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This paper investigates drive-response synchronization of a class of reaction-diffusion neural
networks with time-varying discrete and distributed delays via general impulsive control method.
Stochastic perturbations in the response system are also considered. The impulsive controller is
assumed to be nonlinear and has multiple time-varying discrete and distributed delays. Compared
with existing nondelayed impulsive controller, this general impulsive controller is more practical
and essentially important since time delays are unavoidable in practical operation. Based on
a novel impulsive differential inequality, the properties of random variables and Lyapunov
functional method, sufficient conditions guaranteeing the global exponential synchronization in
mean square are derived through strict mathematical proof. In our synchronization criteria, the
distributed delays in both continuous equation and impulsive controller play important role.
Finally, numerical simulations are given to show the effectiveness of the theoretical results.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], the issue of synchronization and chaos
control has been extensively studied [2] due to its potential engineering applications such
as secure communication, biological systems, and information processing (see [3–10]). It
is shown that neural networks exhibit chaotic behavior and provided that parameters and
delays are appropriately chosen (see [11, 12]). Therefore, in recent years, synchronization
and control of neural networks has been one of the hot research topics (see [13–15], etc.).

It is known that many pattern formation and wave propagation phenomena that
appear in nature can be described by systems of coupled nonlinear differential equations,
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generally known as reaction-diffusion equations. These wave propagation phenomena are
exhibited by systems belonging to very different scientific disciplines. The reaction-diffusion
effects, therefore, cannot be neglected in both biological and man-made neural networks,
especially when electrons are moving in noneven electromagnetic field [16]. So we must
consider that the activations vary in space as well as in time, and in this case the model
should be expressed by partial differential equations. There are some published papers
concerning stability or synchronization of neural networks with reaction-diffusion terms
and delays (see [17–25]). In [22], the authors investigated synchronization of reaction-diffu-
sion neural networks with discrete and unbounded distributed delays. In [24], the authors
investigated the boundedness and exponential stability for nonautonomous fuzzy cellular
neural networks with unbounded distributed delays and reaction-diffusion terms. The
authors of [25] studied exponential stability of reaction-diffusion Cohen-Grossberg neural
networks with time-varying discrete delays and stochastic perturbations.

Time delays usually exist in neural networks due to finite speeds of switching of
amplifiers and transmission of signals in hardware implementation. Ignoring them when
studying dynamics of neural networks may lead to impractical results. Moreover, delays are
commonly time varying and unknown [26]. Therefore, papers concerning synchronization or
stability of neural networks with or without reaction-diffusion terms have considered various
time delays. The authors in [11] studied exponential synchronization problem for coupled
neural networks with constant time delay. In [27], both constant and time-varying discrete
delays were considered for the synchronization of a class of delayed neural networks. In
[28–31] several types of synchronization for neural networks with discrete and bounded dis-
tributed delays were studied. However, the delay kernel of the bounded distributed delays in
[28–31] has to be 1 because the well-known Jensen’s inequality [32] is not applicable anymore
if the delay kernel is not 1. In the case of unbounded distributed delay, it is necessary to
consider the delay kernel, which satisfies the condition that its integral from zero to infinite
is bounded [22, 33, 34]. But the authors in [22, 33, 34] had to use algebraic approach instead
of matrix method to derive their main results which has more complex form and is more
conservative than those obtained by matrix method. In [21], Wang and Zhang studied global
asymptotic stability of reaction-diffusion Cohen-Grossberg neural networks with unbounded
distributed delays by using a matrix decomposition method, and the obtained results were
in terms of linear matrix inequality (LMI). But the Lyapunov functional and proof process
used in [21] are relatively complex. Recently, authors in [35] studied global asymptotic
synchronization in an array of coupled neural networks with probabilistic interval time-
varying coupling delays and unbounded distributed delays; a novel integral inequality
including the Jensen’s inequality as a special case was developed. By using the developed
integral inequality, one can use LMI method to solve the problem of distributed delays with
not-equal-to-1 delay kernel instead of the matrix decomposition method used in [21].

It should be noted that control method is of great significance to realize synchroniza-
tion. Specially, in [29], the output feedback controller which has time-varying discrete and
distributed delays was considered. On the other hand, impulsive control, as one of the
most effective and economic control methods, has recently attracted great interests of many
researchers in different fields, since it needs small control gains and acts only at discrete times,
thus control cost and the amount of transmitted information can be reduced drastically (see
[3, 9, 26, 36–40] and references cited therein). As for neural networks with reaction-diffusion
terms, there are several results on synchronization via control. For instance, state feedback
control technique is utilized in [20] to realize exponential synchronization of stochastic fuzzy
cellular neural networks with time delay in the leakage term and reaction diffusion. In [22],
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global exponential stability and synchronization of delayed reaction-diffusion neural
networks under hybrid state feedback control and impulsive control. However, to the
authors knowledge, impulsive control has not been considered in the literature to realize
synchronization of reaction-diffusion neural networks. Moreover, the impulsive controllers in
[3, 9, 36–40]were nondelayed. Recently, in [41], global exponential stability of fuzzy reaction-
diffusion cellular neural networks with time-varying discrete delays and unbounded
distributed delays and impulsive perturbations were studied. Nevertheless, to the best of our
knowledge, there are no results on stability or synchronization of reaction-diffusion neural
networks with time-varying discrete delays and distributed delays under impulsive con-
troller which has multiple time-varying delays, let alone impulsive controller with dis-
tributed delays. If these delays are considered in impulsive controller, the analysis methods
used in [3, 9, 26, 36–40] are not applicable anymore. Considering the fact that both discrete
delays and distributed delays are unavoidable in practice, it is of great importance to consider
delayed impulsive control to synchronize-delayed neural neural networks.

Being motivated by the above discussions, this paper aims to study the global expo-
nential derive-response synchronization of reaction-diffusion neural networks with multiple
time-varying discrete delays and unbounded distributed delays via general impulsive
control. The general impulsive controller is assumed to be nonlinear and has multiple time-
varying discrete and distributed delays. Since time delays are always vary and unavoidable
in practical operation, the general impulsive controller is essentially important and more
practical than existing nondelayed impulsive controller. Stochastic perturbations in the
response system are also considered. By using a novel integral inequality in [35], the problem
of distributed delays with not-equal-to-1 delay kernel can be solved by matrix method. By
utilizing the novel integral inequality, the properties of random variables and Lyapunov
functional method, sufficient conditions guaranteeing the considered drive-response systems
to realize synchronization in mean square are derived through strict mathematical proof. The
proof process and the results are very simple. Finally, numerical simulations are given to
show the effectiveness of the theoretical results.

The rest of this paper is organized as follows. In Section 2, the considered model of
coupled reaction-diffusion neural networks with delays is presented. Some necessary
assumptions, definitions, and lemmas are also given in this section. In Section 3, synchro-
nization for the proposed model is studied. Then, in Section 4, simulation examples are
presented to show the effectiveness of the theoretical results. Finally, Section 5 provides some
conclusions.

Notations. In the sequel, if not explicitly stated, matrices are assumed to have compatible
dimensions. N+ denotes the set of positive integers. In denotes the n × n identity matrix.
R

n denotes the Euclidean space, and R
n×m is the set of all n × m real matrix. λmax(A)

and λmin(A) mean the largest and smallest eigenvalues of matrix A, respectively, ‖A‖ =√
λmax(ATA), where T denotes transposition. C = diag(c1, c2, . . . , cn) means C is a diagonal

matrix. Moreover, let (S,F, {Ft}t≥0, P) be a complete probability space with filtration {Ft}t≥0
satisfying the usual conditions (i.e., the filtration contains all P -null sets and is right
continuous). Denote by LP

F0
((−∞, 0];Rn) the family of all F0-measurable C((−∞, 0];Rn)-

valued random variables ξ = {ξ(s) : s ≤ 0} such that sups≤0E(‖ξ(s)‖p) < ∞, where E{·}
stands formathematical expectation operator with respect to the given probabilitymeasure P .
Sometimes, the arguments of a function or a matrix will be omitted in the analysis when no
confusion can arise.
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2. Preliminaries

Consider a delayed neural network with reaction-diffusion terms which is described as fol-
lows:

∂yi(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
ril

∂yi(t, x)
∂xl

)
− ciyi(t, x) +

n∑

j=1

aijfj
(
yj(t, x)

)

+
n∑

j=1

bijfj
(
yj(t − τ1(t), x)

)
+

n∑

j=1

dij

∫ t

−∞
K(t − s)fj

(
yj(s, x)

)
ds + Ii(t),

(2.1)

or in a compact form

∂y(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
Rl

∂y(t, x)
∂xl

)
− Cy(t, x) +Af

(
y(t, x)

)
+ Bf
(
y(t − τ1(t), x)

)

+D

∫ t

−∞
K(t − s)f

(
y(s, x)

)
ds + I(t),

(2.2)

where i = 1, 2, . . . , n, Rl = diag(r1l, r2l, . . . , rnl), l = 1, 2, . . . , m, ril ≥ 0 means the transmission
diffusion coefficient along the ith neuron; x = (x1, x2, . . . , xm)

T ∈ Ω ⊂ R
m, Ω = {x |

|xk| ≤ zl, l = 1, 2, . . . , m}, and zl is a constant. y(t, x) = (y1(t, x), y2(t, x), . . . , yn(t, x))
T ∈ R

n

represents the state vector of the network at time t and in space x; n corresponds to the
number of neurons; f(y(t, x)) = (f1(y1(t, x)), . . . , fn(yn(t, x)))

T is the neuron activation
function at time t and in space x; C = diag(c1, c2, . . . , cn) with ci > 0; A = (aij)n×n, B = (bij)n×n
and D = (dij)n×n are the connection weight matrix; I(t) = (I1(t), I2(t), . . . , In(t))

T ∈ R
n is an

external input vector. The bounded function τ1(t) represents unknown time-varying discrete
delay of the system with 0 < τ1(t) ≤ τ1, in which τ1 is a constant, K(t) is a nonnegative
bounded scalar function defined on [0,+∞) describing the delay kernel of the unbounded
distributed delay.

We suppose that system (2.2) has an unique continuous solution for any initial condi-
tion of the following form: y(s, x) = φ(s, x) ∈ C([−∞, 0] × Ω,Rn), where C([−∞, 0] × Ω,Rn)
denotes the Banach space of all continuous functions from [−∞, 0] ×Ω to R

n with the norm

∥∥φ(s, x)
∥∥ =
[∫

Ω
φT (s, x)φ(s, x)dx

]1/2
. (2.3)

It is assumed that (2.2) satisfies the following Dirichlet boundary condition:

y(t, x) = 0, (t, x) ∈ [−∞,+∞] × ∂Ω. (2.4)
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Based on the concept of drive-response synchronization, we take (2.2) as the driver
system and design the following controlled response system:

du(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl

∂u(t, x)
∂xl

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t) +

+∞∑

k=1

δ(t − tk)Uk(t, x)

]

dt + σ(t, x)dω(t),

(2.5)

where e(t, x) = u(t, x)−y(t, x), δ(t) is the Dirac delta function, the time sequence {tk} satisfies
0 = t0 < t1 < t2 < · · · < tk−1 < tk < · · · , and limk→+∞tk = +∞. Uk(t, x) is the con-
trol input. ω(t) = (ω1(t), . . . , ωn(t))

T ∈ R
n is a n-dimensional Brown motion defined on

(S,F, {Ft}t≥0, P). Here, the white noise dωi(t) is independent of dωj(t) for i /= j, and σ(t, x) �
σ(t, e(t, x), e(t − τ2(t), x),

∫ t
t−τ3(t) e(s, x)ds) is the noise intensity function matrix, in which the

bounded functions τ2(t) and τ3(t) represent unknown discrete and distributed delays of the
system in the stochastic perturbation with 0 < τi(t) ≤ τi, i = 2, 3. This type of stochastic per-
turbation can be regarded as a result from the occurrence of random uncertainties during the
process of transmission. We assume that the output signals of (2.2) can be received by (2.5).

In the present paper, the control input Uk(t, x) is assumed to be the following form:

Uk(t, x) = hk

(

e(t, x), e
(
t − η1(t), x

)
, . . . , e

(
t − ηq(t), x

)
,

∫ t

t−ηq+1(t)
e(s, x)ds

)

− e(t, x), (2.6)

where ηi(t) i = 1, 2, . . . , q + 1 are unknown time-varying delays with 0 < ηi(t) ≤ ηi.
Integrating from tk − ε to tk + ε (ε > 0 is a sufficient small constant) on both sides of

system (2.5) and letting ε → 0+, one gets from the property of the Dirac delta function that

u
(
t+k, x
) − u
(
t−k, x
)
= hk

(

e(tk, x), e
(
tk − η1(tk), x

)
, . . . , e

(
tk − ηq(tk), x

)
,

∫ tk

tk−ηq+1(tk)
e(s, x)ds

)

− e(tk, x),
(2.7)

where u(t+
k
, x) = limt→ t+

k
u(t, x), u(t−

k
, x) = limt→ t−

k
u(t, x). In the following, we use hk(tk, x) to

denote hk(e(tk, x), e(tk − η1(tk), x), . . . , e(tk − ηq(tk), x),
∫ tk
tk−ηq+1(tk) e(s, x)ds) for short.

Remark 2.1. Equation (2.7) is actually the impulsive controller of response system (2.5). To the
best of our knowledge, result on synchronization of reaction-diffusion neural networks under
impulsive control is seldom. In [22], global exponential synchronization of delayed reaction-
diffusion neural networks was studied. However, the control scheme in [22] is hybrid non-
delayed state feedback control and nondelayed impulsive control, and the continuous state
feedback controller is indispensable. Moreover, the impulsive controller (2.7) is very general,
since it includes information of multiple time-varying discrete delays and time-varying
distributed delays. Nevertheless, most of published paper concerning impulsive control
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including [3, 9, 26, 36–40] did not consider time delay in the impulsive function, let alone
multiple time-varying discrete delays and time-varying distributed delays. It is known that
both discrete delays and distributed delays are unavoidable and often time-varying in neural
networks, hence considering impulsive control with time-varying discrete delays and time-
varying distributed delays is essentially important. However, when time-varying discrete
delays and time-varying distributed delays are considered in impulsive control, the results in
[3, 9, 26, 36–40] is not applicable anymore.

From (2.7), the controlled system (2.5) can be rewritten as

du(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl

∂u(t, x)
∂xl

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t)

]

dt + σ(t, x)dω(t), t /= tk,

u
(
t+k, x
)
= u
(
t−k, x
)
+ hk(tk, x) − e(tk, x), t = tk, k ∈ N+.

(2.8)

To maintain consistency with above definitions, the initial value and the boundary
condition of (2.8) are given in the following form:

u(s, x) = ϕ(s, x) ∈ C([−∞, 0] ×Ω,Rn), (2.9)

u(t, x) = 0, (t, x) ∈ [−∞,+∞] × ∂Ω. (2.10)

Throughout this paper, we always assume that u(t, x) is left continuous at tk, that
is, u(t−k, x) = u(tk, x). Then subtracting (2.2) from (2.8) gets the following error dynamical
system:

de(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl

∂e(t, x)
∂xl

)
− Ce(t, x) +Ag(e(t, x)) + Bg(e(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)g(e(s, x))ds

]

dt + σ(t, x)dω(t), t /= tk,

e
(
t+k, x
)
= hk(tk, x), t = tk, k ∈ N+,

(2.11)

where g(e(t, x)) = f(u(t, x)) − f(y(t, x)).
It is obvious that system (2.11) satisfies the Dirichlet boundary condition, and its initial

condition is

e(s, x) = ϕ(s, x) − φ(s, x) = ϕ(s, x) ∈ C([−∞, 0] ×Ω,Rn), i = 1, 2, . . . ,N. (2.12)

It is easy to see that the error system (2.11) admits a zero solution. Clearly, if the zero
solution is globally exponentially stable, then the controlled system (2.8) is globally exponen-
tially synchronized with system (2.2).
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Throughout this paper, we assume that

(H1) for any u, v ∈ R, there exist constants μi (i = 1, 2, . . . , n) such that |fi(u) − fi(v)| ≤
μi|u − v|;

(H2) there is a positive constant k such that
∫+∞
0 K(u)du = k;

(H3) there exist positive constants ρ1, ρ2 and ρ3 such that

trace
[
σT (t, x)σ(t, x)

]
≤ ρ1e

T(t, x)e(t, x) + ρ2e
T (t − τ2(t), x)e(t − τ2(t), x)

+ ρ3

∫ t

t−τ3(t)
eT (s, x)e(s, x)ds;

(2.13)

(H4) there exist nonnegative constants αk, β
j

k, j = 1, 2, . . . , q + 1 such that

hT
k(tk, x)hk(tk, x) ≤ αke

T (tk, x)e(tk, x) + β1ke
T(tk − η1(tk), x

)
e
(
tk − η1(tk), x

)

+ · · · + β
q

k
eT
(
tk − ηq(tk)

)
e
(
tk − ηq(tk)

)
+ β

q+1
k

∫ tk

tk−ηq+1(tk)
eT (s, x)e(s, x)ds.

(2.14)

The following basic definitions and lemmas are needed in this paper to get main
results.

Definition 2.2 (see [9]). The dynamical network (2.9) is said to be globally exponentially
synchronized with system (2.2) in mean square if there exist constants M > 1 and θ > 0
such that for any initial values (2.12)

E

{
‖e(t, x)‖2

}
≤ max

s≤0
E

{∥∥ϕ(s, x)
∥∥2
}
Me−θt (2.15)

hold for t ≥ 0.

Lemma 2.3 (see [17]). Let Ω be a cube |xk| < lk (k = 1, 2, . . . , m), and let v(x) be a real-valued
function belonging to C1(Ω) which vanish on the boundary ∂Ω of Ω, that is, v(x)|∂Ω = 0. Then

∫

Ω
v2(x)dx ≤ l2k

∫

Ω

∣∣∣∣
∂v(x)
∂xk

∣∣∣∣

2

dx. (2.16)

Lemma 2.4 (see [42]). IfX,Y are real matrices with appropriate dimensions, then there exist number
ε > 0 such that

XTY + YTX ≤ εXTY +
1
ε
YTY. (2.17)
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Lemma 2.5 (see [35]). Suppose that K(t) is a nonnegative bounded scalar function defined on
[0,+∞), and there exists a positive constant k such that

∫+∞
0 K(u)du = k. For any constant matrix

D ∈ R
n×n, D > 0, and vector function x : (−∞, t] → R

n for t ≥ 0, one has

k

∫ t

−∞
K(t − s)xT (s)Dx(s)ds ≥

(∫ t

−∞
K(t − s)x(s)ds

)T

D

∫ t

−∞
K(t − s)x(s)ds (2.18)

provided the integrals are all well defined.

Remark 2.6. When there is a positive bounded function k(t) such that
∫θ(t)
0 K(u)du = k(t),

where 0 < θ(t) ≤ θ, then the inequality (2.18) becomes the following from:

k(t)
∫ t

t−θ(t)
K(t − s)xT (s)Dx(s)ds ≥

(∫ t

t−θ(t)
K(t − s)x(s)ds

)T

D

∫ t

t−θ(t)
K(t − s)x(s)ds.

(2.19)

Specially, when K(t) = 1 for t ≥ 0, then k(t) = θ(t) in (2.19). In this case, the inequality
(2.19) turns out to the well-known Jensen’s inequality [32]. In the literature, there were many
results concerning stability or synchronization of neural networks with bounded distributed
delays, for instance, see [28–31]. However, the delay kernels in [28–31] were all assumed to
be 1. Obviously, the unbounded distributed delays in this paper include those [28–31] as a
special case. It is easy to see from inequalities (2.18) and (2.19) that results of this paper are
also applicable to neural networks with bounded distributed delays, no matter whetherK(t)
is equal to 1 or not. In this sense, models in this paper are more general than those those in
[28–31].

Lemma 2.7. Consider the following impulsive differential inequalities:

D+v(t) ≤ av(t) + b1[v(t)]τ1 + b2[v(t)]τ2 + · · · + bm[v(t)]τm , t /= tk, t ≥ t0,

v
(
t+k
) ≤ pkv

(
t−k
)
+ q1k
[
v
(
t−k
)]

τ1
+ q2k
[
v
(
t−k
)]

τ2
+ · · · + qmk

[
v
(
t−k
)]

τm
, k ∈ N+,

v(t) = φ(t), t ∈ [t0 − τ, t0],

(2.20)

where a, bi, pk, qik, and τi are constants, bi ≥ 0, pk ≥ 0, qik ≥ 0, τi ≥ 0, i = 1, 2, . . . , m, v(t) ≥ 0,
[v(t)]τi = supt−τi≤s≤tv(s), [v(t

−
k
)]τi = suptk−τi(tk)≤s<tkv(s), φ(t) is continuous on [t0 − τ, t0], and

v(t) is continuous except tk, k ∈ N+, where it has jump discontinuities. The consequence {tk} satisfies
0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · , and limk→+∞tk = +∞. Suppose that

pk +
m∑

i=1

qik < 1, (2.21)

a +
∑m

i=1 bi

pk +
∑m

j=1 q
j

k

+
ln
(
pk +
∑m

j=1 q
j

k

)

tk+1 − tk
< 0. (2.22)
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Then there exist constants β > 1 and λ > 0 such that

v(t) ≤ ∥∥φ∥∥τβe−λ(t−t0), t ≥ t0, (2.23)

where ‖φ‖τ = supt0−τ≤s≤t0‖φ(s)‖, τ = max{τi, i = 1, 2, . . . , m}.

The proof of Lemma 2.7 is given in the appendix, which is partly similarly to that of
Lemma 1 in [43].

Remark 2.8. Lemma 2.7 actually provides stability criterion for impulsive differential
equations with multiple time-varying delays, and impulsive function is related to the same
multiple time-varying delays. Actually, Lemma 2.7 can be written in a more general form. Let
bi = 0, i = h + 1, . . . , m, qj

k
= 0, j = 1, . . . , h, 1 < h < m − 1, τh+1 = σ1, . . . , τh+m−h = σm−h = σr ,

qh+1
k

= q̃1
k
, . . . , qh+m−h

k
= q̃m−h

k
= q̃r

k
, the other parameters are the same as those in Lemma 2.7.

Then one can get the following Lemma 2.9.

Lemma 2.9. Consider the following impulsive differential inequality:

D+v(t) ≤ av(t) + b1[v(t)]τ1 + b2[v(t)]τ2 + · · · + bh[v(t)]τh , t /= tk, t ≥ t0,

v
(
t+k
) ≤ pkv

(
t−k
)
+ q̃1k
[
v
(
t−k
)]

σ1
+ q̃2k
[
v
(
t−k
)]

σ2
+ · · · + q̃rk

[
v
(
t−k
)]

σr
, k ∈ N+,

v(t) = φ(t), t ∈ [t0 − τ, t0].

(2.24)

Suppose that

pk +
r∑

i=1

q̃ik < 1, a +
∑h

i=1 bi

pk +
∑r

j=1 q̃
j

k

+
ln
(
pk +
∑r

j=1 q̃
j

k

)

tk+1 − tk
< 0. (2.25)

Then there exist constants β > 1 and λ > 0 such that

v(t) ≤ ∥∥φ∥∥τβe−λ(t−t0), t ≥ t0, (2.26)

where ‖φ‖τ = supt0−τ≤s≤t0‖φ(s)‖, τ = max{τi, σj , i = 1, 2, . . . , h, j = 1, 2, . . . , r}.

Remark 2.10. Lemmas 2.7 and 2.9 are general. Specially, if q̃i
k
= 0, i = 1, 2, . . . , r, then the

inequalities in (2.25) becomes

pk < 1, a +
∑h

i=1 bi
pk

+
ln pk

tk+1 − tk
< 0. (2.27)

Take p = max{pk, k ∈ N+}, ρ = supk∈N+{tk − tk−1}. Then p < 1 and

a +
∑h

i=1 bi
pk

+
ln pk

tk+1 − tk
≤ a +

∑h
i=1 bi
pk

+
ln p

tk+1 − tk
≤ a +

∑h
i=1 bi
pk

+
ln p
ρ

. (2.28)
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Therefore,

p < 1, a +
∑h

i=1 bi
p

+
ln p
ρ

< 0 (2.29)

implies (2.27); that is, the inequality (2.27) is less conservative than (2.29). In fact, the
inequality (2.29) is exactly the inequalities (5) and (6) in Theorem 3.1 of [26]. (In the
proof in Theorem 3.1 in [26], one can get from bi = (Li/α)

√
λmax(P)/λmin(P) that

(L2
i λmax(P))/(biλmin(P)) = αLi

√
λmax(P)/λmin(P). By comparing the coefficients in the first

two inequalities in the proof of Theorem 3.1 in [26]with those in the inequalities (5) and (6) in
[26], the conclusion can be easily achieved). Hence, Lemmas 2.7 and 2.9 improve and extend
the Theorem 3.1 in [26]. In the literature, many results including those in [3, 9, 38, 40] were
derived by using similar method used in [26]. Since Lemmas 2.7 and 2.9 include correspond-
ing results in [26] as a special case and are less conservative than them, Lemmas 2.7 and 2.9
are very useful for stabilization and synchronization of impulsive control system.

3. Main Results

In this section, the global exponential synchronization criteria for system (2.8) and (2.2) are
derived through strict mathematical reasoning.

Theorem 3.1. Suppose that conditions (H1)–(H4) hold. If there exists constants ε1 > 0, ε2 > 0 and
ε3 > 0 such that

0 < αk +
q∑

i=1

βik + β
q+1
k

ηq+1 < 1, k ∈ N+, (3.1)

a +
ε2μ + ρ2 + ε3k

2
μ + ρ3τ3

αk +
∑q

i=1 β
i
k
+ β

q+1
k

ηq+1

+
ln
(
αk +
∑q

i=1 β
i
k

)
+ β

q+1
k

ηq+1

tk+1 − tk
< 0, (3.2)

where a = −2λmin(R̃ + C) + ε−11 ‖A‖2 + ε1μ + ε−12 ‖B‖2 + ε−13 ‖D‖2 + ρ1, R̃ = diag(
∑m

l=1(r1l/z
2
l
),∑m

l=1(r2l/z
2
l ), . . . ,

∑m
l=1(rnl/z

2
l )), μ = max{μ2

i , i = 1, 2, . . . , n}. Then, under the impulsive controller
(2.7), the controlled system (2.8) is globally exponentially synchronized with system (2.2) in mean
square.

Proof. Consider the following Lyapunov function:

V (t) =
∫

Ω

1
2
eT (t, x)e(t, x)dx. (3.3)

We use LV (t) to denote the infinitesimal operator of V (t) [44], which is defined as

LV (t) = lim
Δ→ 0+

Δ−1[E{V (t + Δ) | t} − V (t)]. (3.4)
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Based on the property ofWiener process [11], differentiating V (t) along the solution of
the error system (2.11) for t ∈ (tk−1, tk], k ∈ N+ obtains that

dV (t) = LV (t)dt + e(t, x)σ(t, x)dω(t), (3.5)

where

LV (t) =
∫

Ω

[

eT(t, x)
m∑

l=1

∂

∂xl

(
Rl

∂e(t, x)
∂xl

)
− eT (t, x)Ce(t, x) + eT (t, x)Ag(e(t, x))

+ eT (t, x)Bg(e(t − τ1(t), x)) + eT (t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds

+
1
2
trace
[
σT (t, x)σ(t, x)

]]

dx.

(3.6)

From the Green’s formula and the Dirichlet boundary condition, we have (see [17–19])

∫

Ω
eT (t, x)

m∑

l=1

∂

∂xl

(
Rl

∂e(t, x)
∂xl

)
dx =

∫

Ω

n∑

i=1

ei(t, x)
m∑

l=1

∂

∂xl

(
ril

∂ei(t, x)
∂xl

)
dx

=
n∑

i=1

∫

Ω
ei(t, x)∇

(
ril

∂ei(t, x)
∂xl

)m

l=1
dx

=
n∑

i=1

∫

Ω
∇
(
ei(t, x)ril

∂ei(t, x)
∂xl

)m

l=1
dx

−
n∑

j=1

∫

Ω

(
ril

∂ei(t, x)
∂xl

)m

l=1
∇ei(t, x)dx

=
n∑

i=1

∫

∂Ω

(
ei(t, x)ril

∂ei(t, x)
∂xl

)m

l=1
dx

−
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)

∂xl

)2

dx

= −
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)

∂xl

)2

dx,

(3.7)

in which ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xm) is the gradient operator, and

(
ril

∂ei(t, x)
∂xl

)m

l=1
=
(
ri1

∂ei(t, x)
∂x1

, ri2
∂ei(t, x)
∂x2

, . . . , rim
∂ei(t, x)
∂xm

)T

. (3.8)
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In view of Lemma 2.3, it is derived that

−
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)

∂xl

)2

dx ≤ −
n∑

i=1

∫

Ω

m∑

l=1

ril

z2
l

e2i (t, x)dx = −
∫

Ω
eT (t, x)R̃e(t, x)dx. (3.9)

For any positive constants ε1, ε2, and ε3, it follows from (H1) and Lemma 2.4 that

eT(t, x)Ag(e(t, x)) ≤ 1
2
ε−11 eT(t, x)AATe(t, x) +

1
2
ε1g

T (e(t, x))g(e(t, x))

≤ 1
2

(
ε−11 ‖A‖2 + ε1μ

)
eT (t, x)e(t, x),

(3.10)

eT(t, x)Bg(e(t − τ1(t), x)) ≤ 1
2
ε−12 ‖B‖2eT(t, x)e(t, x) + 1

2
ε2μe

T(t − τ1(t), x)e(t − τ1(t), x),

(3.11)

eT (t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds ≤ 1

2
ε3

(∫ t

−∞
K(t − s)g(e(s, x))ds

)T

×
∫ t

−∞
K(t − s)g(e(s, x))ds +

1
2
ε−13 ‖D‖2eT (t, x)e(t, x).

(3.12)

By using condition (H2) and Lemma 2.5, one obtains from (3.12) that

eT(t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds ≤ 1

2
ε3k

∫ t

−∞
K(t − s)gT (e(s, x))g(e(s, x))ds

+
1
2
ε−13 ‖D‖2eT (t, x)e(t, x)

≤ 1
2
ε3kμ

∫ t

−∞
K(t − s)eT (s, x)e(s, x)ds

+
1
2
ε−13 ‖D‖2eT (t, x)e(t, x).

(3.13)

Considering condition (H3) and substituting (3.9)–(3.11) and (3.13) into (3.6) derive
that

LV (t) ≤
∫

Ω

[
a

2
eT (t, x)e(t, x) +

1
2
ε2μe

T (t − τ1(t), x)e(t − τ1(t), x)

+
ρ2
2
eT (t − τ2(t), x)e(t − τ2(t), x) +

1
2
ε3kμ

∫ t

−∞
K(t − s)eT(s, x)e(s, x)ds

+
ρ3
2

∫ t

t−τ3(t)
eT(s, x)e(s, x)ds

]

dx
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= aV (t) + ε2μV (t − τ1(t)) + ρ2V (t − τ2(t)) + ε3kμ

∫ t

−∞
K(t − s)V (s)ds

+ ρ3

∫ t

t−τ3(t)
V (s)ds. (3.14)

Taking mathematical expectations on both sides of (3.5), it can be derived from
inequations (3.14) and (H2) that

dE{V (t)}
dt

≤ aE{V (t)} + ε2μ[E{V (t)}]τ1 + ρ2[E{V (s)}]τ2 + ε3k
2
μ[E{V (s)}]−∞

+ ρ3τ3[E{V (s)}]τ3 , t ∈ (tk−1, tk], k ∈ N+,

(3.15)

where [E{V (s)}]−∞ = maxs≤tE{V (s)}.
On the other hand, it is obtained from (H4) and the second equation of (2.11) that

V
(
t+k
)
=
∫

Ω

1
2
eT
(
t+k, x
)
e
(
t+k, x
)
dx =

∫

Ω

1
2
hT
k(tk, x)hk(tk, x)dx

≤ αkV (tk) + β1kV
(
tk − η1(tk)

)
+ · · · + β

q

kV
(
tk − ηq(tk)

)
+ β

q+1
k

∫ t

t−ηq+1(t)
V (s)ds,

(3.16)

which means that

E
{
V
(
t+k
)} ≤ αkE{V (tk)} + β1k[E{V (tk)}]η1

+ · · · + β
q

k[E{V (tk)}]ηq
+ β

q+1
k

ηq+1[V (s)]ηq+1
. (3.17)

By virtue of Lemma 2.7, if the inequalities (3.1) and (3.2) hold, then it follows from
(3.15) and (3.17) that there exist constants M > 1 and θ > 0 such that

E{V (t)} ≤ max
s≤0

E

{∥∥ϕ1(s, x)
∥∥2
}
Me−θt, t ≥ 0. (3.18)

By Definition 2.2, the controlled system (2.8) is globally exponentially synchronized
with system (2.2) in mean square. This completes the proof.

Note that there are three uncertain positive constants ε1, ε2, and ε3. Not making a good
choice of the three constants may lead to the conservativeness of Theorem 3.1 in practical
application. In order to hit off this fault, our next aim is to determine the constants ε1, ε2,
and ε3 such that the conservativeness of Theorem 3.1 can be reduced as much as possible. We
present the following Theorem 3.2.
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Theorem 3.2. Suppose that conditions (H1)–(H4). Then, under the impulsive controller (2.7), the
controlled system (2.8) is globally exponentially synchronized with system (2.2) in mean square if the
following inequalities hold

0 < bk < 1, k ∈ N+, (3.19)

ξk = − λmin

(
R̃ + C

)
+ ‖A‖√μ + ‖B‖

√
μ

bk
+ k‖D‖

√
μ

bk

+
1
2

(
ρ1 +

ρ2
bk

+
ρ3τ3
bk

+
ln bk

tk+1 − tk

)
< 0, k ∈ N+,

(3.20)

where bk = αk +
∑q

i=1 β
i
k
+ β

q+1
k

ηq+1, the other parameters are defined as those in Theorem 3.1.

Proof. Define the function H(ε1, ε2, ε3)with positive variables ε1, ε2, and ε3 as follows:

H(ε1, ε2, ε3) = a +
ε2μ + ρ2 + ε3k

2
μ + ρ3τ3

αk +
∑q

i=1 β
i
k + β

q+1
k ηq+1

+
ln
(
αk +
∑q

i=1 β
i
k

)
+ β

q+1
k ηq+1

tk+1 − tk
. (3.21)

In order that the result of Theorem 3.1 is less conservative, we only need to find out
three constants ε01, ε

0
2, and ε03 such that the inequality (3.2) is less conservative. To achieve

this goal, we will find a point (ε01, ε
0
2, ε

0
3) such that H(ε01, ε

0
2, ε

0
3) takes the minimum value

and H(ε01, ε
0
2, ε

0
3) < 0. By simple computation, one derives that ∂H/∂ε1 = μ − (‖A‖2/ε21),

∂H/∂ε2 = (μ/bk) − (‖B‖2/ε22), ∂H/∂ε3 = (k
2
μ/bk) − (‖D‖2/ε23). Let ∂H/∂ε1 = ∂H/∂ε2 =

∂H/∂ε3 = 0, one gets (ε01, ε
0
2, ε

0
3) = (‖A‖/√μ, ‖B‖√bk/μ, ‖D‖/k√bk/μ). It is obvious that the

Hesse matrix of H(ε1, ε2, ε3) at (ε01, ε
0
2, ε

0
3) is positive definite. Hence, H(ε1, ε2, ε3) takes the

minimum value at (ε01, ε
0
2, ε

0
3) according to the extreme value theory of multivariate function.

Taking H(ε01, ε
0
2, ε

0
3) < 0 arrives at the condition (3.20). This completes the proof.

Remark 3.3. Theorems 3.1 and 3.2 are not dependent on discrete delays of both continuous
equation and impulsive controller, which is consistent with results of [3, 9, 26, 38], though
they did not consider delays in impulses. It should be noted that the inequalities in Theorems

3.1 and 3.2 are related to k
2
, τ3, and ηq+1, which mean that distributed delays in both contin-

uous equation and impulsive controller have important effects on synchronization criteria in
our results. This new discovery is completely different from existing results including those
in [3, 9, 26, 37–40]. As was pointed out in Remark 2.8, results in [3, 9, 38, 40] were derived
by using similar method used in [26], hence results of this paper improve those in
[3, 9, 26, 38, 40] even whenD = 0, σ(t, x) = σ(t, e(t, x), e(t−τ2(t), x)) and hk(tk, x) = h(e(tk, x))
in (2.11). To sum up, results of this paper are new and improve and extend most of known
corresponding ones.

Remark 3.4. Lemma 2.5 is utilized in (3.13), which makes the proof process more simple than
those in [21, 22, 34]. In [21], matrix decomposition method was used to deal with not-equal-
to-1 delay kernel, hence the Lyapunov functional and proof process are relatively complex.
Authors in [22, 34] had to utilize algebraic approach instead of matrix method to derive their
main results. It is well known that results derived from algebraic approach have more
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complex form and is more conservative than those obtained by matrix method. Therefore,
results of this paper improve those in [21, 22, 34] to some extent.

Remark 3.5. Stochastic perturbations are unavoidable in real applications of neural networks.
In this paper, we synchronize a class of reaction-diffusion neural networks with stochastic
perturbations via impulsive control. Although there were several results on stability of
reaction-diffusion neural with stochastic perturbations [45, 46], seldom published papers
considered synchronization of this kind of neural networks under impulsive control.
Moreover, the stochastic perturbations of this paper are more general than those in [45, 46],
since they include information of distributed delays.

4. Examples and Simulations

As applications of the the theoretical results derived above, in this section, we give numerical
simulations to demonstrate that our synchronization criteria are effective.

Consider the following reaction-diffusion neural network with both discrete and
unbounded distributed delays

∂y(t, x)
∂t

=
∂

∂x

(
R
∂y(t, x)

∂x

)
− Cy(t, x) +Af

(
y(t, x)

)
+ Bf
(
y(t − τ1(t), x)

)

+D

∫ t

−∞
K(t − s)f

(
y(s, x)

)
ds + I(t),

(4.1)

where y(t, x) = (y1(t, x), y2(t, x))
T , x ∈ Ω = [−2, 2],

f(y(t, x)) = (tanh(x1(t, x)), tanh(x2(t, x)))
T , τ1(t) = 1, K(t) = e−0.5t, R = diag(0.1, 0.1), I(t) =

(1, 1.2)T ,

C =
(
1.2 0
0 1

)
, A =

(
3 −0.3
4 5

)
, B =

(−1.4 0.1
0.3 −8

)
, D =

(−1.2 0.1
−2.8 −1

)
. (4.2)

Take the boundary condition of (4.1) as y(t, x) = 0, (t, x) ∈ (−∞,+∞) × ∂Ω. In the case
that initial condition is chosen as y(s, x) = (0.4, 0.6)T , (s, x) ∈ [−3, 0] × Ω and y(s, x) = 0,
(s, x) ∈ (−∞,−3)×Ω, the chaotic-like trajectory of (4.1) is shown in Figures 1, 2, and 3. Taking
R = 0, then we get the chaotic-like trajectory of (4.1) without reaction-diffusion terms shown
in Figure 4.

Let system (4.1) be the driver network, we design a response system as

du(t, x) =

[
∂

∂x

(
R
∂u(t, x)

∂x

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t)

]

dt + σ(t, x)dω(t), t /= tk,

u
(
t+k, x
)
= u
(
t−k, x
)
+ hk(tk, x) − e(tk, x), t = tk, k ∈ N+,

(4.3)
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Figure 1: Chaotic behavior of the state y1(t, x) in system (4.1).
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Figure 2: Chaotic behavior of the state y2(t, x) in system (4.1).

where e(t, x) = u(t, x) − y(t, x), hk(tk, x) = ae(tk, x) + be(tk − 0.5| sin tk|, x) + c
∫ t
t−0.5 e(s, x)ds

with positive constants a, b, and c, the noise intensity function matrix is

σ(t, x) = 0.1

⎛

⎝
e1(t, x) e2(t − 1, x)∫ t

t−0.3
e1(s, x)ds e2(t, x)

⎞

⎠. (4.4)

By Jensen’s inequality (which is a special case of inequality (2.19)), one has

(∫ t

t−0.3
e1(s, x)ds

)2

≤ 0.3
∫ t

t−0.3
(e1(s, x))2ds ≤ 0.3

∫ t

t−0.3
eT (s, x)e(s, x)ds. (4.5)
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Figure 3: Chaotic behavior of system (4.1).
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Figure 4: Chaotic behavior of system (4.1) with R = 0.

From (4.5) one gets

trace
(
σT (t, x)σ(t, x)

)
≤ 0.01eT (t, x)e(t, x) + 0.01eT (t − 1, x)e(t − 1, x)

+ 0.003
∫ t

t−0.3
eT (s, x)e(s, x)ds.

(4.6)
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Figure 5: Dynamical behavior of synchronization errors e1(t, x) (a) and e2(t, x) (b).

Similarly, by using Jensen’s inequality one derives that

hT
k(tk, x)hk(tk, x) ≤ (a + b + c)

[

aeT (tk, x)e(tk, x) + beT (tk − 0.5|sin tk|, x)e(tk − 0.5|sin tk|, x)

+c
∫ t

t−0.5
eT (s, x)e(s, x)ds

]

.

(4.7)

Obviously, μ1 = μ2 = 1, k = 2, ρ1 = ρ2 = 0.01, ρ3 = 0.003, αk = a(a+b+c), β1k = b(a+b+c),
β2k = c(a + b + c), q = 1, τ1 = τ2 = 1, τ3 = 0.3, and η1 = η2 = 0.5. Therefore, (H1)–(H4)
are satisfied. Choose a = 0.2, b = 0.15, c = 0.2, and tk − tk−1 = 0.02. Then the inequalities
(3.19) and (3.20) are satisfied with bk = 0.2475, ξk = −0.4086 < 0, respectively. According to
Theorem 3.2, the controlled system (4.3) is globally exponentially synchronized with system
(4.1) in mean square. Figure 5 presents the dynamical behavior of synchronization errors
e1(t, x) and e2(t, x), which close to zero quickly as time increases.

5. Conclusion

Delays are unavoidable in practical systems, and they are always unknown and time-varying.
This paper studies stochastic synchronization of reaction-diffusion neural networkswith both
time-varying discrete and distributed delays via delayed impulsive control. The impulsive
controller has multiple time-varying discrete and distributed delays which is very general.
Based on a novel integral inequality, the problem of distributed delays with not-equal-to-
1 delay kernel is well handled with matrix method. Sufficient synchronization criteria are
given to guarantee the global exponential synchronization in mean square of the considered
system. The function extreme value theorem is utilized to get a less conservative result. It is
discovered that, in our synchronization criteria, the distributed delays in both continuous
equation and impulsive controller have important effects. At last, numerical simulations
show the validity of the obtained criteria.
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Appendix

Proof of Lemma 2.7. Without loss of generality, we assume that τ = τ1 ≥ τ2 ≥ · · · ≥ τm. Consider
the following scalar function:

gk(λ) = 2λ + a +
∑m

i=1 bie
λτi

pk +
∑m

j=1 q
j

ke
λτj

+
ln
(
pk +
∑m

j=1 q
j

k
eλτj
)

tk+1 − tk
. (A.1)

It follows from inequality (2.22) that gk(0) = a + (
∑m

i=1 bi)/(pk +
∑m

j=1 q
j

k
) + (ln(pk+

∑m
j=1 q

j

k))/(tk+1 − tk) < 0. Since g ′
k(λ) = 2 +

∑m
i=1(pkbiλe

λτi/(pk +
∑m

j=1 q
j

ke
λτj )2) +

(λ
∑m

j=1 q
j

ke
λτj )/((tk+1 − tk)(pk +

∑m
j=1 q

j

ke
λτj )) > 0 for λ > 0 and gk(λ) is continuous on (0,+∞),

there exists a positive constant λ such that gk(λ) < 0 and pk +
∑m

j=1 q
j

k
eλτj ≤ 1 for all k ∈ N+.

Let γ = supk∈N+
{1/(pk +

∑m
j=1 q

j

k
eλτj )} ≥ 1. Then we can select a constant σ > 0 such

that for all k ∈ N+,

a +
m∑

i=1

γbie
λτi ≤ σ − λ, (A.2)

(σ + λ)(tk+1 − tk) < − ln

⎛

⎝pk +
m∑

j=1

q
j

k
eλτj

⎞

⎠ ≤ ln γ. (A.3)

From (A.3), we can choose β = β1 ≥ β2 ≥ · · · ≥ βm > 1 such that

1 < e(σ+λ)(t1−t0) ≤ βi ≤ γeλτi . (A.4)

It follows from the above inequality that

∥∥φ
∥∥
τ <
∥∥φ
∥∥
τe

σ(t1−t0) ≤ ∥∥φ∥∥τβ1e−λ(t1−t0). (A.5)

Next we will prove that

v(t) ≤ ∥∥φ∥∥τβ1e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N+. (A.6)

We use mathematical induction to prove that (A.6) holds. Firstly, we prove that (A.6)
holds for k = 1. To do this, we only need to prove that

v(t) ≤ ∥∥φ∥∥τβ1e−λ(t1−t0), t ∈ [t0, t1). (A.7)

If the inequality (A.7) is not true, then there exists some t ∈ (t0, t1) such that

v
(
t
)
>
∥∥φ
∥∥
τβ1e

−λ(t1−t0) ≥ ∥∥φ∥∥τβ2e−λ(t1−t0) ≥ · · · ≥ ∥∥φ∥∥τβme−λ(t1−t0)

≥ ∥∥φ∥∥τeσ(t1−t0) >
∥∥φ
∥∥
τ ≥ v(t0 + s), s ∈ [−τ, 0],

(A.8)
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which implies that there exists t̃i ∈ (t0, t) such that t̃m ≤ t̃m−1 ≤ · · · ≤ t̃1 and

v
(
t̃i
)
=
∥
∥φ
∥
∥
τβie

−λ(t1−t0), v(t) ≤ v
(
t̃i
)
, t ∈

[
t0 − τ, t̃i

]
, (A.9)

and there exists t̂ ∈ [t0, t̃m) such that

v
(
t̂
)
=
∥
∥φ
∥
∥
τ , v

(
t̂
)
≤ v(t) ≤ v

(
t̃i
)
, t ∈

[
t̂, t̃i
]
. (A.10)

Therefore, one gets from (A.4), (A.9), and (A.10) that, for any s ∈ [−τi, 0],

v(t + s) ≤ ∥∥φ∥∥τβie−λ(t1−t0) ≤
∥∥φ
∥∥
τγe

λτie−λ(t1−t0) ≤ γeλτiv
(
t̂
)
≤ γeλτiv(t), t ∈

[
t̂, t̃i
]
. (A.11)

Thus, one has from (A.2) and (A.11) that

D+v(t) ≤ av(t) + b1[v(t)]τ1 + b2[v(t)]τ2 + · · · + bm[v(t)]τm

≤
(

a +
m∑

i=1

γbie
λτi

)

v(t) ≤ (σ − λ)v(t), t ∈
[
t̂, t̃1
]
.

(A.12)

It follows from (A.5), (A.9), (A.10), and (A.12) that

v
(
t̃1
)
≤ v
(
t̂
)
e(σ−λ)(t̃1−t̂) =

∥∥φ
∥∥
τe

(σ−λ)(t̃1−t̂) <
∥∥φ
∥∥
τe

σ(t1−t0)

≤ ∥∥φ∥∥τβ1e−λ(t1−t0) = v
(
t̃1
)
,

(A.13)

which is a contradiction. Hence (A.6) holds for k = 1.
Now we assume that (A.6) holds for k = 1, 2, . . . , n, n ∈ N+, n ≥ 1, that is,

v(t) ≤ ∥∥φ∥∥τβ1e−λ(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . , n. (A.14)

Next, we will show that (A.6) holds for k = n + 1, that is,

v(t) ≤ ∥∥φ∥∥τβ1e−λ(t−t0), t ∈ [tn, tn+1). (A.15)
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For the sake of contradiction, suppose that (A.15) does not hold. Define t̆ = inf{t ∈
[tn, tn+1] | v(t) > ‖φ‖τβ1e−λ(t−t0)}. Then one obtains from (A.3) and (A.14) that

v(t+n) ≤ pnv
(
t−n
)
+ q1n
[
v
(
t−n
)]

τ1
+ q2n
[
v
(
t−n
)]

τ2
+ · · · + qmn

[
v
(
t−n
)]

τm

≤ pn
∥
∥φ
∥
∥
τβ1e

−λ(tn−t0) + q1n
∥
∥φ
∥
∥
τβ1e

−λ(tn−τ1−t0) + q2n
∥
∥φ
∥
∥
τβ1e

−λ(tn−τ2−t0)

+ · · · + qmn
∥
∥φ
∥
∥
τβ1e

−λ(tn−τm−t0)

=

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠
∥
∥φ
∥
∥
τβ1e

λ(t̆−tn)e−λ(t̆−t0)

<

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)
∥
∥φ
∥
∥
τβ1e

−λ(t̆−t0)

< e−(σ+λ)(tn+1−tn)eλ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)

= e−σ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0) <
∥∥φ
∥∥
τβ1e

−λ(t̆−t0),

(A.16)

which implies that t̆ /= tn. From the continuity of v(t) in the interval [tn, tn+1), one has

v
(
t̆
)
=
∥∥φ
∥∥
τβ1e

−λ(t̆−t0), v(t) ≤ v
(
t̆
)
, t ∈ [tn, t̆

]
. (A.17)

On the other hand, one can deduce from (A.16) that there exists t∗ ∈ (tn, t̆) such that

v(t∗) =

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0), v(t∗) ≤ v(t) ≤ v
(
t̆
)
, t ∈ [t∗, t̆]. (A.18)

For any t ∈ [t∗, t̆], s ∈ [−τi, 0], either t + s ∈ [t0 − τi, tn) or t + s ∈ [tn, t̆]. Two cases will
be discussed as follows.

Case 1. If t + s ∈ [t0 − τi, tn), then one obtains from (A.14) that

v(t + s) ≤ ∥∥φ∥∥τβ1e−λ(t−t0)e−λs ≤
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)eλ(t̆−t)eλτi

≤ ∥∥φ∥∥τβ1e−λ(t̆−t0)eλ(tn+1−tn)eλτi .
(A.19)

Case 2. If t + s ∈ [tn, t̆], then it follows from (A.17) that

v(t + s) ≤ ∥∥φ∥∥τβ1e−λ(t̆−t0) ≤
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)eλ(tn+1−tn)eλτi . (A.20)
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In any case, one has from (A.18), (A.19), and (A.20) that, for any s ∈ [−τi, 0],

v(t + s) ≤ ∥∥φ∥∥τβ1e−λ(t̆−t0)eλ(tn+1−tn)eλτi =
eλτi

pn +
∑m

j=1 q
j
ne

λτj
v(t∗)

≤ eλτi

pn +
∑m

j=1 q
j
ne

λτj
v(t) ≤ γeλτiv(t), t ∈ [t∗, t̆].

(A.21)

Hence, one obtains from (A.2) and (A.21) that

D+v(t) ≤ av(t) + b1[v(t)]τ1 + b2[v(t)]τ2 + · · · + bm[v(t)]τm

≤
(

a +
m∑

i=1

γbie
λτi

)

v(t) ≤ (σ − λ)v(t), t ∈ [t∗, t̆].
(A.22)

It follows from inequalities (A.3), (A.17), (A.18), and (A.19) that

v
(
t̆
) ≤ v(t∗)e(σ−λ)(t̆−t

∗)

=

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

< e−(σ+λ)(tn+1−tn)eλ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

= e−σ(tn+1−tn)
∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

≤ ∥∥φ∥∥τβ1e−λ(t̆−t0) = v
(
t̆
)
,

(A.23)

which is a contradiction. Therefore the assumption that the inequality (A.15) does not hold
is not true, and hence the inequality (A.6) holds for k = n + 1. According to the theory of
mathematical induction method, the inequality (A.6) holds for all k ∈ N+. This completes the
proof.
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