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This paper considers impulsive control for the synchronization of chaotic systems with time
delays. Based on the Lyapunov functions and the Razumikhin technique, some new synchroniza-
tion criteria with an exponential convergence rate are derived. Our results show that impulses do
contribute to globally exponential synchronization of dynamical systems. Besides, the impulsive
moments are independent of the upper bound of time delays. Furthermore, a bigger upper bound
of impulsive intervals for the synchronization of chaotic systems can be obtained when compared
with many previous studies. Hence, our results are less conservative and more effective for the
synchronization analysis. A numerical example is given to show the validity and potential of the
developed results.

1. Introduction

In the last two decades, control and synchronization problems of chaotic systems have been
extensively studied, due to their potential applications in many areas. For instance, they
are used to understand self-organizational behavior in the brain as well as in ecological
systems, and they also have been applied to produce securemessage communication between
a sender and a receiver. So far, different synchronization techniques have been proposed and
implemented in practice, such as PC (Pecora and Carroll) method [1], active control [2],
adaptive control [3, 4], sliding mode control [5], and impulsive method [6–12].

Impulsive phenomena exist in many biological systems and mechanics fields. Impul-
sive control has beenwidely studied and gradually become an interesting and useful synchro-
nization approach [13–16]. Impulsive control can provide an efficient method for some cases
in which the systems cannot endure continuous disturbance. The main idea of the impulsive
control strategy is to change the states of a system by some sudden jumps instantaneously.
Furthermore, using the impulsive control method, the response system needs to receive the
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information from the drive system only at some discrete instants which means that impulsive
control is easier to be implemented to some extent. The asymptotical synchronization of
chaotic systems without time delay [17–20] and with time delay [21, 22] has been widely
investigated by using impulsive control. However, most of the previous impulsive stability
criteria are only valid for some specific systems with small delays due to the restrictive
requirement that the time delays are required to be smaller than the length of impulsive
interval [23–25].

In this paper, we will investigate globally exponential synchronization of coupled
chaotic systems with time delay by using impulsive control. The main contributions of this
paper include the following. (i) Our results show that impulses do contribute to globally
exponential synchronization of dynamical systems and the time delays in systems not to be
smaller than the length of impulsive intervals. Therefore, they can be usually used as an
effective control strategy to synchronize the underlying delayed dynamical systems in more
practical application. (ii) A new approach for the exponential synchronization of impulsive
chaotic systems with any finite delay is given. (iii) In order to deal with uncertainty and/or
measurement noise effectively in nominal case for identical chaotic and hyperchaotic systems,
the impulse distance should increases which in turn decreases the control cost in accordance
with [19]. Thus, having a minimum level of synchronization error with the largest impulsive
intervals is generally desired [26]. In our proposed results, a bigger upper bound of impulsive
intervals for the synchronization of chaotic systems can be obtained by comparing with the
results in [13–16]. It should also be noticed that our paper was inspired in part by the work
of Zhou and Wu in [27] for delayed linear differential equations.

The rest of this paper is organized as follows. In Section 2, the problem and some
preliminaries are presented. The main result on exponential synchronization is given in
Section 3. Section 4 gives an example for illustration, and some conclusions are finally drawn
in Section 5.

2. Preliminaries

Denote that R is the set of real numbers, R+ is the set of nonnegative real numbers, Rn is
the n-dimensional real space, and N is the set of positive integers. Let Ψ(t+) = lims→ t+Ψ(s)
and Ψ(t−) = lims→ t−Ψ(s). For a, b ∈ R with a < b and for S ⊂ Rn, we define the following
function: PC([a, b], S) = {Ψ : [a, b] → S | Ψ(t) = Ψ(t+), for all t ∈ [a, b);Ψ(t−) exists in S,
for all t ∈ (a, b] and Ψ(t−) = Ψ(t), for all but at most a finite number of points t ∈ (a, b]}. For
Ψ ∈ PC([−τ, 0], Rn), the norm ofΨ is, respectively, defined by ‖Ψ‖ = sup−τ≤s≤0‖Ψ(s)‖. et, et− ∈
PC([−τ, 0], Rn) are defined by et(s) = e(t + s) and et−(s) = e(t− + s) for s ∈ [−τ, 0].

Nowwe introduce the coupled chaotic systems that will be studied. It usually consists
of two chaotic systems at the transmitter and the receiver ends.

At the transmitter end, we have

ẋ(t) = Ax(t) + Φ1(x(t)), (2.1)

and, at the receiver end, we have

ẏ(t) = Ay(t) + Φ2
(
y(t), x(t − τ), y(t − τ)

)
, t /= tk,

Δy(t) = −Bke(t), t = tk,

y(t0 − s) = ϕ(s), s ∈ [0, τ],

(2.2)
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where the matrices A,Bk ∈ Rn×n, e(t) = x(t) − y(t) are the synchronization error states
between the states of system (2.1) and system (2.2), and the functions Φ1,Φ2 are the
continuous functions in their respective domain of definition. The time sequence {tk}+∞k=1
satisfies 0 = t0 < t1 < t2 < · · · < tk < · · · , limk→∞tk = +∞, the time delay τ > 0, and
Δy(tk) = y(t+

k
) − y(t−

k
), in which y(t+

k
) = lims→ 0+y(tk + s), y(t−

k
) = lims→ 0−y(tk + s) for

k = 1, 2, . . . . A typical form of the function Φ2 is given as follows:

Φ2
(
y(t), x(t − τ), y(t − τ)

)
= Φ1

(
y(t)

)
+ FK

(
x(t − τ) − y(t − τ)

)
, (2.3)

where F ∈ Rn×m,K ∈ Rm×n are constant matrices. The second term is known as the delayed
feedback controller, which is applied to the input state and then influences the system
function.

Then, we can get the following error dynamical system:

ė(t) = Ae(t) + Ψ
(
x(t), y(t), x(t − τ), y(t − τ)

)
, t /= tk,

Δe(t) = Bke(t), t = tk, k = 1, 2, . . . ,
(2.4)

where Ψ(x(t), y(t), x(t − τ), y(t − τ)) = Φ1(x(t)) −Φ2(y(t), x(t − τ), y(t − τ)).
Obviously, e(t) = 0 is a trivial solution of system (2.4). We shall analyze the dynamics

of system (2.4) and drive criteria under which its trivial solution is globally exponentially
stable. It is clear that the globally and exponential stability of trivial solution of (2.4) implies
the global synchronization of systems (2.1) and (2.2).

For a given t > t0 and ϕ ∈ PC([−τ, 0], Rn), the initial value problem of (2.4) is

ė(t) = Ae(t) + Ψ
(
x(t), y(t), x(t − τ), y(t − τ)

)
, t /= tk,

Δe(t) = Bke(t), t = tk, t ∈ N

e(t0 − s) = ϕ(s), s ∈ (0, τ).

(2.5)

We assume that (2.4) has a unique solution with respect to initial conditions. Denote
by e(t) = e(t, t0, ϕ) the solution of (2.4) such that e(t0 − s) = ϕ(s), s ∈ (0, τ). Also we assume
that the function Ψ satisfies the following assumption: for certain positive definite matrix P ,
there exist constant matrices Di ∈ Rn×n, i = 1, 2, such that

(
x − y

)T
PΨ

(
x, y, u, v

) ≤ (
x − y

)T
PD1

(
x − y

)
+
(
x − y

)T
PD2(u − v). (2.6)

Now we have the following definitions.

Definition 2.1. The trivial solution of (2.4) is said to be globally and exponentially stable if
for any initial data et0 = ϕ ∈ PC([−τ, 0], Rn) and ‖Ψ‖τ = sup−τ≤s≤0‖Ψ(s)‖, there exist some
constants λ > 0 and M ≥ 1 such that

∥∥e
(
t, t0, ϕ

)∥∥ ≤ M
∥∥ϕ

∥∥
τe

−λ(t−t0), t ≥ t0. (2.7)
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Definition 2.2. Given a function V : R+ ×Rn → R+, the upper right-hand derivative of V with
respect to system (2.4) is defined by

D+V (t, e(t)) = lim
δ→ 0+

sup
1
δ
[V (t + δ, e(t + δ)) − V (t, e(t))]. (2.8)

3. Synchronization of Chaotic Systems

In the following, we shall address the exponential stability problem for impulsive delayed
nonlinear differential equation (2.4), which implies the global synchronization of two chaotic
systems. Our result shows that impulses play an important role in making the delayed
nonlinear differential equations globally and exponentially stable.

Theorem 3.1. Let P ∈ Rn×n be a positive definite matrix and λk (0 < λk ≤ 1, k ∈ N) be largest
eigenvalue of P−1(I +Bk)

TP(I +Bk). Assume that there exist constants αi, i = 1, 2 with α2 ∈ R+ and
λ > 0, σ > 0, such that for all k ∈ N, one has

(i)

[
ATP + PA + PD1 − α1P PD2

DT
2 P −α2P

]
≤ 0, (3.1)

(ii)

σ − λ −
[
α1 +

(
α2

λk−1

)
eλτ

]
≥ 0, (3.2)

where 0 < λ0 ≤ 1,

(iii)

lnλk−1 < −(σ + λ)(tk − tk−1). (3.3)

Then, the trivial solution of system (2.4) is globally and exponentially stable with a convergence rate
of λ/2 for any fixed delay τ ∈ (0,+∞), that is, system (2.1) and system (2.2) are globally and
exponentially synchronized.

Proof. Let e(t) = e(t, t0, ϕ) be any solution of system (2.5), and consider a Lyapunov function
as follows:

V (t, e(t)) = eT(t)Pe(t). (3.4)

Let μ1 > 0 and μ2 > 0 be the smallest and largest eigenvalues of positive definite matrix P ,
respectively. Then, we can obtain

μ1‖e(t)‖2 ≤ V (t, e(t)) ≤ μ2‖e(t)‖2. (3.5)
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Now, we are in a position to prove that, for any t ∈ [tk−1, tk),

V (t, e(t)) ≤ μ2M
∥
∥ϕ

∥
∥2
τe

−λ(t−t0), k ∈ N. (3.6)

For t /= tk (k ∈ N), it follows from assumption (2.6) and condition (i) that

D+V (t, e(t)) = ėTPe(t) + eT(t)Pė(t)

=
[
eT (t)AT + ΨT

]
Pe(t) + eT (t)P[Ae(t) + Ψ]

= eT
[
ATP + PA

]
e(t) + eT (t)PΨ +ΨTPe(t)

≤ eT (t)
[
ATP + PA + 2PD1

]
e(t) + eT(t)PD2

× e(t − τ) + eT (t − τ)DT
2 Pe(t)

=
[
eT (t) eT(t − τ)

]
[
ATP + PA + 2PD1 PD2

DT
2 P 0

]
⎡

⎢
⎣

e(t)

e(t − τ)

⎤

⎥
⎦.

(3.7)

It further follows from condition (i) that

D+V (t, e(t)) ≤ [
eT (t) eT (t − τ)

]
[
α1P 0
0 α2P

][
e(t)

e(t − τ)

]

= α1V (t, e(t)) + α2V (t − τ, e(t − τ)).

(3.8)

Defining γ = supk∈N (1/λk−1) ≥ 1 in condition (iii), we have

ln γ + λτ − (σ + λ)(tk − tk−1) > 0. (3.9)

Then, in view of the inequality in (3.9), we can find constant M ≥ 1 such that

1 < e(σ+λ)(t1−t0) ≤ M ≤ γeλτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0), (3.10)

which shows that

∥∥ϕ
∥∥2
τ <

∥∥ϕ
∥∥2
τe

σ(t1−t0) ≤ M
∥∥ϕ

∥∥2
τe

−λ(t1−t0). (3.11)

Firstly, we prove that

V (t, e(t)) ≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0), t ∈ [t0, t1). (3.12)
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To do this, we only need to prove that

V (t, e(t)) ≤ μ2M
∥
∥ϕ

∥
∥2
τe

−λ(t1−t0), t ∈ [t0, t1). (3.13)

If the inequality (3.13) is not true, it follows from (3.11) that there must exist some t ∈ [t0, t1)
such that

V
(
t, e

(
t
))

> μ2M
∥
∥ϕ

∥
∥2
τe

−λ(t1−t0) ≥ μ2
∥
∥ϕ

∥
∥2
τe

σ(t1−t0)

> μ2
∥
∥ϕ

∥
∥2
τ ≥ V (t0 + s, e(t0 + s)), s ∈ [−τ, 0],

(3.14)

which implies that there exists t∗ ∈ [t0, t) such that

V (t∗, e(t∗)) = μ2M
∥∥ϕ

∥∥2
τe

−λ(t1−t0),

V (t, e(t)) ≤ V (t∗, e(t∗)), t ∈ [t0 − τ, t∗],
(3.15)

and there exists t∗∗ ∈ [t0, t∗) such that

V (t∗∗, e(t∗∗)) = λ2
∥∥ϕ

∥∥2
τ ,

V (t∗∗, e(t∗∗)) ≤ V (t, e(t)), t ∈ [t∗∗, t∗].
(3.16)

Hence, for any s ∈ [−τ, 0], we can obtain that

V (t + s, e(t + s)) ≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t1−t0)

≤ μ2γe
λτ−(σ+λ)(t1−t0)e(σ+λ)(t1−t0)

∥∥ϕ
∥∥2
τ

= γeλτμ2
∥∥ϕ

∥∥2
τ = γeλτV (t∗∗, e(t∗∗))

≤ γeλτV (t, e(t)), t ∈ [t∗∗, t∗].

(3.17)

By condition (ii), (3.8), and (3.17), we can obtain

D+V (t, e(t)) ≤
(
α1 + γα2e

λτ
)
V (t, e(t))

≤
(
α1 +

α2

λ0
eλτ

)
V (t, e(t))

≤ (σ − λ)V (t, e(t)), t ∈ [t∗∗, t∗],

(3.18)
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which shows that

V (t∗, e(t∗)) ≤ V (t∗∗, e(t∗∗))e(σ−λ)(t
∗−t∗∗)

= μ2
∥
∥ϕ

∥
∥2
τe

(σ−λ)(t∗−t∗∗)

< μ2
∥
∥ϕ

∥
∥2
τe

σ(t1−t0)

≤ μ2M
∥
∥ϕ

∥
∥2
τe

−λ(t1−t0)

= V (t∗, e(t∗)).

(3.19)

It is obviously a contradiction. Hence, (3.12) holds, and then (3.6) is true for k = 1. Now, we
suppose that (3.6) holds for k = 1, 2, . . . , m (m ∈ N,m ≥ 1), that is,

V (t, e(t)) ≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0), t ∈ [tk−1, tk). (3.20)

Next, we will prove that (3.6) holds for k = m + 1, that is,

V (t, e(t)) ≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0), t ∈ [tm, tm+1). (3.21)

For the sake of contradiction, we suppose that (3.21) is not true. Then, we define

t = inf
{
t ∈ [tm, tm+1) | V (t, e(t)) > μ2M

∥∥ϕ
∥∥2
τe

−λ(t−t0)
}
. (3.22)

From condition (iii) and (3.20), we can get

V (tm, e(tm)) = eT
(
t−m
)
(I + Bm)TP(I + Bm)e

(
t−m
)

≤ λmV
(
t−m, e

(
t−m
))

≤ λmμ2M
∥∥ϕ

∥∥2
τe

−λ(tm−t0)

= λmμ2M
∥∥ϕ

∥∥2
τe

λ(t−tm)e−λ(t−t0)

< λmμ2e
λ(tm+1−tm)M

∥∥ϕ
∥∥2
τe

−λ(t−t0)

< μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0),

(3.23)

and so t /= tm. By the continuity of V (t, e(t)) in the interval [tm, tm+1), we obtain

V (t∗, e(t∗)) = μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0),

V (t, e(t)) ≤ V (t∗, e(t∗)), t ∈ [tm, t∗].
(3.24)
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From (3.23), we can derive that there exists t∗∗ ∈ [tm, t∗) such that

V (t∗∗, e(t∗∗)) = λmμ2e
λ(tm+1−tm)M

∥
∥ϕ

∥
∥2
τe

−λ(t−t0),

V (t∗∗, e(t∗∗)) ≤ V (t, e(t)) ≤ V (t∗, e(t∗)), t ∈ [t∗∗, t∗].
(3.25)

As for any t ∈ [t∗∗, t∗], s ∈ [−τ, 0], then either t + s ∈ [t0 − τ, tm) or t + s ∈ [tm, t∗]. These
two cases will be discussed in the following.

If t + s ∈ [t0 − τ, tm), from (3.20), we have

V (t + s, e(t + s)) ≤ λ2M
∥
∥ϕ

∥
∥2
τe

−λ(t−t0)e−λs

≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0)eλ(t−t)eλτ

≤ μ2e
λτeλ(tm+1−tm)M

∥∥ϕ
∥∥2
τe

−λ(t−t0),

(3.26)

whereas if t + s ∈ [tm, t∗], from (3.24), then

V (t + s, e(t + s)) ≤ μ2M
∥∥ϕ

∥∥2
τe

−λ(t−t0)

≤ μ2e
λτeλ(tm+1−tm)M

∥∥ϕ
∥∥2
τe

−λ(t−t0).
(3.27)

Above all, from (3.25)–(3.27), we can obtain, for any s ∈ [−τ, 0],

V (t + s, e(t + s)) =
eλτ

λm
V (t∗∗, e(t∗∗))

≤ eλτ

λm
V (t, e(t)), t ∈ [t∗∗, t∗].

(3.28)

Hence, by condition (ii), (3.8), and (3.28), we can conclude that

D+V (t, e(t)) ≤
(
α1 +

α2

λm
eλτ

)
V (t, e(t))

≤ (σ − λ)V (t, e(t)).

(3.29)
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Thus, in view of condition (iii), we have

V (t∗, e∗) ≤ V (t∗∗, e∗∗)e(σ−λ)(t
∗−t∗∗)

= λmμ2e
λ(tm+1−tm)M

∥
∥ϕ

∥
∥2
τe

−λ(t−t0)e(σ−λ)(t
∗−t∗∗)

< μ2e
−(σ+λ)(tm+1−tm)eλ(tm+1−tm)

×M
∥
∥ϕ

∥
∥2
τe

−λ(t−t0)e(σ−λ)(t
∗−t∗∗)

= μ2M
∥
∥ϕ

∥
∥2
τe

−σ(tm+1−tm)e(σ−λ)(t
∗−t∗∗)e−λ(t−t0)

< μ2M
∥
∥ϕ

∥
∥2
τe

−λ(t−t0)

= V (t∗, e∗),

(3.30)

which is a contradiction. It implies that the supposition is not true. Hence, (3.6) holds for
k = m + 1, then, we can conclude by some induction that (3.6) holds for any k ∈ N. It
immediately follows from (3.6) that

‖e(t)‖ ≤
√

μ2

μ1
M1/2∥∥ϕ

∥∥
τe

−(λ/2)(t−t0), t ≥ t0, (3.31)

that is, the trivial solution of the impulsive delayed system (2.5) is globally and exponentially
stable with a convergence rate of λ/2 for any fixed delays τ ∈ (0,∞). Then, it implies that
system (2.1) and system (2.2) are globally synchronized. The proof is thus complete.

Remark 3.2. In LMI (3.1) of Theorem 3.1, the constant α1 (if α1 > 0) is used to measure the
level of instability for delay-free system and is determined by the matrixA+PD1, while α2 is
decided by the matrix D2.

Remark 3.3. Compared with Theorem 3.1 in [28], a distinct feature of Theorem 3.1 in this
paper is to eliminate the restriction that the impulsive interval can not be too large, that is,
the additional assumption (iv) tk − tk−1 ≥ τ in Theorem 3.1 of [28] is indeed deleted here.
Moreover, a controlled parameter σ is introduced to adjust the degree of convergence rate
λ/2 on globally exponential stability of the error system (2.4). It should bementioned that our
results allow us to develop an effective impulse control strategy to exponentially synchronize
chaotic systems, and it is particularly meaningful for some practical applications.

Similarly to Theorem 3.1, we can obtain the following result.

Corollary 3.4. Let P ∈ Rn×n be a symmetric and positive definite matrix, 0 < β = supk∈Nλk, where
λk is given by Theorem 3.1 for each k ∈ N. Assume that there exist constants αi, i = 1, 2 with
α2 ∈ R+, such that for all k ∈ N the following are satisfied:

(i)

[
ATP + PA + 2PD1 − α1P PD2

DT
2 P −α2P

]
≤ 0, (3.32)
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(ii)

(
α1 +

α2

β

)
(tk − tk−1) < − ln β. (3.33)

Then, the trivial solution of system (2.4) is globally and exponentially stable for any fixed delay
τ ∈ (0,+∞), that is, system (2.1) and system (2.2) are globally and exponentially synchronized.

Proof. Condition (ii) in Theorem 3.1 can be reduced to the following form:

σ − λ +
[
α1 +

(
α2

β

)
eλτ

]
≥ 0. (3.34)

Then, it is easy to get the following inequality, which is equivalent to (3.34) and condition
(iii) in Theorem 3.1:

[
2λ + α1 +

(
α2

β

)
eλτ

]
(tk − tk−1) < − ln β. (3.35)

Hence, there must exist a small-enough real number λ > 0 such that (3.35) holds. And if λ
is extremely tiny, we can obtain that condition (ii) in Corollary 3.4 holds. From Theorem 3.1,
the proof is completed.

Remark 3.5. As Corollary 3.4 can be applied to deal with globally exponential stability of
impulsive differential equations with any time delays τ ∈ (0,+∞), it is obviously more
applicable than those existing in the works in the recent literature [23–25, 28] where the
time delays need to be assumed not bigger than the length of impulsive interval. In view
of Corollary 3.4, it is clear that we have removed the restriction of time delay indeed.

Remark 3.6. Since the amount of transmitted information decreases leading to reduced control
cost, the cost of impulsive synchronization of chaotic systems is closely related to the impulse
distances and having a minimum level of synchronization error with the largest impulsive
intervals as generally a desired [26]. From the proposed result in Corollary 3.4, the upper
bound of impulsive intervals for the globally and exponentially synchronization can be given
by tk − tk−1 < − ln β/(α1 + α2/β) for each k ∈ N. From the following numerical example, we
will show that our upper bound of impulsive intervals is bigger than some existing results.

4. Numerical Simulation

In this section, an example is presented here to illustrate our main results.

Example 4.1. Consider the Lorenz system in [13] as follows:

ẋ1 = − σx1 + σx2,

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3,

(4.1)
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Figure 1: The trajectories of the error Lorenz system under impulsive controller with tk − tk−1 = 0.035.

where σ, r, b ∈ R+, σ = 10, r = 28, and b = 8/3. Let x = [x1, x2, x3]
T , then we can rewrite the

Lorenz system in the form of (2.1) as follows:

ẋ(t) = Ax(t) + Φ1(x(t)), (4.2)

where

A =

⎡

⎢⎢
⎣

−10 10 0
28 −1 0

0 0 −8
3

⎤

⎥⎥
⎦, Φ1 =

⎡

⎣
0

−x1x3

x1x2

⎤

⎦. (4.3)

We also choose Φ2 defined by (2.3) with FK = I. Set the delay τ = 1 and the impulsive
matrices Bk = −0.5I for all k = 1, 2, . . . . Then, it can be observed that inequality (2.6) holds
with D1 = I and D2 = −FK = −I.

Solving (3.1) in Theorem 3.1, we get that α1 = 31, α2 = 1, and P = I. Since Bk = −0.5I,
we can get β = 0.25. According to condition (ii) in Corollary 3.4, when

tk − tk−1 < − ln β
α1 + α2/β

= 0.0396, (4.4)

the trivial solution of error system based on impulsive delayed differential equation (4.1) is
globally exponentially stable for any fixed delay τ ∈ (0,+∞). With the same parameter, a
comparison of the upper bound of impulsive intervals with [13–16] is presented in Table 1,
which shows that our upper bound is much bigger. Choose tk − tk−1 = 0.035, and the
simulation result of error system e(t) is shown in Figure 1.
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Table 1: A comparison of the upper bound of impulsive intervals of (4.1).

Corollary 3.4 [13] [14] [15, 16]
0.0396 0.0072 0.0108 0.0178

5. Conclusion

In this paper, we have investigated the synchronization of coupled chaotic systems with
time delay by using impulsive control. The time delays in systems need not to be smaller
than the length of impulsive interval as many works existing in the literature assumed. A
numerical example has been given to demonstrate the effectiveness of the theoretical results,
and the estimation of the stable region of the impulsive intervals has also been presented. By
comparison, the upper bound of impulsive intervals is greater than it was in some existing
results. The obtained results can be easily used to control many systems, especially to stabilize
and synchronize chaotic systems.
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