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We consider a fourth-order four-point boundary value problem for dynamic equations on time
scales. By the upper and lower solution method, some results on the existence of solutions of the
fourth-order four-point boundary value problem on time scales are obtained. An example is also
included to illustrate our results.

1. Introduction

Let T be a closed nonempty subset of R, and let T have the subspace topology inherited from
the Euclidean topology on R. In some of the current literature, T is called a time scale (or
measure chain). For notation, we shall use the convention that, for each interval | of R, J will
denote the time scales interval, that is, ] :== ] N T. Some preliminary definitions and theorems
on time scales can be found in the books [1, 2], which are excellent references for calculus of
time scales.

In this paper, let T be a time scale and o(t) the forward jump function in T. We are
concerned with the following fourth-order four-point boundary value problem on time scales
T:

vy (0 -qy*~ 1) = f(Ly©@®),y* (1)),

y(@ =0,  y(o*®))+iy*(c*(b)) =0, (1.1)

@) -y (@) =0, Yy (&) +6y* (&) =0,
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fort € [a,b] C T, a < ¢ < & < o(b). We will assume that the following conditions are
satisfied.

(H1) &,y,1,6 20, 1> *(b) - o*(b),
(H2) q(t) >0.1fg(t) =0, then {+y >0,
(H3) k= ¢o+my +¢y(62=61) >0, 166120, 6-y(a(b) - &) 2 0.
The upper and lower solution method has been used to deal with the boundary value
problems for dynamic equations in recent years. In most of these studies, two-point boundary

value problem for second-order dynamic equations is considered [3-7].
Pang and Bai [8] studied the following fourth-order four-point BVP on time scales:

ubA88 () = f(tu(o®),ut®), telo1],
u(0) = u<a4(1)> =0, (1.2)
ay™ (&) - Py @) =0, Yy (&) +ny* (k) =0

for 0 < ¢ < & < o(b), and f € C([0,1] xR x R,R) and a, 3, y, 11 are nonnegative constants
satisfying an + fy + ay(é& — &) > 0. They establish criteria for the existence of a solution
by developing the upper and lower solution method and the monotone iterative technique.
Our problem is more general than the problems in [8], and our results are even new for the
differential equations as well as for dynamic equations on general time scales.

2. Preliminaries

To prove the main results in this paper, we will employ several lemmas. We consider the
linear boundary value problem

y¥ (1) —qty(o(®) = h(t), te [&,pE)],

Sy@) -yt (@) =0,  yy(&) +6y°(&) =0. .
Denote by ¢ and g, the solutions of the corresponding homogeneous equation
y¥ (1) - gy (o)) =0, te [&,p)] (22)
under the initial conditions
@) =1, () =¢
(2.3)

ph) =6 ¢*&) =7,

so that ¢ and ¢ satisfy the first and second boundary conditions of (2.1), respectively. Let us
set

D = {y(&) — g™ (&) = 69 (&) +yo(2). (2.4)
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Using the initial conditions (2.3), we can deduce from (2.2) for ¢ and ¢ the following
equations:

t T

o) =+ Lt—d) + L L 4(5)9(0(5)) AsAr, (2.5)
& réo

@) =0+y(G—1)+ f q(s)p(o(s))AsAT. (2.6)
t T

Lemma 2.1. Under the conditions (H1) and (H2), the following inequalities

p(t) 20, te[f,o@)]  ¢t) 20, telé, &l

(2.7)
()20, telq el ¢t () <0, teld, &l
yield.
Proof. We apply the induction principle for time scales to the statement
A ()20, (1) 20, (2.8)

where f € [¢1,&].

(I) The statement A(¢;) is true, since ¢(¢;) = 77 and @2 (&) = ¢.

(IT) Let t be right-scattered and let A(t) be true, that is, ¢(t) > 0 and ¢* () > 0. We need
to show that ¢(c(t)) > 0 and ¢* (c(t)) > 0. By the definition of A-derivative, we have

p(o(t) = ¢(t) + [o(t) - tlp™ (1) (2.9)
Further, by the definition of A-derivative and (2.2) for ¢(t), we have
0 (0 () = 9 (1) + [0(t) - 1™ (t) = ¢° () + [o(t) - tlq(H)p(0 (1)) (2.10)

From (2.9), we get ¢(c(t)) > 0, and then from (2.10), we get ¢ (c(t)) > 0.

(III) Let o be right-dense, A(tg) be true and t; € [¢1,¢&] such that t; > ty and is
sufficiently close to ty. We need to prove that A(t) is true for t € [to, t1].

From (2.2) with y(t) = ¢(t), the equations

t
@™ (1) = ™ (to) + t q(s)p(c(s))As, (2.11)

t T
9() = g(to) + 9® (to) (o) + f f 4(8)9(0(s)) AsAT (2.12)
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follow. To investigate the function ¢(t) appearing in (2.12), we consider the equation
t AT
u(0) =gt + 9> 1)~ 10+ [ [ gowiotsnasar, .1
to V to

where y(t) is the desired solution. Our aim is to show that with t; sufficiently close to to,
(2.13) has a unique continuous solution y(t) satisfying inequality

y(6) 2 plto) + 9" (to) (t = ko), £ € [to, ]. (214)
We solve (2.13) by the method of successive approximations, setting

Yo(t) = g(to) + o™ (to) (t — to),

t ot (2.15)
yi(t) = L ft q(s)yj-1(o(s))AsATr, j=1,2,3,....

If the series Zﬁo y]-(t) converges uniformly with respect to t € [to,t1], then its sum will be,
obviously, a continuous solution of (2.13). To prove the uniform convergence of this series,
we let

t1 AT

My = p(to) + ¢* (to) (t1 — to), M, = f g(s)AsAT. (2.16)

to to
Then the estimate
0<yj() < MoM!, telto,ti], j=0,1,2,... (2.17)

can easily be obtained. Indeed, (2.17) evidently holds for j = 0. Let it also hold for j = n. Then
from (2.15), we get for t € [to, 1],

t T
0 < Yt (t) < f f 4(5)yn(0(s) AsAT

ty T
< max Yn(o(s)) | q(s)AsAT
o fo<s<p(T) to (2.18)
tl T

< max yu(o(s)) q(s)AsAT

to<s<p*(t) to J to

< M0M¥M1 = M()Mi”l.

Therefore, by the usual mathematical induction principle, (2.17) holds forall j =0,1,2,....



Abstract and Applied Analysis 5

Now choosing t; appropriately, we obtain M; < 1. Then (2.13) will have a continuous
solution

y(t) = iyj(t) for t € [to, t1]. (2.19)

j=0

Since y;(t) > 0, it follows that y(t) > yo(t) thereby proving the validity of inequality (2.14).
To prove uniqueness of solution of (2.13) for t € [ty,t1], suppose it has two solutions y; and
Y2, and passing on to the modulus, we get

15 - 12 (8)] < f 4(6) 1 (a(s) - pa(a(s))|Asar

o (2.20)
<, max [ (@) -y(0)] | | qs)assr
Thus,
lya(t) -2 (D) < M1tosrsr;22>§tl)|y1 (0(5)) = y2(0(s))|, t€ [to ]. (2.21)

Since M; < 1, hence it follows that y; (t) = y»(t) for t € [to, t1].
From (2.12) and (2.13) in view of the uniqueness of solution, we get that ¢(t) =
y(t), t € [to, t1]. Therefore,

P(t) > @(to) + 9 (to) (t —to), tE€ [to, t]. (2.22)

Hence by making use of the induction hypothesis A(ty) being true, we obtain ¢(t) > 0 for
t € [to, t1]. Taking this into account, from (2.11), we also get (pA(t) > 0 for t € [ty,t1]. Thus,
A(t) is true for all t € [to, t1].

(IV) Let t € (¢1,¢2] and assume ¢ is left-dense and such that A(s) is true for all s < ¢,
that is,

¢(s) 20, ¢(s)20, Vsel[&,b). (2.23)

Passing on here to the limit as s — t, we get by the continuity of ¢(s) and ¢*(s) that ¢(t) > 0
and ¢ (t) > 0, thereby verifying the validity of A(t).

Consequently, by the induction principle on time scales, (2.8) holds for all t € [¢1, &].

From (2.9) and (2.8) for t = &, we also get ¢(c(é2)) > 0. So the statements (2.7) for ¢
are proved.

We can prove the statements of the lemma for ¢ similarly applying the backward
induction principle on time scales. The lemma is proved. O

Lemma 2.2. Under the conditions (H1) and (H2), the inequality D > 0 holds.
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Proof. By (2.4) and (2.5), we have

& & T
D= g6+ my + 8y —41) +6 L a@poENss+y [ | aoponasar @2
Since @(t) > 0 for t € [¢1,0(&2)], from (2.8), we have
D > 6 +ny + ¢y (&2 — é1)- (2.25)

If q(t) = 0, then in (2.25) the equality holds. From the condition (H2), we get D > 0. This proof
is completed. O

Lemma 2.3. Assume that the conditions (H1) and (H2) are satisfied. If h € C[¢é1, p(&)], then the
boundary value problem

yA () - qhy (o) = h(t), te [&,p)],
Sy(&) —ny* (&) =0, (2.26)
Yy (&) + 6y* (&) =0

has a unique solution

&
y(t) = —J‘ G(t,s)h(s)As, (2.27)
&
where
Gitys) = ~ {(’I(G(S))q)(t)’ fee (2.28)
w(t)y(o(s)), t=o(s)
Here D, , ¢ are as in (2.4), (2.5), and (2.6), respectively.
Proof. Taking
1 (t
=0 =~ | 9690 ~pOpoE)]re)as 2.29)
we have
22(1) = -5 [plo)p* (0(0) - ¢* @) (0()] (1)
(2.30)

t
~5 ] [po@r®* 0 -9 Ope|ness
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By Corollary 3.14 in [1], since the Wronskian of any two solutions of (2.2) is independent of
t, we get

D =W(y,¢) = ¢@)p*(0(1) - p(a®)y® (o). (2.31)

Hence we get
t
== [—Dh(t) +q(0) L o)y @) - ¢(o(t>>w(o<s)>]h<s>As]

t
= h(t) +q(t) L [p(a(s)p(o(t) —p(ot)g(o(s))]h(s)As
D),

(2.32)
1 o(t)
= h(t) +q(t) [—5 L [p(a(s))g(a(t) - lP(G(t))<P(0(S))]h(S)AS]
= h(t) + q(t)z(o(1)).
So the general solution of equation
vy (1) - qty(o() = h(t), te [&,p@)], (2.33)
has the form
t
) =) +cap )~ 1 [ [pEOWO ~pOpERo8s, @30

where c; and c; are arbitrary constants. Substituting this expression for y(t) in the boundary
conditions of BVP (2.26), we can evaluate c; and c,. After some easy calculations, we can get
(2.27) and (2.28). O

Lemma 2.4. Under the conditions (H1) and (H2), the Green’s function of BVP (2.26) possesses the
following property:

G(t,;s) 20, (ts) € [é1,&] % [&1,p(&)]- (2.35)

Proof. The lemma follows from (2.28), Lemmas 2.1 and 2.2 immediately. O

Lemma 2.5. Assume that the conditions (H1) and (H2) are satisfied. If h € C[a, b], then the boundary
value problem

y* () -y (@(®) =h(t), telab],
y(@=0,  y(o*®))+iy*(c*(b)) =0, (2.36)

@) -y (@) =0, Yyt (&) +6y* (&) =0
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has a unique solution

o?(b) 9]
y(t) ZJ Gi(t,¢) L Ga(¢,5)h(s)AsAg,

a

where

Gi(t,s) = 1 { (o%(b) —o(s)+A)(t—a), t<s,

o2(b)—a+A

GZ(tl S) = l

w(o(s)e(t), t<s,
D

p(tg(o(s)), t=2a(s).
Here D, ¢, ¢ are as in (2.4), (2.5), and (2.6), respectively.
Proof. Let us consider the following BVP:

v () = - fz Ga(t, s)h(s)As, te [a, oz(b)],

&

y(a) =0, y(az(b)> + Ayt (az(b)> = 0.

(o%(b) —t+ 1) (o(s)—a), t>o(s),

(2.37)

(2.38)

(2.39)

(2.40)

The Green’s function associated with the BVP (2.40) is Gy (¢, s). This completes the proof. O

Lemma 2.6. Assume that the conditions (H1)-(H3) are satisfied. If y satisfies
At A?
y® —qt)y” (o(h) 20, te(ab],
y@20,  y(c*®)+iy* (b)) 20,
@) -y @) <0,y (&) + 6y (&) <O,

then y(t) > 0, t € [a,0%(b)] and y*’(t) <0, t € [a, o (b)].

Proof. Let

v () - qt)y® (o) = h(t), te[ab],
y(a) = ty, y(o‘z(b)> + .)L]/A <0'2(b)> =1,

@) -y @) =t Yy (&) +6y* (&) = t,

wherety >0, t; >0, £, <0, £3<0, h >0.

(2.41)

(2.42)
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It is easy to check that y and y2* can be given by the expression

o2 (b) o2(b) &
y(t) =S(t) - f G1(t,¢)R(&)A¢ + f Gl(t,g)J Ga(¢,s)h(s)AsA¢,

u ‘ : (2.43)

) 133

v (1) = R(t) - f Ga(t,s)h(s)As,
&
where
1
S(t) = m [(0'2(19) + A= t)to + (t - a)tl],

(2.44)

R() = L[ - &)+ )t + (&2 -0 +6)ta],

and Gi(t,s), Ga(t,s)are as in (2.38) and (2.39), respectively. The hypothesis of the lemma
implies that S(t) > 0 for t € [a,0%(b)], R(t) < 0 for t € [a,0(b)], Gi(t,s) > O for (t,5) €
[a,0%(b)] x [a,0(b)], and Ga(t,s) > O for (t,5) € [a,0(b)] x [a,b]. Therefore, we get y(t) > 0
for t € [a,0%(b)] and yAz(t) <0fort € [a,0(b)]. The proof is completed. O

3. Upper and Lower Solution Method

In this section, we present existence results for the BVP (1.1) by using the method of upper
and lower solutions. We define the set

n kn
D= {y:yA ec[a,o4(b)] , k:0,1,2,3,4}. (3.1)

Definition 3.1. Letting a(t) € D on [a,c*(b)], we say a is a lower solution for the problem
(1.1) if a satisfies

a®' (1) - q(ha* (o) < f (L alo®),a* (@ (1),
a(@) <0,  a(o?(h))+Lat(c*(b)) <0, (3.2)

gt (@) —nat’ (@) 20, ya® (&) +6a* (&) > 0.

Definition 3.2. Letting B(t) € D, on [a,o*(b)], we say f is an upper solution for the problem
(1.1) if p satisfies

B (1) - a®p (o)) > £ (L p0(), f* (o),
Bla)>0,  p(o*®)) +1p2(o*(b)) 20, (3.3)
SV (@) - npt(a) <0, BN (&) + 6PN (&) <O
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We assume that the function f(t, y, y2") satisfies the following condition.

(H4) f : [a,b] xR xR — R is continuous and satisfies

f(t,y2,z) - f(t,y1,2) 20, for a(o(t)) <yr <y» <P(o(t)), z€R, te[ab], 6
f(ty,z2) - f(t,y,21) <0, for p(0(t) < z1 < zp < a® (0(t)), y €R, t€ [a,b], ’

where a, f§ are lower and upper solutions, respectively, for the BVP (1.1), and satisfy a <

B a® > pr.

Theorem 3.3. Assume that the conditions (H1)—(H4) are satisfied. Then the problem (1.1) has a solu-
tion y(t) with

a) <y <pE), a2 yd ) 2 Y0 (35)

fort € [a,0%(b)] and t € [a,c(D)], respectively.

Proof. Consider the BVP,

v (1) - qy* (0®) = F(ty(®),y* (@), telabl,
y(@ =0, y(c*®))+iy*(c*®)) =0, (3.6)

W) -yr @) =0, yyt(&) +6y¥ (&) =0,
where

fr(t,a(ot),y), x<a(o(t)),
E(t,x,y) = f(txy), a(o(t)) <x < po(t)),
fr(tpe®)y), x>p®),
f(tx ¥ 01), y<pom),
frxy) =4 ftxy), B (o)) <y <a¥(o(h)),
F(bxa®©@®), y>a¥ (o),

(3.7)

By Lemma 2.5, it is clear that the solutions of the BVP (3.6) are the fixed points of the operator

o*(b)

Ay - | G«n@)fGz(g,s)F(s,yw(s»,y“<o<s>))AsA§, telact®)], @G8)

a
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where Gi(t,s) and Gy(t,s) are as in (2.38) and (2.39), respectively. It is clear that A is
continuous. Since the function f (t,y, y*") satisfies the conditions (3.4),

f(tato®),a* @) <F(Ly,y*) < f(LA0®), ¥ (01)) fortelab]. (39

Thus, there exists a positive constant M such that |F(t,y, y**)| < M, which implies that the
operator A is uniformly bounded. Moreover, the operator A is equicontinuous. Therefore,
from the Arzela-Ascoli theorem, the operator A is a compact operator. Thus, by Schauder’s
fixed point theorem, there exists a solution y of the BVP (3.6).

Suppose y* is a solution of the BVP (3.6). Since f (t,y, y**) satisfies the conditions (3.4),
we know that

f(bato®),a @) <F(by',y™") < f(Lpo®),p* (0®1)) fortelabl. (310)
Thus,

B-v)* O -a0(-y)* (1)
> f(t,B(o(t), F(o(®)))
F(Ly'(0®),y* (0®)) 20, telabl,

B-y)@=20,  (B-y)(*®)+1(B-y)"(*®) 20,
LBy @) -n(B-y) @) <0 y(B-y) ) +6(-y)Y (&) <O.

(3.11)

By virtue of Lemma 2.6, y*(t) < p(t) for t € [a,0?(b)] and y*AZ (t) > pA(t) for t € [a,0(b)].
If 02 (b) is right-scattered, by using the inequality (8 — y*)(02(b)) + A(f - y*)* (62(b)) > 0, we
get the inequality (A/(0°(b) —0?(b))) (B~ y*)(6°(b)) > ((A/ (0 (b) =a(b))) = 1) (B~ y*) (6> (b)).
So we get y*(t) < B(t) on [a,c%(b)]. If 6%(b) is right-dense, it is trivial that the inequality
y*(t) < B(t) holds on [a, c*(b)]. Similarly, one can show that a(t) < y*(t) for t € [a,0°(b)] and

rxAz(t) > y*Az (t) for t € [a,o(b)]. This completes the proof. O

Theorem 3.4. Assume that the conditions (H1)—(H4) are satisfied. Then there exist two monotone
sequences {a,} and {f,}, nonincreasing and nondecreasing, respectively, with ay = a and fy = p,
which converge to the extremal solutions in [f, a] of the problem (1.1).

Proof. For any function & which satisfies a(t) < &(t) < p(t) for t € [a,0%(b)], consider the
following problem:

¥ (- qy* (1) = (1, 8(0(1), 84 (1)), telab],
y(a) =0, y(az(b)> +Ayh (o-z(b)> -0, (3.12)

@) -y (@) =0, yy* (&) + 6y~ (&) = 0.
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Clearly, this problem is type (2.12). Obviously, it has a unique solution given by the
expression

o(b) 5 i
v - | Gz(tlé)L Gi&,9)f (5, 8(0(s)), 8% (0(s)) ) AsAZ = AB(H), ¢ € [a,0*(B)].

(3.13)
Step1. a < Aa, Ap< pon [a,0°(b)] and a®’ > (Ax)®, (AP)Y > 2" on [a,0(b)].
Let Aa(t) = w(t). Thus
(w-a)® (t) - q(t) (w - )™ (o (1))
> f(talo®),a (@)
—f(t,a(o(t)),aAz(o(t))> =0, telab], (3.14)

(w-a)(a) >0, (w-a) <02(b)> + Mw - a)® <02(b)) >0,

Sw-a) @) -nw-a)* (@) <0,  yw-a)* (&) +6w-a)* (&) <0.

Using Lemma 2.6, we obtain that a < Aa, ad’ > (Aoc)Az on [a,0?(b)] and [a,c(b)], resp-
ectively. In case that o?(b) is right scattered, the assumptions A > o°(b) — ¢%(b) and (w -
a)(62(b)) + (w — a)® (6%(b)) > 0 imply that a(c®(b)) < (Aa)(c®(b)). Similarly, we show that
(AP)(t) < (1), (Aﬂ)Az(t) > A’ (t) on [a,0°(b)] and [a, o (b)], respectively.

Step 2. If y1,y» € [a, Bl; ylAz,yzAz € [pY,a”], y1 <ypand yZA2 < ylAZ, then we have Ay, < Ay,
and (Ayy)® > (Ay,)~.
Let Ay: = w; and Ay, = w,. Thus

(w2 = 01)™ (£) = q(t) (w2 — 1) * (0 (1))
= f(Ly2(0()),y5" (0(1))
(L y1(0®), ¥ (@) 20, telab],
(w2~ w)(@) =0, (w2 ~wn)(0*(b)) + w2 ~w1)*(o(b)) =0,
S —w)™ (1) - n(wr —w)* (G1) =0, y(wa —w1)* (&) + 6(wr - w01)* (&) :((;. 5

Hence we get that Ay (t) < Aya(t) and (Ay1)> () > (Ay2)™ () on [a,0°(b)] and [a,0(b)],
respectively.
Now, we define the sequences {a,(t)} and {f,(t)} by

ao(t) = a(t), ama(t) = Aan(t), Po(t) = (), Pur(t) = APu(t), forn>0.  (3.16)
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From the properties of A, we have

a=ag<ay < <Pu<--<Pi<Po=p,

2 2 2 2 2 2 2 (317)
at =af <af <o <Py < <PY <P =P
But then a* and f* defined by
o = lima,,  f=limp, o =lma®, p* = limp, (3.18)
are extremal solutions of (1.1).
O
Example 3.5. Consider the BVP
4 2 2 3
v -y o) =y o), te |34,
y<§> =0, y(PW)+y* (@) =0 (.19)
2 4 4

M) -3y @) =0, 7y¥3)+8y~(3) =0,

where o(4) < 29/7 and ¢°(4) - 0?(4) < 1. It is easy to check that a(t) = 0, f(t) = t are lower
and upper solutions of the BVP (3.19), respectively, and that all assumptions of Theorem 3.3
are fulfilled. So the BVP (3.19) has a solution y(t) satisfying 0 < y(t) < t for t € [3/2,0°(4)],
y2(t) = 0fort € [3/2,0(4)].
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