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The paper deals with the existence of solutions of elliptic equations in the framework of Orlicz
spaces with right-hand side measure and natural growth term.

1. Introduction

We deal with boundary value problems

A(u) = g(u)M(|∇u|) + μ in Ω,

u = 0 on ∂Ω,

(
Pμ
)

where

A(u) = −div(a(·, u,∇u)), (1.1)

Ω is a bounded domain of RN , with the segment property. a : Ω × R × RN → RN is a
Carathéodory function (i.e., measurable with respect to x in Ω for every (s, ξ) in R ×RN , and
continuous with respect to (s, ξ) in R × RN for almost every x in Ω) such that there exist two
N-functions P �M and for all ξ, ξ∗ ∈ RN , ξ /= ξ∗, the following hypotheses are true

a(x, s, ξ)ξ ≥ αM
( |ξ|
λ

)
, (1.2)

[a(x, s, ξ) − a(x, s, ξ∗)][ξ − ξ∗] > 0, (1.3)

|a(x, s, ξ)| ≤ c(x) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ξ|), (1.4)
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where c(x) belongs to EM(Ω), c ≥ 0, ki (i = 1, 2, 3, 4) to R+, and α, λ to R+
∗ .

M(t) � tN,

∫+∞

·

M(t)
t1+N ′ dt = +∞, (1.5)

g : R+ −→ R+ an integrable function on R+, (1.6)

μ ∈M+
b (Ω). (1.7)

For the sake of simplicity, we suppose in (1.2) that α = λ = 1.
This paper is devoted to study the Dirichlet problem for some nonlinear elliptic

equations whose simplest model is

−Δpu = g(u)|∇u|p + μ. (1.8)

This kind of problems has beenwidely studied.Many authors have proved results for second-
order elliptic problems with lower-order terms depending on the gradient; these works
include, for instance, [1–6]. After the classical example by Kazdan and Kramer (see [7]),
which shows that (1.8) cannot always have solutions, two different kind of questions have
been considered. On the one hand, in some papers, the existence of solutions when the source
f is small in a suitable norm are proved. On the other hand, conditions on which the function
g have been considered in order to get a solution for all f in a given Lebesgue space. This is
the way chosen in [1, 5, 6] under the hypothesis g ∈ L1.

In [8], the authors present some results concerning existence, nonexistence, multiplic-
ity, and regularity of positive solutions for two elliptic quasilinear problems with Dirichlet
data in a bounded domain. The first problem is similar to (1.8) and the other is

−Δpv = λf(x)(1 + b(v))p−1, (1.9)

where λ, f , b, g required some specified conditions. The first one, of unknown u, involves a
gradient term with natural growth. The second one, of unknown v, presents a source term of
order 0. They gave and established a precise connection between problems in u and v. Also,
they proved a result of existence for the problem in v with general bounded Radon measures
data and obtained some results for the problem in u by using the connection between these
two problems. Other authors have established this connection between the two problems
(1.8) and (1.9); one can see, for example, [9].

Many researchers have investigated the possibility to find solutions of (1.8) under
the sign condition g(s)s ≥ 0, in which case the term g(u)|∇u|p is said to be an absorption
term. In [5], the author treated the problem (1.8) without using the above sign condition but
by supposing the summability of the function g. The principal tools used is the Lebesgue
decomposition theorem (see [10]) and the cut functions with respect to the measure μ. The
result given is optimal.

In the spirit of the work [5], our purpose in this paper is to prove existence results
in the setting of the Orlicz Sobolev space W1LM(Ω) when the operator does not satisfy the
classical polynomial growth.
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2. Preliminaries

LetM : R+ → R+ be anN-function, that is,M is continuous, convex, withM(t) > 0 for t > 0,
M(t)/t → 0 as t → 0 and M(t)/t → ∞ as t → ∞. The N-function M conjugate to M is
defined byM(t) = sup{st −M(s) : s > 0}.

Let P and Q be two N-functions. P � Q means that P grows essentially less rapidly
than Q; that is, for each ε > 0,

P(t)
Q(εt)

−→ 0 as t −→ ∞. (2.1)

TheN-functionM is said to satisfy the Δ2 condition if for some k > 0:M(2t) ≤ kM(t) for all
t ≥ 0; when this inequality holds only for t ≥ t0 > 0,M is said to satisfy the Δ2 condition near
infinity.

LetΩ be an open subset ofRN . The Orlicz classLM(Ω) (resp., the Orlicz space LM(Ω))
is defined as the set of (equivalence classes of) real-valued measurable functions u onΩ such
that

∫
ΩM(u(x))dx < +∞ (resp.

∫
ΩM(u(x)/λ)dx < +∞ for some λ > 0).

Note that LM(Ω) is a Banach space under the norm ‖u‖M,Ω = inf{λ > 0 :∫
ΩM(u(x)/λ)dx ≤ 1} and LM(Ω) is a convex subset of LM(Ω). The closure in LM(Ω) of
the set of bounded measurable functions with compact support in Ω is denoted by EM(Ω).
In general EM(Ω)/=LM(Ω) and the dual of EM(Ω) can be identified with LM(Ω) by means of
the pairing

∫
Ω u(x)v(x)dx, and the dual norm on LM(Ω) is equivalent to ‖ · ‖M,Ω.

We now turn to the Orlicz-Sobolev space. W1LM(Ω) (resp. W1EM(Ω)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lie in LM(Ω)
(resp. EM(Ω)). This is a Banach space under the norm ‖u‖1,M,Ω =

∑
|α|≤1 ‖Dαu‖M,Ω. Thus

W1LM(Ω) and W1EM(Ω) can be identified with subspaces of the product of N + 1 copies
of LM(Ω). Denoting this product by ΠLM, we will use the weak topologies σ(ΠLM,ΠEM)
and σ(ΠLM,ΠLM). The space W1

0EM(Ω) is defined as the (norm) closure of the Schwartz
space D(Ω) in W1EM(Ω) and the space W1

0LM(Ω) as the σ(ΠLM,ΠEM) closure of D(Ω) in
W1LM(Ω). We say that un converges to u for the modular convergence in W1LM(Ω) if for
some λ > 0,

∫
ΩM((Dαun − Dαu)/λ)dx → 0 for all |α| ≤ 1. This implies convergence for

σ(ΠLM,ΠLM). If M satisfies the Δ2 condition on R+ (near infinity only when Ω has finite
measure), then modular convergence coincides with norm convergence.

Fore more details about the Orlicz spaces and their properties one can see [11, 12].
For k > 0, we define the truncation at height k, Tk : R → R by: Tk(s) = max(−k,

min(k, s)).

3. Main Result

3.1. Useful Results

First, we give the following definitions and results which will be used in our main result.
The p-capacity Cp(B,Ω) of any set B ⊂ Ω with respect to Ω is defined in the following

classical way. The p-capacity of any compact set K ⊂ Ω is first defined as

Cp(K,Ω) = inf
{∫

Ω

∣∣∇ϕ∣∣pdx : ϕ ∈ D(Ω), ϕ ≥ χK
}
, (3.1)
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where χK is the characteristic function of K; we will use the convention that infφ = +∞. The
p-capacity of any open subsetU ⊂ Ω is then defined by

Cp(U,Ω) = sup
{
Cp(K,Ω), K compact K ⊂ Ω

}
. (3.2)

Finally, the p-capacity of any subset B ⊂ Ω is defined by

Cp(B,Ω) = inf
{
Cp(U,Ω), U open B ⊂ U}. (3.3)

Definition 3.1. We say that u is a weak solution of the problem
(
Pμ
)
if

u is measurable, Tk(u) ∈W1
0LM(Ω),

∫

Ω
a(·, u,∇u)∇v dx =

∫

Ω
g(u)M(|∇u|)v dx +

∫

Ω
v dμ ∀v ∈ D(Ω).

(3.4)

We defineMb(Ω) as the space of all Radon measures onΩwith bounded total variation, and
Cb(Ω) as the space of all bounded, continuous functions on Ω, so that

∫
Ω ϕdμ is defined for

ϕ ∈ Cb(Ω) and μ ∈Mb(Ω).

We say that a sequence (μn) of measures inMb(Ω) converges to a measure μ inMb(Ω)
if

lim
n→+∞

∫

Ω
ϕdμn =

∫

Ω
ϕdμn (3.5)

for every ϕ ∈ Cb(Ω). If this convergence holds only for all the continuous functions ϕ with
compact support in Ω, then we have the usual weak ∗ convergence inMb(Ω).

Lemma 3.2. Under the hypotheses (1.2)–(1.6), f ∈ L∞(Ω) and f ≥ 0, there exists at least one
positive weak solution of the problem

A(u) = g(u)M(|∇u|) + f in Ω,

u = 0 on ∂Ω.

(
Pf
)

For the proof see [12].
Let M be a fixed N-function, we define K as the set of N functions D satisfying the

following conditions:

(i) M(D−1(s)) is a convex function,

(ii)
∫ ·
0DoB

−1(1/r1−1/N)dr < +∞, B(t) =M(t)/t,

(iii) there exists anN-functionH such thatHoM
−1
oM ≤ D andH ≤ D near infinity.
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Lemma 3.3. Let (un) be a sequence of solutions of the problem

A(un) = Fn,

un ∈W1
0LM(Ω),

(3.6)

where (Fn) is a sequence of functions bounded in L1(Ω). Then (un) is bounded in W1
0LD(Ω) for all

N-functions D ∈ K.

For the proof one can see that the technique used in [13] and adapted to the elliptic
case gives the result, but for the simplicity we give a sketched proof.

Proof. Let denote by XN =: NC1/N
N , CN the measure of the unit ball of RN , and μ(θ) = |{|u| >

θ}|.
Let ϕ be a truncation defined by

ϕ(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 0 ≤ ξ ≤ θ
1
h
(ξ − t) θ < ξ < θ + h

1 ξ ≥ θ + h
−ϕ(−ξ) ξ < 0

(3.7)

for all θ, h > 0.
Using v = ϕ(un) as a test function, we obtain after tending h to zero

− d

dθ

∫

{|un|>θ}
M(|∇un|)dx ≤ C

∫

{|un|≥θ}
|Fn|dx. (3.8)

Following the same way as in [14], we have for D ∈ K,

− d

dθ

∫

{|un|>θ}
D(|∇un|)dx ≤ (−μ′(θ)

)
DoB−1

((

− 1

XNμ(θ)
1−1/N

d

dθ

∫

{|un|>θ}
M(|∇un|)dx

))

.

(3.9)

We obtain

− d

dθ

∫

{|un|>θ}
D(|∇un|)dx ≤ (−μ′(θ)

)
DoB−1

(

− C

XNμ(θ)
1−1/N

)

. (3.10)

So,

∫

Ω
D(|∇un|)dx =

∫+∞

0

(

− d

dθ

∫

{|un|>θ}
D(|∇un|)dx

)

dt

≤ 1
C′

∫C′ |Ω|

0
DoB−1

((
C

s1−1/N

))
ds.

(3.11)

Then the sequence (un) is bounded inW1
0LD(Q).
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Lemma 3.4. Let μ be a nonnegative Radon measure which is concentrated in a set E of zero p-capacity.
Then there exists a sequence (ψδ) of D(Ω) functions such that

lim
δ→∞

∫

Ω

∣
∣∇ψδ

∣
∣pdx = 0, 0 ≤ ψδ ≤ 1, lim

δ→∞

∫

Ω

(
1 − ψδ

)
dμ = 0. (3.12)

For the proof see [15].

Remark 3.5. By the above lemma, we have that (ψδ) converge to zero both strongly inW1,p
0 (Ω),

a.e. in Ω, and in the weak ∗ topology of L∞(Ω).

3.2. Existence Result

In what follows, we suppose that the set K is nonempty.

Theorem 3.6. Let x0 ∈ Ω, under the hypotheses (1.2)–(1.6) and N ≥ 2, there exists at least one
positive weak solution of the problem

A(u) = g(u)M(|∇u|) + δx0 in Ω,

u = 0 on ∂Ω.

(
Pδx0

)

Remark 3.7. (1) The conditionN ≥ 2 is very important to ensure the existence of cut functions
for the measure δx0 . The case N = 1 is easily treated, since we come back to the variational
case.

(1.9) The condition
∫+∞
· (M(t)/t1+N

′
)dt = +∞ is supposed to guarantee that we are not

in the variational case and the study has a sense (see [16]).

Remark 3.8. The conditions (i), (ii), and (iii) permit us to determine the regularity of the
solutions of

(
Pδx0

)
and improve the one given by Porretta in [5]. IfM(t) = tp, one can find a

solution u such that
∫
Ω |∇u|N(p−1)/(N−1)/Logσ(e + |∇u|) < +∞, for some σ > 1.

Remark 3.9 (see [5]). The condition g ∈ L1 is optimal in the sense introduced by Porretta in
[5].

Indeed, if μ is the Dirac mass, there is no solution which can be obtained by approxi-
mation. In particular, in the reaction case (g(s)s ≤ 0), if μ is approximated by a sequence of
smooth functions, the sequence of approximating solutions converges to a solution of

(
Pμ
)
if

g ∈ L1, while it blows up everywhere if g /∈ L1.
Finally, let us say a few words on how positive constant will be denoted hereafter. If

no otherwise specified, we will write C to denote any positive constant (possibly different)
which only depends on the data, that is on quantities that are fixed in the assumptions (N,
Ω, and so on. . .); in any case such constants never depend on the different indexes having
a limit. In the sequel and throughout the paper, we will omit for simplicity the dependence
on x in the function a(x, s, ξ) and denote ε(n, j, δ, s,m) all quantities (possibly different) such
that

lim
m→∞

lim
s→∞

lim
δ→∞

lim
j→∞

lim
n→∞

ε
(
n, j, δ, s,m

)
= 0, (3.13)
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and this will be in the order in which the parameters we use will tend to infinity, that is,
first n, then j, δ, s, and finallym. Similarly, we will write only ε(n), or ε(n, j), . . . to mean that
the limits are made only on the specified parameters. Moreover, for the sake of simplicity, in
what follows, the convergence, even if not explicitly stressed, may be understood to be taken
possibly up to a suitable subsequence extraction.

3.2.1. A Sequence of Approximating Problems

Consider the approximate problem

A(un) = g(un)M(|∇un|) + fn in Ω,

un = 0 in ∂Ω,

(
Pfn
)

where (fn) is a smooth sequence of functions such that ‖fn‖1 ≤ C and fn ⇀ δx0 inMb(Ω).
The existence of solutions of the above problem un ∈ W1

0LM(Ω) was ensured by
Lemma 3.2.

3.2.2. A Priori Estimates

Lemma 3.10. There exists a subsequence of (un) (also denoted (un)); there exists a measurable
function u such that Tk(u) ∈ W1

0LM(Ω) and Tk(un) ⇀ Tk(u) weakly in W1
0LM(Ω), strongly in

EM(Ω), and a.e. in Ω.

Proof. Let v = Tk(un) exp(
∫un
0 g(s)ds) as test function in

(
Pfn
)
. One has

∫

Ω
a(x, un,∇un)∇Tk(un) exp

(∫un

0
g(s)ds

)

+
∫

Ω
a(x, un,∇un)∇ung(un)Tk(un) exp

(∫un

0
g(s)ds

)

=
∫

Ω
M(|∇un|)g(un)Tk(un) exp

(∫un

0
g(s)ds

)
+
∫

Ω
fnTk(un) exp

(∫un

0
g(s)ds

)
,

(3.14)

then

∫

Ω
M(|∇Tk(un)|) exp

(∫un

0
g(s)ds

)
dx ≤

∫

Ω
fnTk(un) exp

(∫un

0
g(s)ds

)
≤ Ck, (3.15)

so (Tk(un)) is bounded inW1
0LM(Ω).

There exist a subsequence also denoted (un) and a measurable function ωk such that

Tk(un)⇀ ωk, weakly in W1
0LM(Ω), a.e. in Ω, and strongly in EM(Ω). (3.16)
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By an easy argument we can see that, there exists a measurable function u such that

Tk(u) = ωk. (3.17)

3.2.3. Almost Everywhere Convergence of Gradients

Lemma 3.11. The subsequence (un) obtained in Lemma 3.10 satisfies

∇un −→ ∇u a.e. in Ω. (3.18)

Proof. Let us recall that since the N-capacity CN({x0},Ω) = 0, there exists a sequence (ψδ)
satisfying the Lemma 3.4 with μ = δx0 and p =N.

Step 1. In this step we will show the following:

(i) limn→+∞
∫
Ωr
(a(·, Tk(un),∇Tk(un)) − a(·, Tk(un),∇Tk(u)))(∇Tk(un) − ∇Tk(u))(1 −

ψδ)dx = 0,

(ii) limn→+∞
∫
Ωr
(a(·, Tk(un),∇Tk(un))−a(·, Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u))ψδdx =

0.

Letm > 0, k > 0 such thatm > k. Let ρm be a truncation defined by

ρm(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 |s| ≤ m,
m + 1 − |s| m < |s| < m + 1,
0 |s| ≥ m + 1.

(3.19)

Let s > 0, Ωs = {x ∈ Ω : |∇Tk(u)| ≤ s}, Ωs
j = {x ∈ Ω : |∇Tk(vj)| ≤ s}.

We denote, respectively, by χs, χsj the indicator function of Ωs,Ωs
j .

Let vj ∈ D(Ω) such that vj → Tk(u) with the modular convergence inW1
0LM(Ω) (see

[11]).
Let zj,δn,m = (Tk(un) − Tk(vj)) exp(

∫un
0 g(s)ds)(1 − ψδ)ρm(un), as test function in the

approximate problem. Then

〈
A(un), z

j,δ
n,m

〉
=
∫

Ω
g(un)M(|∇un|)zj,δn,mdx +

∫

Ω
fnz

j,δ
n,mdx := J1 + J2. (3.20)
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We have

∫

Ω
a(·, un,∇un)∇zj,δn,mdx

=
∫

Ω
a(·, un,∇un)ρm(un)

(∇Tk(un) − ∇Tk
(
vj
))

exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

−
∫

Ω
a(·, un,∇un)ρm(un)

(
Tk(un) − Tk

(
vj
))

exp
(∫un

0
g(s)ds

)
∇ψδdx

+
∫

Ω
a(·, un,∇un)∇unρ′m(un)

(
Tk(un) − Tk

(
vj
))

exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω
a(·, un,∇un)∇unρm(un)

(
Tk(un) − Tk

(
vj
))
g(un) exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

=
∫

Ω

(
a(·, Tk(un),∇Tk(un)) − a

(
·, Tk(un),∇Tk

(
vj
)
χsj

))(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

× exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω
a
(
·, Tk(un),∇Tk

(
vj
)
χsj

)(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

× exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω−Ωs
j

a(·, Tk(un),∇Tk(un))∇Tk(un)ρm(un) exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

−
∫

Ω−Ωs
j

a(·, Tk(un),∇Tk(un))∇Tk
(
vj
)
ρm(un) exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

−
∫

|un|>k
a(·, un,∇un)∇Tk

(
vj
)
ρm(un) exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω
a(·, un,∇un)∇unρ′m(un)

(
Tk(un) − Tk

(
vj
))

exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω
a(·, un,∇un)∇unρm(un)g(un) exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

= I1 + I2 + I3 + I4 + I5 + I6 + I7.
(3.21)

Then,

〈
A(un), z

j,δ
n,m

〉
=

7∑

i=1

Ii = J1 + J2. (3.22)
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About I2: it is obvious since

a
(
·, Tk(un),∇Tk

(
vj
)
χsj

)
−→ a

(
·, Tk(u),∇Tk

(
vj
)
χsj

)
strongly, (3.23)

that is

∫

Ω
a
(
·, Tk(un),∇Tk

(
vj
)
χsj

)(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

(
1 − ψδ

)
dx = ε

(
n, j
)
. (3.24)

About I4: since (Tk(un)) is bounded inW1
0LM(Ω) and ∇Tk(vj)χΩ−Ωs

j
∈ (EM(Ω))N , there exists

a measurable function hk such that (up to a subsequence also denoted Tk(un))

a(·, Tk(un),∇Tk(un))⇀ hk weakly in
(
LM(Ω)

)N
. (3.25)

Then − ∫Ω−Ωs
j
a(·, Tk(un),∇Tk(un))∇Tk(vj)(1 − ψδ)dx = − ∫Ω−Ωs

j
hk∇Tk(vj)(1 − ψδ)dx + ε(n).

Since vj → Tk(u) in modular convergence, then

−
∫

Ω−Ωs
j

hk∇Tk
(
vj
)(
1 − ψδ

)
dx = −

∫

Ω−Ωs

hk∇Tk(u)
(
1 − ψδ

)
dx + ε

(
j
)
. (3.26)

So,

−
∫

Ω−Ωs
j

a(·, Tk(un),∇Tk(un))∇Tk
(
vj
)(
1 − ψδ

)
dx = −

∫

Ω−Ωs

hk∇Tk(u)
(
1 − ψδ

)
dx + ε

(
n, j
)
.

(3.27)

About I5: since ρ(un) = 0 on the set {|un| ≥ m + 1}, then

−
∫

|un|>k
a(·, un,∇un)∇Tk

(
vj
)
ρm(un)

(
1 − ψδ

)
dx

= −
∫

|un|>k
a(·, Tm+1(un),∇Tm+1(un))∇Tk

(
vj
)
ρm(un)

(
1 − ψδ

)
dx

(3.28)

and as for I4, one has

−
∫

|un|>k
a(·, un,∇un)∇Tk

(
vj
)
ρm(un)

(
1 − ψδ

)
dx

= −
∫

|u|>k
hm+1∇Tk(u)ρm(u)

(
1 − ψδ

)
dx + ε

(
n, j
)
= ε
(
n, j
)

(3.29)

since ∇Tk(u) = 0 when |u| ≥ k.
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About I6: let v = ρm(un)(1 − ψδ) exp(
∫un
0 g(s)ds) as test function, in one hand we obtain

∫

{m≤un≤m+1}
a(·, un,∇un)∇un exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

+
∫

Ω
a(·, un,∇un)∇ung(un) exp

(∫un

0
g(s)ds

)
ρm(un)

(
1 − ψδ

)
dx

−
∫

Ω
a(·, un,∇un)∇ψδ exp

(∫un

0
g(s)ds

)
ρm(un)dx

=
∫

Ω
g(un)M(|∇un|) exp

(∫un

0
g(s)ds

)
ρm(un)

(
1 − ψδ

)
dx

+
∫

Ω
fn exp

(∫un

0
g(s)ds

)
ρm(un)

(
1 − ψδ

)
dx.

(3.30)

So,

∫

{m≤un≤m+1}
a(·, un,∇un)∇un exp

(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

≤
∫

Ω
a(·, un,∇un)∇ψδ exp

(∫un

0
g(s)ds

)
ρm(un)dx

+
∫

Ω
fn exp

(∫un

0
g(s)ds

)
ρm(un)

(
1 − ψδ

)
dx

≤ C∥∥∇ψδ
∥∥
N‖a(·, Tm+1(un),∇Tm+1(un))‖N ′ + C

∫

|un|≥m
fn
(
1 − ψδ

)
dx.

(3.31)

On the other hand

I6 =
∫

Ω
a(·, un,∇un)∇unρ′m(un)

(
Tk(un) − Tk

(
vj
))

exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

=
∫

{m≤un≤m+1}
a(·, un,∇un)∇un

(
Tk(un) − Tk

(
vj
))

exp
(∫un

0
g(s)ds

)
(
1 − ψδ

)
dx

≤ 2k

[
∥∥∇ψδ

∥∥
N‖a(·, Tm+1(un),∇Tm+1(un))‖N ′ + C

∫

|un|≥m
fn
(
1 − ψδ

)
dx

]

= ε(n, δ,m).

(3.32)

Let us come back to our main estimation (i). We have

∫

Ω

(
a(·, Tk(un),∇Tk(un)) − a

(·, Tk(un),∇Tk(u)χs
))(∇Tk(un) − ∇Tk(u)χs

)
ρm(un)

(
1 − ψδ

)
dx

=
∫

Ω

(
a(·, Tk(un),∇Tk(un)) − a

(
·, Tk(un),∇Tk

(
vj
)
χsj

))
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×
(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

(
1 − ψδ

)
dx

+
∫

Ω
a(·, Tk(un),∇Tk(un))

(
∇Tk
(
vj
)
χsj − ∇Tk(u)χs

)
ρm(un)

(
1 − ψδ

)
dx
(
= ε
(
n, j
))

−
∫

Ω
a
(·, Tk(un),∇Tk(u)χs

)(∇Tk(un) − ∇Tk(u)χs
)
ρm(un)

(
1 − ψδ

)
dx
(
= ε
(
n, j
))

+
∫

Ω
a
(
·, Tk(un),∇Tk

(
vj
)
χsj

)(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

(
1 − ψδ

)
dx
(
= ε
(
n, j
))
.

(3.33)

Then we deduce that

∫

Ω

(
a(·, Tk(un),∇Tk(un)) − a

(·, Tk(un),∇Tk(u)χs
))(∇Tk(un) − ∇Tk(u)χs

)
ρm(un)

(
1 − ψδ

)
dx

=
∫

Ω

(
a(·, Tk(un),∇Tk(un)) − a

(
·, Tk(un),∇Tk

(
vj
)
χsj

))

×
(
∇Tk(un) − ∇Tk

(
vj
)
χsj

)
ρm(un)

(
1 − ψδ

)
dx + ε

(
n, j
)

≤ ε(n, j) + C
∫

Ω−Ωs

hk∇Tk(u)
(
1 − ψδ

)
dx + C

∫

|un|≥m
fn
(
1 − ψδ

)
dx.

(3.34)

Since we have
∑7

i=1 Ii = J1 + J2, I3 ≥ 0 and using (1.2), we deduce that

I1 ≤ J2 − I2 − I3 − I4 − I5 − I6

≤
∫

Ω
fnz

j,δ
n,m + C

∫

Ω−Ωs

hk∇Tk(u)
(
1 − ψδ

)
dx

+ Ck
∥∥∇ψδ

∥∥
N‖a(·, Tm+1(un),∇Tm+1(un))‖N ′

+ C
∫

|un|≥m
fn
(
1 − ψδ

)
dx.

(3.35)

For r ≤ s, one has

0 ≤ I1(r) ≤ I1(s) ≤ C

∫

Ω−Ωs

hk∇Tk(u)
(
1 − ψδ

)
dx

+ Ck
∥∥∇ψδ

∥∥
N‖a(·, Tm+1(un),∇Tm+1(un))‖N ′

+ C
∫

|un| ≥m
fn
(
1 − ψδ

)
dx + ε

(
n, j
)
.

(3.36)
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We have (Tm+1(un)) is bounded in W1
0LM(Ω), (a(·, Tm+1(un),∇Tm+1(un))) in (LM(Ω))N) and

so in (LN
′
(Ω))N sinceM(t) � tN .

Since we have

lim
δ→+∞

∫

Ω

∣
∣∇ψδ

∣
∣Ndx = 0,

lim
δ→+∞

∫

Ω

(
1 − ψδ

)
dδx0 = 0,

lim
s→+∞

|Ω −Ωs| = 0, lim
m→+∞

|{|u| ≥ m}| = 0,

(3.37)

we easily deduce (i).
For (ii) we proceed as in (i) by using the fact that

∫
|un|≥m fnψδdx = ε(n, δ,m).

Then we conclude that

lim
n→+∞

∫

Ωr

(a(·, Tk(un),∇Tk(un)) − a(·, Tk(un),∇Tk(u)))(∇Tk(un) − ∇Tk(u))dx = 0. (3.38)

Step 2. In this step we prove that ∇un → ∇u a.e. in Ω.
Since (Tk(un)) is bounded inW1

0LM(Ω), then (|∇Tk(un)|) is finite a.e. in Ω.
Hence there exists a measurable set E such that |E| = 0 and |∇Tk(un)| < +∞ in Ω − E.
Let η(x) = limn(∇Tk(un)), then by using Fatou lemma, we get

∫

Ω

∣∣η(x)
∣∣dx ≤ lim

∫

Ω
|∇Tk(un)|dx ≤ C. (3.39)

So, |η(x)| < +∞ a.e. in Ω and ∇Tk(un) → η a.e. in Ω, and for a subsequence still denoted by
Tk(un), we obtain from (3.38) that

0 = lim
n→∞

(a(·, Tk(un),∇Tk(un)) − a(·, Tk(un),∇Tk(u)))(∇Tk(un) − ∇Tk(u)) in Ω

=
(
a
(·, u, η) − a(·, u,∇Tk(u))

)(
η − ∇Tk(u)

)
.

(3.40)

Combining with (1.3), we get

∇Tk(u) = η a.e. in Ω. (3.41)

Therefore, we have

∇Tk(un) −→ ∇Tk(u) a.e. in Ω. (3.42)

Lemma 3.12. For all k > 0,

∇Tk(un) −→ ∇Tk(u) for the modular convergence in (LM(Ω))N. (3.43)

For the proof we can adopt the same way as in [13].
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3.2.4. The Convergence of the Problems
(
Pfn
)
and the Completion of

the Proof of Theorem 3.6

In one hand by using as test function ϕ =
∫un
0 g(s)χ{s>h} exp(

∫un
0 g(s)ds) in

(
Pfn
)
, we can

deduce as in [5] that g(un)M(|∇un|) converge strongly in L1(Ω) to g(u)M(|∇u|).
In the other hand, by Lemma 3.3, we deduce that (un) is bounded in W1

0LD(Ω) for
everyD ∈ K. Then (a(·, un,∇un)) is bounded in LH(Ω) and the passage to the limit is an easy
task.

Corollary 3.13. Under the hypotheses (1.2)–(1.7), μ is a convex combination of Dirac measures
(μ =

∑J
i=1 αjδxj (xj ∈ Ω) and

∑J
i=1 αj = 1) and the problem

(
Pμ
)
admits at least one weak solution.

The proof is a simple adaptation of the one of Theorem 3.6 by taking in zj,δn,m,
∑J

i=1 αj(1−
ψδxj ) in the place of (1−ψδxj ), where ψδxj is the cut functions corresponding to the measure δxj .

Remark 3.14. The technique used in the proof of Theorem 3.6 allows us to prove that the
problem

A(u) = g(u)a(·, u,∇u)∇u + δx0 in Ω,

u = 0 on ∂Ω
(3.44)

has a weak solution.

3.3. General Case

Before giving the general case of Theorem 3.6, let’s recall that the set of finite convex com-
bination of Dirac measures is dense in the set of measures probability.

In the following theorem we denote by μn the sequence defined by μn =
∑n

i=1 αiδxi for
some xi ∈ Ω, and αi ∈ R+ with

∑n
i=1 αi = 1.

Theorem 3.15. Let (μn) be a sequence of Radon measures convergent to a Radon measure μ, and let
(un), a sequence of weak solutions of (Pμn). Then there existsM > 0 such that

∫

Ω
M(|∇Tk(un)|)dx ≤Mk (3.45)

for every n and every k > 0. Moreover, there exists a measurable function u such that Tk(u) ∈
W1

0LM(Ω) and u is a weak solution of
(
Pμ
)
.

Proof. A priori estimate: Let Jη be a sequence of mollifiers functions. Let v =
Tk(un) exp(

∫un
0 g(s) ds) ∗ Jη as test function in (Pμn)

∫

Ω
a(x, un,∇un)

[
∇Tk(un) exp

(∫un

0
g(s)ds

)
∗ Jη
]

+
∫

Ω
a(x, un,∇un)

[
∇ung(un)Tk(un) exp

(∫un

0
g(s)ds

)
∗ Jη
]
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=
∫

Ω
M(|∇un|)g(un)Tk(un) exp

(∫un

0
g(s)ds

)
∗ Jη

+
∫

Ω
Tk(un) exp

(∫un

0
g(s)ds

)
∗ Jηdμn,

(3.46)

then, by using an easy argument, the properties of convolution, and tending η to zero, we get

∫

Ω
M(|∇Tk(un)|) exp

(∫un

0
g(s)ds

)
dx ≤ Ck. (3.47)

So (Tk(un)) is bounded inW1
0LM(Ω) and as above there exists a measurable function u such

that

Tk(un)⇀ Tk(u), weakly in W1
0LM(Ω), a.e. in Ω, and strongly in EM(Ω). (3.48)

Almost everywhere convergence of gradients: Let us consider zj,δn,m ∗ Jη as test function in
(Pμn), we have

〈
A(un), z

j,δ
n,m ∗ Jη

〉
=
∫

Ω
g(un)M(|∇un|)zj,δn,m ∗ Jηdx +

∫

Ω
z
j,δ
n,m ∗ Jηdμn. (3.49)

We prove easily, since zj,δn,m ∈W1
0LM(Ω) ∩ L∞(Ω), that

〈
A(un), z

j,δ
n,m ∗ Jη

〉
=
〈
A(un), z

j,δ
n,m

〉
+ ε
(
η
)
,

∫

Ω
g(un)M(|∇un|)zj,δn,m ∗ Jηdx =

∫

Ω
g(un)M(|∇un|)zj,δn,mdx + ε

(
η
)
,

∫

Ω
z
j,δ
n,m ∗ Jηdμn =

n∑

i=1

αiz
j,δ
n,m(xi) + ε

(
η
)
,

n∑

i=1

αiz
j,δ
n,m(xi) = ε

(
η, n, δ,m

)
,

(3.50)

Also,
∫
Ω ρm(un)(1 − ψδ) exp(

∫un
0 g(s)ds) ∗ Jηdμn = ε(η, n, δ,m).

By using the above estimation, we obtain a similar equation to (3.20) and we follow
the same technique used in the step of almost everywhere convergence of gradients in
Theorem 3.6 to prove the existence result.

Corollary 3.16. Under the hypotheses (1.2)–(1.7), μ is positive Radon measure and the problem
(
Pμ
)

admits at least one weak solution.

Since Ω is bounded and by using the approximation of μ/μ(Ω) which is a measure of
probability, the existence of solutions can be obtained as consequence of the last theorem.



16 Abstract and Applied Analysis

Remark 3.17. Let us recall that if we suppose that the N-functions M and M satisfy the Δ2

condition, we can prove with the same way as in Theorem 3.6 that the problem
(
Pμ
)
has a

weak solution for all singular measure μ in the sense that it is concentrated in some Borel set
with zeroM-capacity.

Remark 3.18. One can see that the technique used in this paper can be adopted to prove the
existence of solutions of the following problem

− div(a(·, u,∇u)) = g(u)|∇u|p(x) + μ in Ω,

u = 0 on ∂Ω,
(3.51)

where a satisfies, for almost every x in Ω, for every s in R, for every ξ and ξ∗ in RN ,

a(x, s, ξ)ξ ≥ |ξ|p(x),
[a(x, s, ξ) − a(x, s, ξ∗)][ξ − ξ∗] > 0, ξ /= ξ∗,

|a(x, s, ξ)| ≤ C
(
k(x) + |s|p(x)−1 + |ξ|p(x)−1

)
.

(3.52)

Here p : Ω → ]1,+∞[ is a measurable function such that

1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < N, (3.53)

where k is a nonnegative function in Lp
′(·)(Ω), p′(x) = p(x)/(p(x)−1), and C is a positive real.
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