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We present an algorithm for C1 Hermite interpolation using Möbius transformations of planar
polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solve C1

Hermite interpolation problems, since their lack of parameters makes the problems overdeter-
mined. In this paper, we show that, for each Möbius transformation, we can introduce an extra
parameter determined by the transformation, with which we can reduce them to the problems
determining PH cubics in the complex plane C. Möbius transformations preserve the PH property
of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH
and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in
order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved
stability of these new interpolants compared with PH quintics.

1. Introduction

Farouki and Sakkalis [1] introduced Pythagorean-hodograph (PH) curves, which are a spe-
cial class of polynomial curves with a polynomial speed function. These curves have many
computationally attractive features: in particular, their arc lengths and offset curves can be
determined exactly. Farouki [2] reviews the abundant results on these curves obtained by
many researchers. Hermite interpolation with PH curves is one of the main topics in this
research (Farouki and Neff [3], Albrecht and Farouki [4], Jüttler [5], Jüttler and Mäurer [6],
Farouki et al. [7], Pelosi et al. [8], and Šı́r et al. [9]).

In this paper, we solve the C1 Hermite interpolation problem using the Möbius trans-
formations of polynomial PH cubics in the plane. The use of Möbius transformation has been
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demonstrated in recent publications [10, 11]. In [11], Bartoň et al. used a general Möbius
transformation in R

3, which is defined as a composition of an arbitrary number of inversions
with respect to spheres or planes. They showed that (μ ◦ x)(t) is a rational PH curve for any
general Möbius transformation μ(x1, x2, x3), if x(t) is a polynomial PH space curve inR3. (The
preservation of PH properties under transformation is first studied by Ueda [12].) They also
presented an algorithm forG1 Hermite interpolation. In this work, we use the classicalMöbius
transformation, a bijective linear fractional transformation in the extended complex plane
C∞ = C ∪ {∞}, that is,

Φ(z) =
az + b

cz + d
, (1.1)

for some complex numbers a, b, c, and d for which ad−bc /= 0 [13]. Using this transformation,
we can solve the C1 Hermite interpolation problems with PH cubics. In general, with PH
cubics, we cannot solve C1 Hermite interpolation problems, since their lack of parameters
makes the problems overdetermined. But we can show that, for a C1 Hermite interpolation
problem, we are always able to obtain four interplants which are constructed by PH cubics.
The Möbius transformation makes this possible, since it permits the introduction of a new
extra parameter into the problem, which is to be reduced to a simple problem to determine
PH cubics as follows: here we adapt the complex representation method [14] to solve the C1

Hermite interpolation problem. The original problem is, for a Hermite dataset (pi,pf ,vi,vf),
to find a polynomial PH curve r(t) and a Möbius transformation Φ(z), which satisfy

(Φ ◦ r)(0) = pi, (Φ ◦ r)(1) = pf , (Φ ◦ r)′(0) = vi, (Φ ◦ r)′(1) = vf . (1.2)

Next, by an appropriate translation, rotation, and scaling of the dataset, we can arrange that
pi = 0 and pf = 1 and take a Möbius transformation

Φ(z) =
αz

(α − 1)z + 1
, (1.3)

which fixes 0 and 1, for some nonzero complex number α. Then the inverse image of the C1

Hermite dataset under a Möbius transformation Φmakes (1.2) into

r(0) = 0,
∫1

0
r′(t)dt = 1, r′(0) =

1
α
vi, r′(1) = αvf , (1.4)

which are suitable forms for adapting the complex representation method (for details, see
Section 4). Farouki and Neff [3] already solved the C1 Hermite interpolation problem with
PH quintics. According to (1.2), this is exactly the case inwhich r(t) is a quintic andΦ(z) is the
identity, that is, α = 1. On the other hand, our work in this paper is the case just when Φ(z) is
not the identity, that is, α/= 1. At the end of this paper, we will compare our interpolants with
PH quintic ones for the same C1 Hermite dataset.

The interpolants obtained by our method are specific rational curves represented by
complex rational functions. For planar rational curves, there already exists a general theory,
which were introduced by Pottmann [15] and Fiorot and Gensane [16]: they studied rational
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plane curves with rational offets. These curves are represented in the dual form, in which
curves are specified using line coordinates instead of point coordinates. Pottmann showed
how to design rational PH curves segments by G1 and G2 Hermite interpolations [17, 18].
However, in our work, what we need is only a suitable PH cubic and a PH-preserving trans-
formation which is algebraically simple as possible and which can generate an extra-
parameter, and the latter is completely settled by the classical Möbius transformation. More-
over, the transformation is biholomorphic. Thus it preserves the topology of the preimage curve
(PH cubic). Therefore, the interpolants obtained by our method should have no cusp, al-
though cusps are a generic feature of rational PH curves. They are simple curves or else loops.
Hence, to obtain these, even avoiding the easy shortcut, there is no need to follow up the
lengthy path with a far starting point. We just use the classical Möbius transformation of PH
cubics, that is all.

The rest of this paper is organized as follows. In Sections 2 and 3, we review some
basic properties of Möbius transformations and planar PH cubics. In Section 4, we solve the
C1 Hermite interpolation problem using the Möbius transformations of planar PH cubics.
In Section 5, we present the condition on a Hermite dataset, which determine whether the
corresponding Hermite interpolant has a loop, we also compare these new interpolants with
PH quintics and show that the former have improved stability. We conclude this paper in
Section 6.

2. Möbius Transformations

A Möbius transformation Φ(z) is a bijective linear fractional transformation in the extended
complex plane C∞ = C ∪ {∞}, that is,

Φ(z) =
az + b

cz + d
, (2.1)

for some complex numbers a, b, c, and d for which ad− bc /= 0 [13]. ThenΦ(z) is a one-to-one
correspondence on the extended complex plane C∞ with its inverse

Φ−1(z) =
dz − b

−cz + a
. (2.2)

The derivative of Φ(z) is

Φ′(z) =
ad − bc

(cz + d)2
. (2.3)

For any Möbius transformations Φ(z) and Ψ(z), (Ψ ◦Φ)(z) is also a Möbius transformation.
Thus the set M of all Möbius transformations forms a group under composition.

A rational plane curve r(t) = x(t) +
√−1y(t) is called a Pythagorean-hodograph (PH)

curve [1] if there exists a rational function σ(t) such that

x′(t)2 + y′(t)2 = σ(t)2. (2.4)
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Lemma 2.1. Let Φ(z) be a Möbius transformation and r(t) be a polynomial PH curve. Then s(t) =
(Φ ◦ r)(t) is a rational PH curve.

Proof. Since s′(t) = Φ′(r(t))r′(t), we have

∣∣s′(t)∣∣ = |ad − bc|
|cr(t) + d|2

∣∣r′(t)∣∣ = |ad − bc|
Re (cr(t) + d)2 + Im (cr(t) + d)2

∣∣r′(t)∣∣. (2.5)

This completes the proof.

Lemma 2.1 means that Möbius transformations preserve the PH property, which is a
special case of the result of Bartoň et al. [11].

For a polynomial PH curve r(t) of degree n, a Möbius transformation of r(t)

(Φ ◦ r)(t) = ar(t) + b

cr(t) + d
(2.6)

is a rational curve, also of degree n, with coefficients in the complex plane C. However, if we
associate the complex plane C with R

2, and express (Φ ◦ r)(t) as a rational curve with real
coefficients in R

2 then the result is generally a rational PH curve of degree 2n or n. If we per-
form a further Möbius transformationΨ(z), the rational curve (Ψ◦(Φ◦r))(t) = ((Ψ◦Φ)◦r)(t)
retains a degree of 2n or n, since (Ψ ◦Φ)(z) is a Möbius transformation.

Lemma 2.2. Let (Φ ◦ r)(t) be a Möbius transformation Φ(z) of a polynomial curve r(t), such that
(Φ ◦ r)(0) = 0 and (Φ ◦ r)(1) = 1. Then there exist a polynomial curve s(t) and a Möbius transforma-
tion Ψ(z), such that s(0) = 0, s(1) = 1, and (Φ ◦ r)(t) = (Ψ ◦ s)(t).

Proof. We can find a Möbius transformationΦ1(z) = az+ b for some complex constants a and
b such that a/= 0 and s(t) = (Φ1 ◦ r)(t) is a polynomial curve with s(0) = 0 and s(1) = 1. Con-
sequently, we can obtain the Möbius transformationΨ(z) = (Φ◦Φ−1

1 )(z) such that (Φ◦ r)(t) =
(Ψ ◦ s)(t).

A Möbius transformation Ψ(z) of this sort also fixes 0 and 1.

Lemma 2.3. Let Φ(z) be a Möbius transformation with Φ(0) = 0 and Φ(1) = 1. Then there exists a
nonzero complex constant α such that

Φ(z) =
αz

(α − 1)z + 1
. (2.7)

If τ = |α| and η = arg(α), then Φ(z) = (Φτ ◦Φη)(z) = (Φη ◦Φτ)(z), where

Φτ(z) =
τz

(τ − 1)z + 1
, Φη(z) =

eiηz(
eiη − 1

)
z + 1

. (2.8)

Proof. LetΨ(z) = (az+ b)/(cz+d) be a Möbius transformation withΨ(0) = 0 andΨ(∞) = ∞.
Then from Ψ(0) = 0 we get b = 0, and from Ψ(∞) = ∞ we get c = 0. Thus Ψ(z) = αz, where
α = a/d. Let τ = |α| and η = arg(α). Then we obtainΨ(z) = (Ψτ ◦Ψη)(z) = (Ψη◦Ψτ)(z), where
Ψτ(z) = τz and Ψη(z) = eiηz.
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Now let Φ(z) be a Möbius transformation with Φ(0) = 0 and Φ(1) = 1. Let S(z) =
z/(z−1), so that S(0) = 0 and S(∞) = 1. Then, since (S−1 ◦Φ◦S)(0) = 0 and (S−1 ◦Φ◦S)(∞) =
∞, we get (S−1 ◦Φ ◦ S)(z) = Ψ(z), where Ψ(z) = αz for some nonzero α. Thus we obtain

Φ(z) =
(
S ◦Ψ ◦ S−1

)
(z) =

αz

(α − 1)z + 1
. (2.9)

Moreover, in the same way, we can obtain Φτ(z) = (S ◦ Ψτ ◦ S−1)(z) and Φη(z) = (S ◦ Ψη ◦
S−1)(z), so that Φ(z) = (Φτ ◦Φη)(z) = (Φη ◦Φτ)(z).

Since Φ′(z) = α/((α − 1)z + 1)2, we have Φ′(0) = α and Φ′(1) = 1/α.

3. Planar Pythagorean-Hodograph Cubics

A planar polynomial curve r(t) = x(t) +
√−1y(t) is a PH curve [19] if and only if there exist

polynomials h(t), u(t), and v(t), which satisfy

x′(t) = h(t)
[
u(t)2 − v(t)2

]
, y′(t) = h(t)[2u(t)v(t)]. (3.1)

Note that, if gcd(u(t), v(t)) = 1, then gcd(u(t)2 − v(t)2, 2u(t)v(t)) = 1. In this paper, we will
assume that h(t) is monic, meaning that its leading coefficient is 1.

A polynomial curve r(t) is a PH curve [14] if and only if there exists a polynomial h(t)
and a polynomial curve w(t) such that

r′(t) = h(t)w(t)2. (3.2)

Suppose that the PH cubic r(t) is a line. Then the hodograph r′(t) can be expressed as h(t)(x0+√−1y0), where x0 +
√−1y0 is a nonzero point and h(t) is the quadratic monic polynomial

h(t) = h0(1 − t)2 + h12(1 − t)t + h2t
2, (3.3)

and h0, h1, and h2 are real constants such that h0 + h2 /= 2h1.
Let r(t) be a PH cubic for which r′(t) = w(t)2. Since w(t) is linear, we can write w(t) in

Bernstein form:

w(t) = w0(1 − t) +w1t, (3.4)

where w0 and w1 are distinct complex constants. The hodograph r′(t) can then be expressed
as

r′(t) = w2
0(1 − t)2 +w0w12(1 − t)t +w2

1t
2. (3.5)

If we represent the PH cubic r(t) in the Bernstein form

r(t) = p0(1 − t)3 + p13(1 − t)2t + p23(1 − t)t2 + p3t
3, (3.6)
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then we obtain

p1 = p0 +
1
3
w2

0, p2 = p1 +
1
3
w0w1, p3 = p2 +

1
3
w2

1, (3.7)

where p0 can be chosen arbitrarily.

4. First-Order Hermite Interpolation

We will now solve the C1 Hermite interpolation problem using Möbius transformations of
PH cubics.

Let pi and pf be the initial and final points to be interpolated, where pi /=pf . Let vi =
rie

√−1θi and vf = rfe
√−1θf , respectively, be the initial vector at pi and the final vector at pf ,

where ri > 0 and rf > 0. For this Hermite dateset (pi,pf ,vi,vf), we want to find planar PH
cubics r(t) and Möbius transformations Φ(z) which satisfy (1.2), which are equivalent to

(Φ ◦ r)(0) = pi,

∫1

0
(Φ ◦ r)′(t)dt = pf − pi,

(Φ ◦ r)′(0) = vi, (Φ ◦ r)′(1) = vf .

(4.1)

By an appropriate translation, rotation, and scaling of the data-set, we can arrange that pi = 0
and pf = 1. Then, from Lemmas 2.2 and 2.3, we seek some nonzero constants α and PH cubics
r(t), which satisfy (1.4).

4.1. Case of r ′(t) = h(t) = h0(1 − t)2 + h12(1 − t)t + h2t
2

In this case, (4.1) become

r(0) = 0, h0 + h1 + h2 = 3, αh0 = vi,
h2

α
= vf . (4.2)

From the second and third of these equations, we can see that Hermite interpolants r(t) exist
if and only if θi + θf = mπ for some integers m. In this case, for α = τe

√−1θi or α = τe
√−1(θi+π),

where τ is any positive number, we have

h0 =
vi
α
, h2 = αvf , h1 = 3 − h0 − h2. (4.3)

Consequently, we can obtain the PH cubics

r(t) =
h0

3
3(1 − t)2t +

h0 + h1

3
3(1 − t)t2 +

h0 + h1 + h2

3
t3 (4.4)
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and their Möbius transformations

(Φ ◦ r)(t) = αr(t)
(α − 1)r(t) + 1

. (4.5)

4.2. Case of r ′(t) = w(t)2 Where w(t) = w0(1 − t) +w1t

From (3.5) and (3.6), (4.1) become

r(0) = 0, w2
0 +w0w1 +w2

1 = 3, αw2
0 = vi,

w2
1

α
= vf . (4.6)

If we let

v =
√
rirf

3
e
√−1(θi+θf )/2, (4.7)

and also let a = w2
0/3, b = w2

1/3 and k = w0w1/3, then second and third equations in (4.6)
imply that k = v or k = −v, and so we have

ab = k2, a + b = 1 − k. (4.8)

Now let

am =
1 − k +

√
(1 + k)(1 − 3k)
2

,

bm =
1 − k −√

(1 + k)(1 − 3k)
2

,

(4.9)

where m = 1 if k = v, and m = −1 if k = −v. Then we have a = am and b = bm, or a = bm and
b = am. Consequently, we can obtain the four PH cubics

rm,1(t) = am3(1 − t)2t + (am + k)3(1 − t)t2 + (am + k + bm)t3,

rm,2(t) = bm3(1 − t)2t + (bm + k)3(1 − t)t2 + (bm + k + am)t3,
(4.10)

where k = v or k = −v. Note that rm,1 = rm,2 if and only if k is −1 or 1/3. From the PH cubics
rm,j(t) we can obtain the Möbius transformations of the PH cubics Φm,j(rm,j(t))(m = 1,−1,
and j = 1, 2), where

Φm,j(z) =
αm,jz(

αm,j − 1
)
z + 1

, αm,1 =
1
3
vi
am

, αm,2 =
1
3
vi
bm

. (4.11)

If k is nonreal, then both rm,1(t) and rm,2(t) are nonlinear. But if k is a real number, then −1 ≤
k ≤ 1/3 if and only if both rm,1(t) and rm,2(t) are linear.

We can summarize these results.
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Theorem 4.1. Let (0, 1,vi = rie
√−1θi ,vf = rfe

√−1θf ) be a C1 Hermite data-set such that ri > 0 and
rf > 0.

(a) Let v be the vector given by (4.7), and let k be v or −v. Then all C1 Hermite interpolants
using Möbius transformations of planar PH cubics r(t), such that r′(t) = w(t)2 for some
linear curve w(t), are Φm,j(rm,j(t))(m = 1,−1, and j = 1, 2), from (4.10) and (4.11),
where am and bm are given by (4.9).

(b) C1 Hermite interpolants using Möbius transformations of planar PH cubics r(t), such that
r′(t) = h0(1 − t)2 + h12(1 − t)t + h2t

2 for some real number h0, h1, and h2 such that h0 +
h2 /=h1, exist if and only if θi + θf = mπ for some integersm. In this case, the interpolants
(Φ ◦ r)(t) are given by (4.5), where r(t) is given by (4.3) and (4.4), where α = τe

√−1θi or
α = τe

√−1(θi+π) for any positive number τ .

5. Best Interpolant

In this section we consider how to choose the best interpolant for a given Hermite data-set
(pi = 0, pf = 1,vi,vf ).

We will begin by presenting a condition under which the Möbius transformation of
a PH cubic (Φ ◦ r)(t) has a loop, where r′(t) = (w0(1 − t) + w1t)

2 for some distinct complex
constants w0 and w1. Since Φ(z) represents a one-to-one correspondence on the extended
complex plane, the condition that r(t) has a loop is both necessary and sufficient to establish
that (Φ◦ r)(t) has a loop. Under the conditions r(0) = 0 and r(1) = 1, the PH cubic r(t) is given
by r(t) = A(t − B)3 + C, where

A =
(w0 −w1)2

3
, B =

w0

w0 −w1
, C =

w3
0

3(w0 −w1)
. (5.1)

The condition that there exist constants t1 and t2, such that 0 ≤ t1 < t2 ≤ 1 and r(t1) = r(t2),
is necessary and sufficient to establish that r(t) has a loop. From r(t1) = r(t2), we can obtain
3B2 − 3(t1 + t2)B + (t21 + t1t2 + t22) = 0, which implies

B =
3(t1 + t2) ±

√−1(t2 − t1)
√
3

6
. (5.2)

This equation is equivalent to

t1 + t2 = 2ReB, t2 − t1 = 2
√
3|ImB|, (5.3)

and hence

t1 = ReB −
√
3|ImB|, t2 = ReB +

√
3|ImB|. (5.4)

Consequently, r(t) has a loop if and only if B ∈ Ω1 ∪Ω2, (see Figure 1)where

Ω1 =
{
z ∈ C0 ≤ Re z −

√
3 Im z < Re z +

√
3 Im z ≤ 1

}
,

Ω2 =
{
z ∈ C | 0 ≤ Re z +

√
3 Im z < Re z −

√
3 Im z ≤ 1

}
.

(5.5)
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Ω1

0
0

0.2 0.4 0.6 0.8 1

0.05
0.1
0.15
0.2
0.25

(a)

Ω2

0
0.2 0.4 0.6 0.8 1−0.05

−0.1

−0.2
−0.25

−0.15

(b)

Figure 1: Areas of Ω1 and Ω2: B belongs to Ω1 ∪Ω2 if and only if r(t) has a loop.

On the other hand, the PH cubic r(t) can be represented by

r(t) = a3(1 − t)2t + (a + k)3(1 − t)t2 + (a + k + b)t3, (5.6)

where a = w2
0/3, k = w0w1/3, and b = w2

1/3. From k = w0w1/3 and B = w0/(w0−w1), we can
obtain

B2 − B =
k

1 − 3k
=

1
1/k − 3

, (5.7)

and hence

k =
1
3
− 1
3(3B2 − 3B + 1)

. (5.8)

Note that

{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z −
√
3 Im z < Re z +

√
3 Im z ≤ 1

}

=
{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z +
√
3 Im z < Re z −

√
3 Im z ≤ 1

}
.

(5.9)

Therefore we conclude as following.

Theorem 5.1. Suppose that (Φ ◦ r)(t) is a Möbius transformation of a planar PH cubic, such that
r(0) = 0, r(1) = 1, and r′(t) = (w0(1 − t) + w1t)

2 for some distinct complex constants w0 and w1

(see Figure 2). Then (Φ ◦ r)(t)(0 ≤ t ≤ 1) is a simple curve if and only ifw0w1/3 /∈ D, where

D =
{
1
3
− 1
3(3z2 − 3z + 1)

∈ C | 0 ≤ Re z −
√
3 Im z < Re z +

√
3 Im z ≤ 1

}
. (5.10)
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D

2

1

0

−1

−2

−0.4−1−1.4

Figure 2: Area of D: w0w1/3 /∈ D if and only if (Φ ◦ r)(t) in Theorem 5.1 is a simple curve.

For a given Hermite data-set (0, 1,vi,vf), the term v in (4.7) belongs toD if and only if
(Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t) have a loop; and −v belongs toD if and only if (Φ−1,1 ◦ r−1,1)(t)
and (Φ−1,2 ◦ r−1,2)(t) have a loop. Note that D is a subset of the left half-plane, that is, D ⊂
{z ∈ Z : Re z < 0}. Thus we can deduce that both (Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t), or both
(Φ−1,1◦r−1,1)(t) and (Φ−1,1◦r−1,2)(t) are simple curves. From these simple curves we can choose
a best interpolant, which is that with the least bending energy

E((Φ ◦ r)(t)) =
∫
Φ◦r

κ2ds =
∫1

0
κ(t)2

∣∣(Φ ◦ r)′(t)∣∣dt, (5.11)

where κ is the curvature of (Φ ◦ r)(t).

Example 5.2. Consider a Hermite data-set (0, 1, 2e−
√−1π/4, 2e−

√−1π/8). Then the vector v becomes

v =
√
rirf

3
e
√−1(θi+θf )/2 =

2
3
e−

√−13π/16. (5.12)

Thus v /∈ D and −v ∈ D, which implies that (Φ1,1 ◦ r1,1)(t) and (Φ1,2 ◦ r1,2)(t) are simple but
(Φ−1,1 ◦ r−1,1)(t) and (Φ−1,2 ◦ r−1,2)(t) each have a loop. See Figure 3.

Example 5.3. In the case of a Hermite data-set (0, 1, e−
√−13π/5, e−

√−1π/5), the vector v becomes

v =
√
rirf

3
e
√−1(θi+θf )/2 =

1
3
e−

√−12π/5. (5.13)

Thus v /∈ D and −v /∈ D, which implies that (Φ1,1 ◦ r1,1)(t), (Φ1,2 ◦ r1,2)(t), (Φ−1,1 ◦ r−1,1)(t), and
(Φ−1,2 ◦ r−1,2)(t) are all simple. See Figure 4.
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Figure 3: For the Hermite dataset (0, 1, 2e−
√−1π/4, 2e−

√−1π/8), the graph on the left shows that −v ∈ D and
v /∈ D; the central graph shows the PH cubics r(t)with their control polygons; the graph on the right shows
the four interpolants.

Example 5.4. Consider a family of C1 Hermite data-sets (0, 2, k(1+
√−1), 1+2√−1),where k =

1, 5, 10, 20. We construct C1 Hermite interpolants that satisfy these data-sets using Möbius
transformations of PH cubics, and also PH quintics, all shown in Figure 5. The Möbius trans-
formations of the PH cubics always provide two S-shaped simple curves and two other
curves; the latter are C-shaped simple curves when k = 1 or 5 and have a single loop in the
other cases. As the parametric speed of the initial Hermite condition increases, the C-shaped
interpolants change from simple curves to single loops, while the simple S-shaped interpol-
ants retain their original shape characteristics. We also observe that, unlike the S-shaped
interpolants produced by Möbius transformations of PH cubics, the S-shaped PH quintic
interpolants may be simple (like the curve labeled 4 in Figure 5), or have one or two loops
(some PH quintics labeled 2 in Figure 5 are S-shaped double loops).

We observed the behavior of these interpolants as the parametric speed at the end-
points changes. As this speed increases, the arc-lengths of PH quintics increase rapidly, but
the arc-length, of Möbius transformations of PH cubics are generally less affected. In partic-
ular, the simple S-shaped interpolants, produced by Möbius transformations of PH cubics
show little change in arc-length. Table 1 shows that these latter interpolants have both lower
bending energies and shorter arc-lengths, than all the other interpolants we are considering.
If we look at Table 1 and identify the most shapely interpolants with the lowest bending
energies, we find that the best Möbius transformation of a PH cubic is always S-shaped and
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Figure 4: For the Hermite data-set (0, 1, e−
√−13π/5, e−

√−1π/5), the graph on the left shows that −v /∈ D and
v /∈ D; the central graph shows the PH cubics r(t)with their control polygons; the graph on the right shows
the four interpolants.
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Figure 5:Comparison of pairs of PH interpolants, satisfying the sameC1 Hermite data-set (0, 2, k(1+
√−1),

1 + 2
√−1), when k = 1, 5, 10, 20: (a), (b), (c), and (d), respectively, show the Möbius transformations of the

PH cubicsMCi when k = 1, 5, 10, 20; and (a)′, (b)′, (c)′, and (d)′ show the correspoding PH quintics Qi.

simple. However, the merit of the PH quintic interpolants depends on the parametric speeds
at their end points. For example, in Figures 5(a)′ and 5(b)′, the curves labeled 4 are best, while
the curves labeled 1 are best in Figures 5(c)′ and 5(d)′. Looking closely at the PH quintic inter-
polants, we see that the simple S-shaped curve with the best shape when k = 1 becomes less
and less acceptable as the parametric speeds at the end-points increase. But the interpol-
ants labeled 1 in Figures 5(a)′, 5(b)′, 5(c)′, and 5(d)′ exhibit the opposite behavior: initially
these curves are C-shaped loops with high bending energies when k = 1; but as the para-
metric speed increases, they become C-shaped simple curves with lower bending energies.
When k reaches 20, it has the best shape but the greatest arc-length. This suggests that the
best-shaped interpolants, produced by Möbius transformations of PH cubics are more stable
than the corresponding PH quintics, in the sense that the former largely achieve a lower arc-
length and bending energy than the latter, except when the end-point speeds are significantly
asymmetric, as we see when k = 20 in this example.
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Table 1: Comparison of arc-length and bending energy for the interpolants of Figure 5.

k = 1 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 3.03 2.19 3.10 2.29 2.34 2.16 2.34 2.16
BE 45.0 5.5 72.8 6.8 149 3106 273 5.3
k = 5 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.93 2.28 4.50 2.31 3.05 2.40 3.05 2.40
BE 50.2 6.5 20.9 5.7 36.1 762 47.3 10.0
k = 10 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.89 2.31 5.47 2.36 4.42 3.02 4.42 3.02
BE 54.03 8.2 16.6 7.5 14.4 345.9 19.3 36.9
k = 20 MC1 MC2 MC3 MC4 Q1 Q2 Q3 Q4

arc-length 2.85 2.34 6.13 2.40 7.91 5.39 7.91 5.39
BE 60.1 11.9 17.7 11.3 8.0 136 10.7 97.9

6. Conclusions

Möbius transformations preserve Pythagorean-hodograph properties. For any C1 Hermite
data-set, we can generally obtain four C1 Hermite interpolants as Möbius transformations of
PH cubics. We have proved that these interpolants are always simple curves or single loops,
and that at least two of them must be simple. We have also presented the condition that an
interpolant must meet if it is to be a simple curve.

We compared the shape characteristics of C1 Hermite interpolants, produced by
Möbius transformations of PH cubics, together with their response to changes of parametric
speed at their end points, with the same data for PH quintic interpolants satisfying an iden-
tical C1 Hermite dataset: we found that interpolants produced by Möbius transformations of
PH cubics generally have lower bending energies and shorter arc-lengths than PH quintics.

One avenue for further research is to look for ways of predicting how the geometry of
Möbius transformation of PH cubics will be determined by a particular C1 Hermite data-set.
Another avenue to explore would be the application of Möbius transformations to other
interpolation problems involving PH (or MPH) curves, in both two and three dimensions.
In particular, we might look to complete the geometric characterization of Möbius trans-
formation of PH cubics in C1 Hermite interpolation.
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mizing frames via Möbius transformations,” in Mathematical Methods for Curves and Surfaces, Lecture
Notes in Computer Science, pp. 15–25, Springer, Berlin, Germany, 2010.

[12] K. Ueda, “Spherical Pythagorean-hodograph curves,” inMathematical Methods for Curves and Surfaces,
II (Lillehammer, 1997), Innovations in Applied Mathematics, pp. 485–492, Vanderbilt University Press,
Nashville, Tenn, USA, 1998.

[13] L. V. Ahlfors, Complex Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill,
New York, NY, USA, Third edition, 1978.

[14] R. T. Farouki, “The conformal map z → z2 of the hodograph plane,” Computer Aided Geometric Design,
vol. 11, no. 4, pp. 363–390, 1994.

[15] H. Pottmann, “Rational curves and surfaces with rational offsets,” Computer Aided Geometric Design,
vol. 12, no. 2, pp. 175–192, 1995.

[16] J.-C. Fiorot and Th. Gensane, “Characterizations of the set of rational parametric curves with rational
offsets,” in Curves and Surfaces in Geometric Design, P. J. Laurent, A. Le Mehaute, and L. L. Schumaker,
Eds., pp. 153–160, A K Peters, Wellesley, Mass, USA, 1994.
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