
n+α = f(z) (3.1)

has the generalized Hyers-Ulam stability if there exists a constant K > 0 with the following
property: for every ε > 0, w ∈ U = U

⋃
∂U, if

∣
∣
∣
∣
∣

∞∑

n=0

anw
n+α

∣
∣
∣
∣
∣
≤ ε

( ∞∑

n=0

|an|p
2n

)

, (3.2)
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then there exists some z ∈ U that satisfies (2.1) such that

|zm −wm| ≤ εK,
(
z,w ∈ U, m ∈ N

)
.

(3.3)

We need the following results.

Lemma 3.2 (see [24]). If f : D → X (X is a complex Banach space) is holomorphic, then ‖f‖ is a
subharmonic of z ∈ D ⊂ C. It follows that ‖f‖ can have no maximum in D unless ‖f‖ is of constant
value throughout D.

Theorem 3.3. Let f(z) := zαDα
zu(z)+zu

′(z)+ (z2 −a2)u(z) be holomorphic in the unit diskU and
then (2.1) has the generalized Hyers-Ulam stability.

Proof. In virtue of Theorem 2.1, (2.2) has a holomorphic solution in the U. According to
Lemma 3.2, we have

∣
∣f(z)

∣
∣ < 1, z ∈ U. (3.4)

Let ε > 0 and w ∈ U be such that
∣
∣
∣
∣
∣

∞∑

n=0

anw
n+α

∣
∣
∣
∣
∣
≤ ε

( ∞∑

n=0

|an|p
2n

)

. (3.5)

We will show that there exists a constant K independent of ε such that

|wm − um| ≤ εK, w ∈ U, u ∈ U (3.6)

and satisfies (3.1). We put the function

f(w) =
−1
λam

∞∑

n=0, n /=m

anw
n+α, am /= 0, 0 < λ < 1, (3.7)

thus, for w ∈ ∂U, we obtain

|wm − um| = ∣∣wm − λf(w) + λf(w) − um
∣
∣

≤ ∣∣wm − λf(w)
∣
∣ + λ

∣
∣f(w) − um

∣
∣

<
∣
∣wm − λf(w)

∣
∣ + λ|wm − um|

=

∣
∣
∣
∣
∣
wm +

1
am

∞∑

n=0, n /=m

anw
n+α

∣
∣
∣
∣
∣
+ λ|wm − um|

=
1

|am|

∣
∣
∣
∣
∣

∞∑

n=0

anw
n+α

∣
∣
∣
∣
∣
+ λ|wm − um|.

(3.8)
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Without loss of the generality, we consider |am| = maxn≥1(|an|) yielding

|wm − um| ≤ 1
|am|(1 − λ)

∣
∣
∣
∣
∣

∞∑

n=0

anw
n+α

∣
∣
∣
∣
∣

≤ ε

|am|(1 − λ)

( ∞∑

n=0

|an|p
2n

)

≤ ε|am|p−1
(1 − λ)

( ∞∑

n=0

1
2n

)

≤ 2ε|am|p−1
(1 − λ)

:= Kε.

(3.9)

This completes the proof.

Theorem 3.4. If
∞∑

n=0, n /= 1

|an| ≤ |a1|, a1 /= 0, (3.10)

then (2.1) has a unique solution in the unit disk.

Proof. By setting

f(z) =
−1
a1

∞∑

n=0, n /= 1

anz
n+α, (3.11)

for |z| ≤ 1, we pose

∣
∣f(z)

∣
∣ =

∣
∣
∣
∣
∣
∣

−1
a1

∞∑

n=0, n /= 1

anz
n+α

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
1
a1

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∞∑

n=0, n /= 1

anz
n+α

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
1
a1

∣
∣
∣
∣

∞∑

n=0, n /= 1

|an|

< 1.

(3.12)

Since |f(z)| < 1 for |z| = 1, hence for |f(z)| = | − z| and by Rouche’s theorem, we
observe that f(z) − z has exactly one zero in U, which yields that f has a unique fixed point
in U.
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4. Conclusion

From above, we conclude that fractional differential equations of Bessel type have
holomorphic solutions in the unit disk. The uniqueness imposed by employing the Rouche’s
theorem. Furthermore, this solution satisfied the generalized Ulam stability for infinite series
of fractional power.
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