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We study the existence of periodic solutions of some second-order Hamiltonian systems with
impulses. We obtain some new existence theorems by variational methods.

1. Introduction

Consider the following systems:

ü(t) = f(t, u(t)), a.e. t ∈ [0, T],

Δu̇(tk) = gk
(
u
(
t−k
))
, k = 1, 2, . . . , m,

u(T) − u(0) = u̇(T) − u̇(0) = 0,

(1.1)

where k ∈ Z, u ∈ R
n, Δu̇(tk) = u̇(t+

k
) − u̇(t−

k
) with u̇(t±

k
) = limt→ t±

k
u̇(t), gk(u) = gradu

Gk(u), Gk ∈ C1(Rn,Rn) for each k ∈ Z, there exists an m ∈ Z such that 0 = t0 < t1 < · · · < tm <
tm+1 = T , and we suppose that f(t, u) = graduF(t, u) satisfies the following assumption.

(A) F(t, x) is measurable in t for x ∈ R
n and continuously differentiable in x for a.e.

t ∈ [0, T], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|F(t, x)| + ∣∣f(t, x)
∣∣ ≤ a(|x|)b(t), (1.2)

for all x ∈ R
n and t ∈ [0, T].
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Many solvability conditions for problem (1.1) without impulsive effect are obtained,
such as, the coercivity condition, the convexity conditions (see [1–4] and their references),
the sublinear nonlinearity conditions, and the superlinear potential conditions. Recently,
by using variational methods, many authors studied the existence of solutions of some
second-order differential equations with impulses. More precisely, Nieto in [5, 6] considers
linear conditions, [7–10] the sublinear conditions, and [11–16] the sublinear conditions
and the other conditions. But to the best of our knowledge, except [7] there is no result
about convexity conditions with impulsive effects. By using different techniques, we obtain
different results from [7].

We recall some basic facts which will be used in the proofs of our main results. Let

H1
T =

{
u : [0, T] −→ R

n absolutely continuous; u(0) = u(T), u̇(t) ∈ L2(0, T ;Rn)
}
, (1.3)

with the inner product

〈u, v〉 =
∫T

0
(u(t), v(t))dt +

∫T

0
(u̇(t), v̇(t))dt, ∀u, v ∈ H1

T , (1.4)

where (·, ·) denotes the inner product in R
n. The corresponding norm is defined by

‖u‖ =

(∫T

0
(u(t), u(t))dt +

∫T

0
(u̇(t), u̇(t))dt

)1/2

, ∀u ∈ H1
T . (1.5)

The spaceH1
T has some important properties. For u ∈ H1

T , let u = (1/2T)
∫T
0 u(t)dt, and

ũ = u(t) − u. Then one has Sobolev’s inequality (see Proposition 1.3 in [1]):

‖ũ‖2∞ ≤ T

12

∫T

0
|u̇(t)|2dt. (1.6)

Consider the corresponding functional ϕ on H1
T given by

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, u(t))dt +

m∑

k=1

Gk(u(tk)). (1.7)

It follows from assumption (A) and the continuity of gk one has that ϕ is continuously
differentiable and weakly lower semicontinuous onH1

T . Moreover, we have

〈
ϕ′(u), v〉 =

∫T

0
(u̇(t), v̇(t))dt +

∫T

0

(
f(t, u(t)), v(t)

)
dt +

m∑

k=1

(
gk(u(tk)), v(tk)

)
, (1.8)

for u, v ∈ H1
T and ϕ′ is weakly continuous and theweak solutions of problem (1.1) correspond

to the critical points of ϕ (see [8]).
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Theorem 1.1 ([2, Theorem 1.1]). Suppose that V and W are reflexive Banach spaces, ϕ ∈ C1(V ×
W,R), ϕ(v, ·) is weakly upper semi-continuous for all v ∈ V , and ϕ(·, w) : V → R is convex for all
w ∈ W and ϕ′ is weakly continuous. Assume that

ϕ(0, w) −→ −∞ (1.9)

as ‖w‖ → ∞ and for everyM > 0,

ϕ(v,w) −→ +∞, (1.10)

as ‖v‖ → ∞ uniformly for ‖w‖ ≤ M. Then ϕ has at least one critical point.

2. Main Results

Theorem 2.1. Assume that assumption (A) holds. If further

(H1) F(t, ·) is convex for a.e. t ∈ [0, T], and

(H2) there exist η, θ > 0 such that Gk(x) ≥ η|x| + θ, for all x ∈ R
n, then (1.1) possesses at least

one solution in H1
T .

Remark 2.2. (H1) implies there exists a point x for which

∫T

0
∇F(t, x)dt = 0. (2.1)

Proof of Theorem 2.1. It follows Remark 2.2, (1.6), and (H2) that

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
(F(t, u(t)) − F(t, x))dt +

∫T

0
F(t, x)dt +

m∑

k=1

Gk(u(tk))

=
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), u(t) − x

)
dt +

m∑

k=1

Gk(u(tk))

≥ 1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), ũ

)
dt +

m∑

k=1

η|ũ + u| +mθ

≥ 1
2

∫T

0
|u̇(t)|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)

‖ũ‖∞ +mη|u| −mη‖ũ‖∞ +mθ

≥ 1
2

∫T

0
|u̇(t)|2dt − C0

(∫T

0
|u̇(t)|2dt

)1/2

+mη|u| +mθ,

(2.2)

for all u ∈ H1
T and some positive constant C0. As ‖u‖ → ∞ if and only if (|u|2 + ‖u̇‖22)1/2 →

∞, we have ϕ(u) → +∞ as ‖u‖ → ∞. By Theorem 1.1 and Corollary 1.1 in [1], ϕ has a
minimum point in H1

T , which is a critical point of ϕ. Hence, problem (1.1) has at least one
weak solution.
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Theorem 2.3. Assume that assumption (A) and (H1) hold. If further

(H3) there exist η, θ > 0 and α ∈ (0, 2) such that Gk(x) ≤ η|x|α + θ for all x ∈ R
n and

(H4) there exist some β > α and γ > 0 such that

|x|−β
∫T

0
F(t, x)dt ≤ −γ, (2.3)

for |x| ≥ M and t ∈ [0, T], whereM is a constant, then (1.1) possesses at least one solution in H1
T .

Remark 2.4. We can find that our condition (H4) is very different from condition (vii) in [7]
since we prove this by the saddle point theorem substituted for the least action principle.

Proof of Theorem 2.3. We prove ϕ satisfies the (PS) condition at first. Suppose {un} is such an
sequence that {ϕ(un)} is bounded and limn→∞ϕ′(un) = 0. We will prove it has a convergent
subsequence. By (H3) and (1.6), we have

m∑

k=1

Gk(u(tk)) ≤
m∑

k=1

η|ũ(tk) + u|α +mθ

≤ 4mη
(|ũ(tk)|α + |u|α) +mθ

≤ C1‖u̇‖α2 + C2|u|α + C3,

(2.4)

for some positive constants C1, C2, C3. By Remark 2.2, (1.6), and (2.4), we have

ϕ(un) =
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
(F(t, un(t)) − F(t, x))dt +

∫T

0
F(t, x)dt +

m∑

k=1

Gk(un(tk))

=
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), un(t) − x

)
dt +

m∑

k=1

Gk(un(tk))

=
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), ũn

)
dt +

m∑

k=1

Gk(un(tk))

≥ 1
2

∫T

0
|u̇n(t)|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)

‖ũn‖∞ − C1‖u̇n‖α2 − C2|un|α − C4

≥ 1
2

∫T

0
|u̇n(t)|2dt − C5

(∫T

0
|u̇n(t)|2dt

)1/2

− C1‖u̇n‖α2 − C2|un|α − C4,

(2.5)

for some positive constants C4, C5, which implies that

C|un|α/2 ≥
(∫T

0
|u̇n(t)|2dt

)1/2

− C6, (2.6)
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for some positive constants C, C6. By (1.6), the above inequality implies that

‖ũn‖∞ ≤ C7

(
|un|α/2 + 1

)
, (2.7)

for the positive constant C7. The one has

|un(t)| ≥ |un| − |ũn| ≥ |un| − ‖ũn‖∞ ≥ |un| − C7

(
|un|α/2 + 1

)
, ∀t ∈ [0, T]. (2.8)

If {|un|} is unbounded, we may assume that, going to a subsequence if necessary,

|un| −→ ∞ as n −→ ∞. (2.9)

By (2.8) and (2.9), we have

|un(t)| ≥ 1
2
|un|, (2.10)

for all large n and every t ∈ [0, T]. By (2.10) and (H4), one has |un(t)| ≥ M for all large n. It
follows from (H4), (2.4), (2.6), (2.7), and above inequality that

ϕ(un) ≤
(
C|un|α/2 + C6

)2 −
∫T

0
γ |un(t)|βdt + C2‖ũ‖α∞ + C2|u|α + C3

≤
(
C|un|α/2 + C6

)2 − 2−β|un|βTγ + C8

(
|un|α/2 + 1

)α
+ C2|u|α + C3,

(2.11)

for large n and the positive constant C8, which contradicts the boundedness of ϕ(un) since
β > α. Hence (|un|) is bounded. Furthermore, (un) is bounded by (2.6). A similar calculation
to Lemma 3.1 in [9] shows that ϕ satisfies the (PS) condition. We now prove that ϕ satisfies
the other conditions of the saddle point theorem. Assume that H̃1

T = {u ∈ H1
T : u = 0}, then

H1
T = H̃1

T ⊕ R
n. From above calculation, one has

ϕ(u) ≥ 1
2

∫T

0
|u̇(t)|2dt − C5

(∫T

0
|u̇(t)|2dt

)1/2

− C1‖u̇‖α2 − C4, (2.12)

for all u ∈ H̃1
T , which implies that

ϕ(u) −→ +∞, (2.13)
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as ‖u‖ → ∞ in H̃1
T . Moreover, by (H3) and (H4)we have

ϕ(x) =
∫T

0
F(t, x)dt +

m∑

k=1

Gk(x)

≤ − Tγ |x|β +mη|x|α +mθ,

(2.14)

for |x| > M, which implies that

ϕ(x) −→ −∞, (2.15)

as |x| → ∞ in R
n since β > α. Now Theorem 2.3 is proved by (2.13), (2.15), and the saddle

point theorem.

Theorem 2.5. Assume that assumption (A) holds. Suppose that F(t, ·), Gk(x) are concave and satisfy

(H5) Gk(x) ≤ −η|x| + θ for some positive constant η, θ > 0, then (1.1) possesses at least one
solution in H1

T.

Proof of Theorem 2.5. Consider the corresponding functional ϕ on R
n × H̃1

T given by

ϕ(u) = −1
2

∫T

0
|u̇(t)|2dt −

∫T

0
F(t, u(t))dt −

m∑

k=1

Gk(u(tk)), (2.16)

which is continuously differentiable, bounded, and weakly upper semi-continuous on H1
T .

Similar to the proof of Lemma 3.1 in [2], one has that ϕ(x +w) is convex in x ∈ R
n for every

w ∈ H̃1
T . By the condition, we have −Gk(x+w) ≥ −2Gk((1/2)x)+Gk(−w). Similar to the proof

of Theorem 3.1, we have

ϕ(x +w) = − 1
2

∫T

0
|ẇ|2dt −

∫T

0
F(t, x +w)dt −

m∑

k=1

Gk(x +w)

≥ − 1
2

∫T

0
|ẇ|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)

‖w‖∞ −
m∑

k=1

Gk(x +w) + C9

≥ − 1
2

∫T

0
|ẇ|2dt − C0

(∫T

0
|ẇ|2dt

)1/2

− 2Gk

(
1
2
x

)
+Gk(−w) + C9,

(2.17)
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which means ϕ(x+w) → +∞ as |x| → ∞, uniformly forw ∈ H̃1
T with ‖w‖ ≤ M by (H5) and

(1.6). On the other hand,

ϕ(w) = − 1
2

∫T

0
|ẇ|2dt −

∫T

0
F(t,w)dt −

m∑

k=1

Gk(w)

≤ − 1
2

∫T

0
|ẇ|2dt + C0

(∫T

0
|ẇ|2dt

)1/2

+mη‖w‖∞ + C9,

(2.18)

which implies that ϕ(w) → −∞ as ‖w‖ → ∞ ∈ H̃1
T by (H5) and (1.6). We complete our proof

by Theorem 1.1.
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