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We introduce summation-integral-type g-Szdsz-Mirakjan operators and study approximation
properties of these operators. We establish local approximation theorem. We give weighted
approximation theorem. Also we estimate the rate of convergence of these operators for functions
of polynomial growth on the interval [0, o).

1. Introduction

First of all, we mention some concepts and notations from g-calculus. All of the results can be

found in [1-5]. In what follows, g is a real number satisfying 0 < g < 1.

For each nonnegative integer k, the g-integer [k] q and the g-factorial [k] 4! are defined

as

b oo 1(=d)/(-aq), q71,
K= 1, i
(1.1)

Then for integers n, k, n > k > 0, we have

[k+1],=1+q[kl,  [K],+q"[n-k], =[], (1.2)
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For the integers n, k, n > k > 0, the g-binomial coefficient is defined as

i, = w ey

The two g-analogues of the exponential function are defined as

:i X 1 x| < 1
[n],! (1—(1—q)x);°’ 1-q

n=0 q’

Eg(x) = D" [jj] = (1+(1-9)%),

n=0 ‘7

where (1 +x)7” = [T%(1 + g'x).
It is easily observed that

eq(x)Ej(=x) = eq(—x)E4(x) = 1.

The g-Jackson integral and the g-improper integral are defined as

_[0 ftydgt = (1-q)a) f(aq")q", a>0,
n=0

/A © qn qn

f(t)dqt = (1—q)n_zwf<Z>Z, A>O,

provided the sums converge absolutely.

For t > 0, the g-Gamma function is given by

o/A(1-9)
[4(s) = K(A, s)j ‘1eq(—t)dqt,

where

As 1 ¢ 1-s
K(A’S)_1+A<1+Z>q(1+A)q , A>0.

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

It was observed in [5] that K(x,s) is a g-constant, that is, K(gx,s) = K(x,s). In

particular, for s € N, K(A,s) = ¢°¢/2and K(A,0) = 1.T (s +1) = [s],04(s), Ty(1) = 1.

In 1997, Phillips [6] firstly introduced and studied g analogue of Bernstein
polynomials. After this, the applications of g-calculus in the approximation theory become
one of the main areas of research; many authors studied new classes of g-generalized
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operators (for instance, see [7-12]). In order to approximate integrable functions, in 2008
Gupta and Heping [13] introduced and studied the g-Durrmeyer-type operators as follows:

n 1
Myq(fix) = [n+1], qul"‘Pn,k(q; x) fo Pui-1(q; gt) f (1) dgt + f(O)pno(q; x), (1.9)
=1

where f € C[0,1], x€ [0,1], n=1,2,..., 0<g<1, and

n-k—1

Pk (q;x) = [Z] xF 1_! (1-¢°x). (1.10)
q  s=

In 2010, Mahmudov and Kaffaoglu [14] defined and studied g-Szdsz-Durrmeyer
operators as follows:

) o/ (1-q)
Dyq(f;x) = [n]qkzq"sn,k(q; x) L snk(q;t) f(H)dgt, (1.11)
=0

where f € RI%®) 0 <g<1,n€N,and

k. k
1 k(k-1)/2 [n]qx

snk(q;x) = m [, (1.12)

In 2011, Aral and Gupta [15] introduced and studied g-generalized Szdsz-Durrmeyer
operators by means of the g-integral as follows:

[n], &= qbn/ (1-q")
DI(f(t),x) = %Zsi/k(x) JO sy (D f(£)dgt, (1.13)
n k=0

where f € C([0,»)),0 < g <1, n €N, {b,} is a sequence of positive numbers such that
limy o by = 00, 0 < x < ag(n), ag(n) :=b,/(1-gq)[n], and

(1nlx)"

- _1n1 X 1.14
Sz’k(x)_q<k+1>/2[k]qs(bn>’<Eq< [”]qbn>‘ .

In the present paper, we will introduce a kind of g-analogue of the summation-integral-
type Szédsz-Mirakjan operators as follows.
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Let f € C([0,00)). Foreveryn € N, g € (0,1), x € [0,0), and A > 0, the summation-
integral-type g-Szasz Mirakjan operators are defined as

% /A=),
Suq(f;x) = [n], > snk(x,9) L g f(t)suk(t, q)dgt, (1.15)
k=0

where

<["]qx>k

Snk (X, q) = [k—]q!eq (—[n]qx>. (1.16)

We will study the approximation properties of the operators (1.15). We point out
that the operators (1.15) considered in this paper are more general than the operators (1.11)
considered in [14]. It is easy to verify when A = 1, the operators (1.15) reduce to the operators
(1.11). Thus, the operators (1.11) are the special case of the operators (1.15). The literature [14]
studied the local approximation and the Voronovskaja-type theorem for the operators (1.11).
In the present paper, besides the local approximation of the operators (1.15), our research
work is different from the literature in [14]; we study the rate of convergence, the weighted
Korovkin-type theorem, and the weighted approximation error of the operators (1.15) and
obtain some new results. As regards the operators (1.13) considered in [15], it is obvious that
these operators are quite different from the operators (1.15). In [15], for the operators (1.13), a
direct approximation result in weighted function space with the help of a weighted Korovkin
type theorem on the finite interval was obtained. The weighted approximation error of these
operators in terms of weighted modulus of continuity was given. Also, an asymptotic formula
was established. In the present paper, we introduce a new weighted modulus of continuity
which is different from that in [15]. We obtain some results of the weighted approximation
with the help of the new weighted modulus of continuity on the infinite interval.

2. Two Lemmas
For the operators S, 4(f; x) defined by (1.15), we give the following two lemmas.
Lemma 2.1. For S, ,(t;x), i=0,1,2,3,4, we have
(i) Sng(Lx) =1;
(ii) Spq(t;x) = x/q* + 1/q[n],;
(iii) Snq(t%x) = x2/q° + ([3], + @)x/q°[n], + [21,/4°[n]3;

(iv) Snq(t;x) = x3/q% + (x2/q" [n],)([5], + q[3], + 4°) + (x/q°[n])([6], + 2q[4], +
24%12],) + [21,[31,/4°[n]3;

(V) Sug(th;x) = x*/ g% + (x3/q°[n],)([7], + q[5], + 4*[3], + 4°) + (x*/q" [n]3)([10], +
2q(8], +44°[6], +4q°[4],+34*[2],) + (x/q14[n]3)([10]q+3q[8]q+5q2[6]q+6q3[4]q+
4q*12],) + [21,[31,[41,/4" [n];-



Abstract and Applied Analysis 5

Proof. In view of the concepts of the g-improper integral and g-exponential function, for
nonnegative integer i, we have

k
o /A(l-q) w/A(l-q) ([n],t
J Esui(t q)dyt = J t’<—q>eq (~[n]t)dyt
0 0

[K1,!
) 1 /(A=) . o
[y k! fo we(dq '
Lok +i+1) [k +1i],!

()i (K] (A ] k4 1) [l ] tqteisnten/

(i) When i = 0, by the formulas (1.5) and (2.1), we can get

k
Snqg(Lx) = i%eq <—[n]qx>qk(k—1)/2 —e, <—[n]qx>Eq<[n]qX> =1 (2.2)
k=0 q’

(ii) When i = 1, using [k + 1], = [k], + ¢*, by the formulas (1.5) and (2.1), we can get

Snq(t;x) = i Meff (‘[n]qX> g(-3k-2)/2 [k]; + 4"

p i L3P [,
k
1 & <[n]qx> (K2-3k-2)/2 1 (2.3)
- [n]q; [k_llq! eq(—[n]qX>q + q[_n]q
_x 1
¢ qln],

(iii) When i = 2, using [k + Z]q [k+ 1]q = [k](zi +q*(1+ [Z]q) [k]q +q% [Z]q, by the formulas
(1.5) and (2.1), we can get

k13 + q* (1 + [21, ) [K], + 2121,

k
Snq <t2,- x) = i <[1[111—i’x'>eq <_ [n]qx> g(-5k-6)/2
k=0 q
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- i <[k —2] 1 <_[”]qx>q(k2_5k_6)/2
!

(trdy)

Bl,+9 & 2 .
_[ ] (k*-3k 8)/2+ q
i 2 -, () Pl
2, (Blra)x
S el Pl
(2.4)
(iv) When i = 3, by the formulas (1.5) and (2.1), we can get
(n]yx)" [k+3] [k+2] [k+1]
) - e e _ (k-7k-12) /2 L T 21qL+ 2lgLi T g 2.5
Sn,q<t3,x>—kzz(:) [k]q! eq< [n]qx>q 7k-12)/2 [n]f, . (2.5)

Using [k+3],[k+2],[k+1], = [k]3+qk(1+[2]q+[B]q)[k]2+q2k([2]q+[3]q+[z]q[B]q)[k]q+
q°*[2],[8],, we have

Sngq <t3; x>

k
1 & ([n]x 2
q =,

k
R ——
!
(2.6)

<[n]qx>k k2-3k-16)/2
[ eq(~[n1,x)q’ )

21,131,
g [nl;

x [1+q(1+ 121, +131,) + (121, + 181, + [21,131,)] +

2 [2],[3]
=Tt ql%n]q(mq +q[3], + ) + e (161, +2q[41, +24°[2], ) + qézn];.

(v) When i = 4, similar to the case of i = 3, by simple calculation we can get the desired

result.
O
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Lemma 2.2. Let g € (0,1), x € [0, 0), we have

(i) Snq(t —x;x) = (1= ") /q*)x +1/q[n],;

(ii) Snq((t—x)%x) < (2/4°)(1 = g* +2/[n])x(1 + x) + [2],/ ¢ [n];.

Proof. By Lemma 2.1, we have

Spq(t =% %) = Sy (%) - x = 1;—2‘72x + q[i]q. 2.7)
By Lemma 2.1, we have
Sug((t=2)%x) = S (%) = 225, (8 %) + 2
- x2<% ) % ' 1> " "< [55];;]: ) q[i],,> ’ qi]ﬁg
< %(1 —q*+ [ni]q>x(1+x) + qii‘%.
m

3. Local Approximation

Let Cg[0, o0) denote the class of all real valued continuous bounded functions f on [0, oo)
endowed with the norm || f|| = sup{|f(x)| : x € [0, 00)}. The K-functional is defined as

Ka(£,6) = inf {117 =gl +3l5"l), 61

where § > 0 and W? = {g € Cg[0,0) : ¢, ¢" € Cg[0,0)}. By [16, page 177, Theorem 2.4]
there exists an absolute constant C > 0 such that

Ka(£,6) < Can(£,V5), (32)

where

w2<f,\/5>= sup sup |f(x+2h)-2f(x+h)+ f(x)| (3.3)

0<h<V/6 x€[0,00)
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is the second order modulus of smoothness of f € Cp[0, o). By

w(f,6) = sup sup)|f(x+h)—f(x)|, (3.4)

0<h<6 x€[0,00

we denote the usual modulus of continuity of f € Cg[0, o).

Theorem 3.1. Let f € Cg[0, o0). For every x € [0, ), g € (0,1), we have

|4 (f;%) = f ()] < Ceon(f, 64 (q,%)) + o(f,8n(q,%)), (3.5)

1/2

where C is an absolute constant, 6,(q, x) = ((2/¢°)(1 - q* +2/[n])x(1 +x) + [Z]q/q3[n]§)

Proof. For f € Cg[0,0), x € [0,00), we define

Sua(175) = 50405) (3 g ) +10) 66
q

By Lemma 2.1, we get §n,q(1; x)=1, §n,q(t; x) =x.Let g € W2, x,t € [0,00), by Taylor’s
formula

t
g(t) = g(x) + (t—x)g'(x) + f (t—u)g"(u)du, (3.7)
we obtain

Snq(8:%) = §(x) +Sng <f (t- u)g"(u)du;x>. (3.8)

By the definition given by (3.6), for x € [0, o), we have

t
Sng < f (t - u)g" (u)du; x>
X
x/q*+1/qln], x 1
=4 —u )" (u)du
L <q2 qlnl, >g()

< Sn,q< 2X> (3.9)

x/q*+1/qnl,
n
+ f |g" (u)|du

X

2
1 "
< [sn,q(a-x)z;x) + (% " o —x> ] lg"|l-

Sna(g%) — g(x)| <

+

t
I |t —ul|g" (u)|du

L
q>  qln],

—u
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Since (x/q* +1/q[n], - x)? < 62(q,x), so, by Lemma 2.2, we have

Sna(gix) - 8(x)| <282(q,) |8 (3.10)
By the definition given by (1.15) and Lemma 2.1, we have
|Snq ()] < Sng(LONFI = IfII- (3.11)

So, by the definition given by (3.6), we obtain

Suafi%)| < ISua(Fi)] + 20 £ <3]£1 (3.12)

Thus, for x € [0, ), we have

gn,q(g? x) = g(x)'

x 1
X )- (3.13)
f<q2+q[n]q> f(x)'

< 4| f - gll +263(q,x)||g"|| + w(f, 6.(q, x)).

|Sna (i) = )| < |Sua(f - gi%)| +

+]g(x) - f(x)[ +

Hence, taking infimum on the right hand side over all ¢ € W2, we can get
|Sug (f:8:%) = f(x)] <4Ks(f,83(q,x) ) + (£, 64(q,))- (3.14)

By inequality (3.2), for every g € (0,1), we have

|4 (fi%) = f()] < Ceon(f,6n(q, %)) +o(f,8n(q, %)) (3.15)

4. Rate of Convergence

Let H, [0, o0) be the set of all functions f defined on [0, c0) satisfying the condition |f (x)| <
M¢(1+x™), where m > 0, My is a constant depending only on f. Let C,»[0, c0) denote the
subspace of all continuous functions in H,~ [0, c0). Also let C%.. [0, o0) be the subspace of all
functions f € Cyn [0, c0), for which limjy|— o (f(x) /(1 + x™)) is finite. The norm on C}.. [0, o0)
is || fllxm = sup,. [0,00) (If (x)]/ (1+x™)). We denote the modulus of continuity of f on the closed
interval [0, a], a > 0 by x € [0, o0) as

wa(f,6) = sup sup]|f(t)—f(x)|, 5>0. (4.1)

|t—x|<6 x,t€[0,a

We observe that for f € C}.,[0, o), the modulus of continuity w,(f,6) — 0as6 — 0*.
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Theorem 4.1. Let f € C,2[0,00), g € (0,1), and wa.1(f, 6) be the modulus of continuity of f on the
finite interval [0, a + 1] C [0, o0), where a > 0. Then we have

1S04(F:) = Fllcm < 5Ms(1+@)1(q) + 200 (f,12(4)), (4.2)

where 11,(q) = ((2/°)(1 - g* +2/[n] )a(l + a) + 21,/ @ [n12)""?, | fllcioa = max{|f(x)], x €
[0,al}.

Proof. For x € [0,a] and t > a + 1, since t — x > 1, we have |f(t) — f(x)| < M2+ x* +1?) <
M[2+3x% +2(t - x)°] <5Ms(1+a?)(t - x)*.

For x € [0,a] and 0 < t < a+ 1, we have |[f(t) - f(x)| £ wanr(f, |t —x]) < (1 +
|t — x|/ 6)was1(f,6) with 6 > 0.

So, for x € [0,a] and t > 0, we may write

It - x|

£ = f)] <5Mp(1+a)(t-x)"+ <1 + )wa+1 (f,6). (43)

Thus, by Cauchy-Schwartz inequality, we obtain
|Snq(£3%) = FO] < Sug (1) = f()];%) <5My(1+0%) S (- )% %)
1 1/2
+wai (f,6) <1 tz (Sn,q<(t - x)2;x>> )

(4.4)

By Lemma 2.2, for x€ [0, a] and 7,,(q) = ((2/¢°) (1-g* + 2/[n])a(1+a)+ [Z]q/q3[n]§)1/2,

we have S, ;((t - x)%;x) < 1%(g). Hence, for every x € [0,a], g € (0,1), we obtain

|Snq(f3%) = £()] <5Mf(1+a*)1;(4) + wan (£,6) <1 + nnéq) > (4.5)

By taking 6 = 11,(g), we immediately get the desired result. O

Corollary 4.2. Assume that f € C,[0,00), g € (0,1). Let M > 0, a« € (0,1], f € Lip}, on
[0, a + 1], where a > 0. Then we have

1na(f3) = Fllcgo < 5My (1+2)12(q) + Mri(q), (4.6)

where 1,(q) and || fl|cjo,a] are given in Theorem 4.1.

Proof. Let g € (0,1), M > 0, a € (0,1], f € Lip}, on [0,a + 1]. Then for any x € [0,a],t €
[0,a + 1], we have |f(t) - f(x)] < M|t — x|*. So, according to the proof of Theorem 4.1, for
x €[0,a],t >0, we have

|f(8) - f(x)| <5M; (1 + az)s,,,q<(t - x)2;x) + Mt - x|" (4.7)
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Using the Holder inequality with m = 2/a,n = 2/(2 - a), for any x € [0,a],t > 0, we

get
|Sng (Mt = x| )| < M[S0((t - 2)%; x>]“/2. (4.8)
So, for any x € [0, a], t >0, we have
|Smg(F52) ~ F@)] < 5My (1) S (0= 2% 2) + M, (¢ - x)z;x)]“/2 o)
<5M (1+a®)n3(q) + Mri(q). |
The desired result follows immediately. O

5. Weighted Approximation
Now we give the weighted approximation result for the operators S, ;(f; x).

Theorem 5.1. Let the sequence q = {qn} satisfies q, € (0,1) and g, — 1lasn — oo. For f €
C7,[0, o0), we have

lim ||Sy,q,(f;) = fll 2 = 0. (5.1)

n— o0

Proof. Using the Theorem in [17], we see that it is sufficient to verify the following three
conditions:

1im [[Sq,(e) — il =0, (5.2)

where e;(x) = x', i=0,1,2.
Since S, 4, (eo; x) = 1, it is clear that lim;, _, . [|Sy,4, (€0; -) — €ollx2 = 0.
By Lemma 2.2, we have

Snq.(tx) —x
1S (e1) — el = sup |omat¥) =]

xel0e) LA 653
1-g2 1 1- g2 1 '
< an sup 1:6 5+ < 2% + .
dn  x€[0,00) x qn [7’1] Gn qn qn [n]q,,

Since g, € (0,1) and lim,, .o, g, = 1, we have [n], — ocoasn — oo (see [18]), so, we

can obtain lim;, —, [|Sy4,(e1; ) — e1llx2 = 0.

qn
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For i =2, by Lemma 2.1, we have

|Sng, (#52) - x| _1-4q; x*
Sna.(€2;-) —ea|| . = sup i < = sup
” i ” x€[0,00) 1+x? qﬁ xe[0,00) 1+ x?
(131,, +4n) x [,
qn [n]q,, x€[0,00) x Qn[”]q"
J1g (Blra) o,
T g amlnl,,  @nll)
which implies that limy, . ,[|Sy4, (€2; ) — €2[lx> = 0. In a word, we complete the proof. O

It is known that, if f is not uniformly continuous on the interval [0, oo), then the usual
first modulus of continuity w(f, 6) does not tend to zero as 6 — 0*. For every f € C7,[0, o0),
we would like to take a weighted modulus of continuity Q(f, 6) which tends to zeroas 6 —
0*.

For every f € C7,[0, o0), let

|f(x+h) - f(x)]

ochesaso (1+H2)(1+x%)

Q(f,6) =

(5.5)

The weighed modulus of continuity Q(f,5) was defined by Ispir in [19]. It is known that
Q(f,6) has the following properties.

Lemma 5.2 (see [19]). Let f € C;,[0,c0). Then

(i) Q(f, 6) is a monotone increasing function of 6;
(ii) for each f € C7,[0, o0), lims .o~ Q(f, 6) = 0;

(iii) for each m € N, Q(f, m6) < mQ(f,6);
(iv) foreach A € R*, Q(f, 16) < (1 +1)Q(f,6).

Theorem 5.3. Let f € C7,[0,00), g € (0,1). Then we have the inequality

1/2
[1Snq(fi) = flls < M(q)9<f, <1 -q'+ %> > (5.6)
q

where M(q) is a positive constant independent f and n.

Proof. By the definition of Q(f, ) and Lemma 5.2 (iv), for every 6 > 0, we have

3

£ - F < (1+ ¢ -2?) (1+2) <1+ ;x')g(f,a). (57)
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Then, we obtain
|Suq(f3%) = f(x)] < (1+ x2>Q(f,6)Sn,q<<1 +(t-x)%) (1 + %);O
< (1+22)Q( f,6){5n,q<1 + (E-x)%x) (5.8)

+ s,w<<1 +(t —x)2> 't:s—x';x> }

Also by the Cauchy-Schwartz inequality, we have

sn,q<<1 +(t- xf)%;x) < {Sn,q<<1 +(t- x)2>2; x> }1/2{5n,q<|t:5—2x|2?x> }1/2.

(5.9)
Consequently,
|Snq(fix) = f(2)]
< (1+2%)Q(f,5)
) 172 i 1/2
x sn,,,(l +(t- x)z,‘x> + (sm<<1 +(t- x)2> ;x>> <5W,<T;x>> .
(5.10)
In view of Lemmas 2.1 and 2.2, we get
Sy <1 + (t—x)z;x> <1+ 3(1 —q4 + L>x(1 +Xx) + [Z]q
! Ik [n1, 7 [nl;
(5.11)

Also,

Sn,q<<1 + (t - x)2>2;x>
=1+ 25'M<(t - x)z; x> + Suq <t4,' x)

- 4xS, 4 (t3; x) + 6x25n,q <t2; x) - 4x35n,q(t;x) +x*
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6 4
" g, <[5]q +q[3],+ q2> * Plnl, <[3]q * q) - 4[—"]q]

2 2 4 1 2 3 4
+x [$—$+2+m<[10]q+2q[8]q+4q [6], +44°[4], + 34 [2]q)

6[2]
(161, +2q141, + 24°[2],) + —— ]

¢ [n]? ¢ [nl?

+x[2<[31q+q) 4

Fnl,  qln],

4[2],[3]
+qlTn]3<[10]q+3q[8]q+5q2[6]q+6q3[4]q+4614[2]q>_ qé[qn]?q]
2[2],  [2],[3],[4] 16 80 164 84 28
+<1+q3[n]"5+ g >q— g
< M>(q) (1 + x2>2,

It - xP? 212 2 e, 17
Il 4 q
{Sn,q< 5 ,x>} Sgl:%<1—q +[”_]q>x(1+x)+q3[n]f,]

(5.12)

Now from inequalities (5.10)-(5.12), we have
1S0a(f%) - £(0)] < (1, 5) [Ml (@) (1+2) (1 + 22

1/2
+ '\/Mz(Q)Mg(q)% <1 —-q*+ [ni]q> <1 + x2>2(1 + x):|
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< Q(f,8) | Ma(q) (1+x*) (1 + x)?

1/2
+ Mz(q)Mg(q)M4%<1—q4+%> <1+x5> ,
q

(5.13)

where My = sup,.,((1 + )21 +x)/(1+x%)).

Taking 6 = (1 - g* + 3/[n] q)l/ 2, from the above inequality we can obtain the desired
result. O
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