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We consider a predator-prey model in which the preys disperse among n patches (n ≥ 2) with
stochastic perturbation. We show that there is a unique positive solution and find out the sufficient
conditions for the extinction to the system with any given positive initial value. In addition, we
investigate that there exists a stationary distribution for the system and it has ergodic property.
Finally, we illustrate the dynamic behavior of the system with n = 2 via numerical simulation.

1. Introduction

Interest has been growing in the study of the dynamic relationship between predators and
their preys due to its universal existence and importance. However, due to the spatial
heterogeneity and the increasing spread of human activities, the habitats of many biological
species have been separated into isolated patches. In some of these patches, without the
contribution from other patches, the species will go to extinction. Recently, the effect of
dispersion on the species survival has been an important subject in population biology (see
[1–10] and the references cited therein). Particularly, two species predator-prey systems with
dispersal have received great attention from both theoretical andmathematical biologists and
many good results have been achieved (see [1, 2, 7, 9–11]). The analysis of these papers
has been centered around the coexistence of populations, stability (local and global), and
permanence of equilibria. Zhang and Teng [11] established the sufficient conditions on
the boundedness, permanence, and existence of positive periodic solution for two species
predator-prey model. Kuang and Takeuchi [1] studied a predator-prey system with prey
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dispersal in a two-patch environment; they obtained the existence, local and global stability
of the positive steady state and analyzed both the stabilizing and destabilizing effects of
dispersion by introducing examples.

Li and Shuai [2] considered the model

ẋi = xi

(
ri − bixi − eiyi

)
+

n∑

j=1

dij

(
xj − αijxi

)
,

ẏi = yi

(−γi − δiyi + εixi

)
, i = 1, 2, . . . , n,

(1.1)

where xi, yi denote the densities of preys and predators on the patch i, respectively. The
parameters in themodel are nonnegative constants and ei, εi are positive. The constants dij are
the dispersal rate from patch j to i, and the constants αij can be selected to represent different
boundary conditions in the continuous diffusion case [12]. Let (dij) denote n × n dispersal
matrix. By constructing a Lyapunov function and using graph theory, Li and Shuai proved
the uniqueness and globally asymptotically stability of a positive equilibrium, whenever it
exists, if (dij) is irreducible and there exists i such that bi > 0 or δi > 0.

The model mentioned above is a deterministic model which assumes that the
parameters in the model are all deterministic irrespective environmental fluctuations. In fact,
population dynamics is inevitably affected by environmental white noise, such as weather
and epidemic disease. Therefore, the deterministic models are often subject to stochastic
perturbation, and it is useful to reveal how the noise affects the population system. There
are some authors who have studied the dynamics of predator-prey models with stochastic
perturbations (see [13–15]). Ji et al. [13] studied a predator-prey with modified Leslie-Gower
and Holling-type II schemes with stochastic perturbation; they got some good results about
existence, uniqueness, and extinction of positive solution. Cai and Lin [15] investigated
a predator-prey stochastic system with competition among predators and obtained the
probability distribution of the system state variables at the state of statistical stationarity.
But, until now, few people study the dynamical behavior of the predator-prey system with
diffusion under the influence of white noise. However, the diffusion phenomenon and
environmental white noise are universal existence in nature. Therefore, we want to study
the effect of random perturbations on the predator-prey system on the basis of the existing
diffusion model and the contents of this paper are of great significance.

In this paper, we take into account the effect of randomly fluctuating and stochastically
perturb intrinsic growth rate in each equations of (1.1):

ri −→ ri + σ1iḂ1i(t),

−γi −→ −γi + σ2iḂ2i(t), i = 1, 2, . . . , n,
(1.2)

where B1i(t), B2i(t) are mutually independent Brownian motions and σ1i, σ2i are posi-
tiveconstants representing the intensity of the white noises, respectively. Then the stochastic
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system takes the following form:

dxi =

⎡

⎣xi

(
ri − bixi − eiyi

)
+

n∑

j=1

dij

(
xj − αijxi

)
⎤

⎦dt + σ1ixidB1i(t),

dyi = yi

(−γi − δiyi + εixi

)
dt + σ2iyidB2i(t), i = 1, 2, . . . , n.

(1.3)

Throughout this paper, we assume dij are nonnegative constants, (dij) is irreducible, and the
parameters ri, γi, bi, ei, δi, εi are positive constants.

In order to obtain better dynamic properties of the SDE (1.3), we will show that
there exists a unique positive global solution with any initial positive value, and its pth
moment is bounded in Section 2. In the study of a population dynamics, permanence is a very
important and interesting topic regarding the survival of populations in ecological system. In
a deterministic system, it is usually solved by showing the global attractivity of the positive
equilibrium of the system. But, as mentioned above, it is impossible to expect stochastic
system (1.3) to tend to a steady state. So we attempt to investigate the stationary distribution
of this system by Lyapunov functional technique. The stationary can be considered a weak
stability, which appears as the solution is fluctuating in a neighborhood of the equilibrium
point of the corresponding deterministic model. In Section 3, we will show if the white noise
is small, there is a stationary distribution of SDE (1.3) and it has ergodic property. Existing
results on dynamics in a patchy environment have largely been restricted to extinction
analysis which means that the population system will survive or die out in the future due
to the increased complexity of global analysis. In Section 4, we give the sufficient conditions
for extinction. In Section 5, we make numerical simulation to conform our analytical results.
Finally, for the completeness of the paper, we give an appendix containing some theories
which will be used in previous sections.

The key method used in this paper is the analysis of Lyapunov functions [6, 13, 14, 16].
We will also use the graph theory in Section 3 and some graph definitions can be found in the
appendix.

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets). Let R2n

+ denote the positive cone of R2n, namely,
R2n

+ = {(x1, y1, . . . , xn, yn) ∈ R2n : xi > 0, yi > 0, i = 1, 2, . . . , n}. For convenience and simplicity
in the following discussion, denote X(t) = (x1(t), y1(t), x2(t), y2(t), . . . , xn(t), yn(t)). If A is a
vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by
|A| =

√
trace(ATA) whilst its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}.

2. Positive and Global Solutions

In order for a stochastic differential equation to have a unique global (i.e., no explosion at any
finite time) solution, the coefficients of the equation are generally required to satisfy the linear
growth condition and local Lipschitz condition (see [17]). However, the coefficients of SDE
(1.3) do not satisfy the linear growth condition, though they are locally Lipschitz continuous,
so the solution of SDE (1.3) may explode at a finite time. In this section, we will prove the
solution of stochastic system (1.3) with any positive initial value is not only positive but also
not exploive in infinity at any finite time.
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Theorem 2.1. For any given initial value X(0) ∈ R2n
+ , there is a unique positive solution X(t) of

SDE (1.3), and the solution will remain in R2n
+ with probability 1.

Proof. We define a C2-function V : R2n
+ → R+:

V (X(t)) =
n∑

i=1

[
εi
(
xi − 1 − logxi

)
+ ei

(
yi − 1 − logyi

)]
. (2.1)

Applying Itô’s formula, we have

LV =
n∑

i=1

⎛

⎝εi

⎧
⎨

⎩
(xi − 1)

⎡

⎣ri − bixi − eiyi +
n∑

j=1

dij

(
xj

xi
− αij

)
⎤

⎦ +
σ2
1i

2

⎫
⎬

⎭

+ ei

[
(
yi − 1

)(−γi − δiyi + εixi

)
+
σ2
2i

2

]

dt

⎞

⎠

=
n∑

i=1

⎡

⎣−εibix2
i − eiδiy

2
i + εi

⎛

⎝ri −
n∑

j=1

dijαij + bi − ei

⎞

⎠xi + εi
n∑

j=1

dijxj

− εi
n∑

j=1

dij

xj

xi
+ ei

(−γi + δi + εi
)
yi + εi

⎛

⎝
n∑

j=1

dijαij − ri +
σ2
1i

2

⎞

⎠ + ei

(

γi +
σ2
2i

2

)⎤

⎦dt

≤
n∑

i=1

⎡

⎣−εibix2
i − eiδiy

2
i + εi

⎛

⎝ri −
n∑

j=1

dijαij + bi − ei

⎞

⎠xi + εi
n∑

j=1

dijxj

+ ei
(−γi + δi + εi

)
yi + εi

⎛

⎝
n∑

j=1

dijαij − ri +
σ2
1i

2

⎞

⎠ + ei

(

γi +
σ2
2i

2

)⎤

⎦.

(2.2)

It is clear that the coefficient of quadratic term is negative, sowemust be able to find a positive
constant number K that satisfies

LV ≤ K, (2.3)

and K is independent of xi, yi, and t. By the similar proof of Li and Mao [18, Theorem 2.1],
we can obtain the desired assertion.

Theorem 2.1 shows that the solution of SDE (1.3) will remain in the positive cone R2
+

with probability 1. This nice property provides us with a great opportunity to discuss the pth
moment and stochastically ultimately boundedness of the solution.
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Definition 2.2 (see [18]). The solution X(t) of SDE (1.3) is said to be stochastically ultimately
bounded, if for any ε ∈ (0, 1), there exists a positive constant χ(= χ(ε)), such that for any
initial value X(0) ∈ R2n

+ , the solution X(t) to (1.3) has the property that

lim sup
t→∞

P
{|x(t)| > χ

}
< ε. (2.4)

Lemma 2.3. For any given initial value X(0) ∈ R2n
+ , there exist positive constants κ(p), pi, and

qi (i = 1, 2, . . . , n), such that the solution X(t) of SDE (1.3) has the following property:

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ κ
(
p
)
, t ≥ 0, p > 1. (2.5)

Proof. By Itô’s formula and Young inequality, we compute

d

(
1
p
x
p

i

)
= x

p−1
i dxi +

p − 1
2

x
p−2
i (dxi)

2

=

⎡

⎣−bixp+1
i +

⎛

⎝ri +
p − 1
2

σ2
1i −

n∑

j=1

dijαij

⎞

⎠x
p

i − eix
p

i yi +
n∑

j=1

dijx
p−1
i xj

⎤

⎦dt

+ σ1ix
p

i dB1i(t)

≤
⎡

⎣−bixp+1
i +

⎛

⎝ri +
p − 1
2

σ2
1i +

n∑

j=1

dijαij

⎞

⎠x
p

i +
n∑

j=1

dij

(
p − 1
p

x
p

i +
1
p
x
p

j

)
⎤

⎦dt

+ σ1ix
p

i dB1i(t)

=

⎡

⎣−bixp+1
i +

⎛

⎝ri +
p − 1
2

σ2
1i +

n∑

j=1

dijαij +
p − 1
p

n∑

j=1

dij

⎞

⎠x
p

i +
1
p

n∑

j=1

dijx
p

j

⎤

⎦dt

+ σ1ix
p

i dB1i(t),

d

(
1
p
y
p

i

)
= y

p−1
i dyi +

p − 1
2

y
p−2
i

(
dyi

)2

=
[
−δiyp+1

i +
(
−γi +

p − 1
2

σ2
2i

)
y
p

i + εixiy
p

i

]
dt + σ2iy

p

i dB2i(t)

≤
[
−δiyp+1

i +
(
−γi +

p − 1
2

σ2
2i

)
y
p

i + εi

(
1

p + 1
k
−p
i x

p+1
i +

p

p + 1
kiy

p+1
i

)]
dt

+ σ2iy
p

i dB2i(t)

=

[(
−δi +

pεiki
p + 1

)
y
p+1
i +

(
−γi +

p − 1
2

σ2
2i

)
y
p

i +
εik

−p
i

p + 1
x
p+1
i

]

dt + σ2iy
p

i dB2i(t),

(2.6)



6 Abstract and Applied Analysis

where ki (i = 1, 2, . . . , n) are positive constants to be determined. Hence, for positive constants
pi, qi, we have

d

[
n∑

i=1

(
pix

p

i + qiy
p

i

)]

≤
n∑

i=1

⎧
⎨

⎩
−ppibixp+1

i + pi

⎡

⎣pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij

(
p − 1 + pαij

)
+

n∑

j=1

dji

pj

pi

⎤

⎦x
p

i

+ pqi

(
−δi +

pεiki
p + 1

)
y
p+1
i + pqi

(
−γi +

p − 1
2

σ2
2i

)
y
p

i +
pqiεik

−p
i

p + 1
x
p+1
i

⎫
⎬

⎭
dt

+ p
n∑

i=1

piσ1ix
p

i dB1i(t) + p
n∑

i=1

qiσ2iy
p

i dB2i(t)

=
n∑

i=1

{

−p
(

pibi −
qiεik

−p
i

p + 1

)

x
p+1
i − pqi

(
δi −

pεiki
p + 1

)
y
p+1
i

+ pi

⎡

⎣pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij

(
p − 1 + pαij

)
+

n∑

j=1

dji

pj

pi

⎤

⎦x
p

i

+pqi
(
−γi +

p − 1
2

σ2
2i

)
y
p

i

}

dt

+ p
n∑

i=1

piσ1ix
p

i dB1i(t) + p
n∑

i=1

qiσ2iy
p

i dB2i(t).

(2.7)

Next, we claim that there exist pi > 0, qi > 0, and ki > 0 such that

pibi −
qiεik

−p
i

p + 1
> 0, δi −

pεiki
p + 1

> 0. (2.8)

In fact, we only need 0 < ki < (p + 1)δi/pεi and 0 < qi = pi/m, where m is a sufficiently large
positive integer. Let
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αi =: pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij

(
p − 1 + pαij

)
+

n∑

j=1

dji

pj

pi
,

α′
i =: p

(
−γi +

p − 1
2

σ2
2i

)
,

βi =: pp
−1/p
i

(

bi −
εik

−p
i

m
(
p + 1

)

)

,

β′i =: pq
−1/p
i

(
δi −

pεiki
p + 1

)
,

α̌ =: max
{
α1, α

′
1, . . . , αn, α

′
n

}
,

β̂ =: min
{
β1, β

′
1, . . . , βn, β

′
n

}
.

(2.9)

It is clear that ᾰ > 0, β̂ > 0. Then

d

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤
[

α̌
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)
− β̂

n∑

i=1

(
p
(p+1)/p
i x

p+1
i (t) + q

(p+1)/p
i y

p+1
i (t)

)]

dt

+ p
n∑

i=1

piσ1ix
p

i (t)dB1i(t) + p
n∑

i=1

qiσ2iy
p

i (t)dB2i(t).

(2.10)

Integrating it from 0 to t and taking expectations of both sides, we obtain that

dE
[∑n

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

dt

≤
{

α̌E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

− β̂E

[
n∑

i=1

(
p
(p+1)/p
i x

p+1
i (t) + q

(p+1)/p
i y

p+1
i (t)

)]}

≤
⎧
⎨

⎩
α̌E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

− (2n)−1/pβ̂E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)](p+1)/p

⎫
⎬

⎭

= E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

⎧
⎨

⎩
α̌ − (2n)−1/pβ̂E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]1/p

⎫
⎬

⎭
.

(2.11)

Therefore, letting z(t) = E[
∑n

i=1(pix
p

i (t) + qiy
p

i (t))], we have

dz(t)
dt

≤ z(t)
(
α̌ − (2n)−1/pβ̂z1/p(t)

)
. (2.12)
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Notice that the solution of equation

dz(t)
dt

= z(t)
(
α̌ − (2n)−1/pβ̂z1/p(t)

)
(2.13)

obeys

z(t) −→ 2n ·
(

α̌

β̂

)p

, as t −→ ∞. (2.14)

By comparison theorem, we can get

lim sup
t→∞

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ 2n ·
(

α̌

β̂

)p

:= L
(
p
)
, (2.15)

which implies that there is a T > 0, such that

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ 2L
(
p
)
, t > T. (2.16)

In addition E[
∑n

i=1(pix
p

i (t) + qiy
p

i (t))] is continuous, so we have

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ C
(
p
)
, t ∈ [0, T]. (2.17)

Let κ(p) = max{2L(p), C(p)}, then

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ κ
(
p
)
, t ≥ 0, p > 1. (2.18)

This completes the proof.

Theorem 2.4. The solutions of system (1.3) are stochastically ultimately bounded for any initial value
X(0) ∈ R2n

+ .

Proof. From Theorem 2.1, the solution X(t) will remain in R2n
+ with probability 1. Let

Q = min{p1, q1, p2, q2, . . . , pn, qn}. Note that |X(t)| = [
∑n

i=1(x
2
i + y2

i )]
1/2 and |X(t)|p ≤

(2n)p/2[
∑n

i=1(x
p

i + y
p

i )]. Therefore, we get

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≥ QE

[
n∑

i=1

(
x
p

i (t) + y
p

i (t)
)]

≥ (2n)−p/2QE|X(t)|p, (2.19)
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and by (2.5) we have

E|X(t)|p ≤ (2n)p/2

Q
κ
(
p
)
=: κ̃

(
p
)
< +∞. (2.20)

Applying the Chebyshev inequality yields the required assertion.

3. Stationary Distribution

In this section, we investigate there is a stationary distribution for SDE (1.3) instead of
asymptotically stable equilibria. Before giving the main theorem, we first give a lemma (see
[2]).

Lemma 3.1 (see [2]). Assume (dij) is irreducible. If there exists i such that bi > 0 or δi > 0, then,
whenever a positive equilibrium E∗ exists for system (1.1), it is unique and globally asymptotically
stable in the positive cone R2n

+ .

In the section, we assume system (1.1) exists and the positive equilibrium E∗ =
(x∗

1, y
∗
1, . . . , x

∗
n, y

∗
n) satisfies the equation

x∗
i

(
ri − bix

∗
i − eiy

∗
i

)
+

n∑

j=1

dij

(
x∗
j − αijx

∗
i

)
= 0,

y∗
i

(−γi − δiy
∗
i + εix

∗
i

)
= 0, i = 1, 2, . . . , n,

(3.1)

where x∗
i > 0, y∗

i > 0.
We now state a theorem in which the graph theory will be used. Assume ci (i =

1, 2, . . . , n) defined as in Lemma A.1 are nonnegative constants and A = (dijεix
∗
j )n×n (i =

1, 2, . . . , n).

Theorem 3.2. Assume δ < min{min1≤i≤n{ciεibi(x∗
i )

2},min1≤i≤n{cieiδi(y∗
i )

2}}. Then there is a
stationary distribution μ(·) for SDE (1.3) and it has ergodic property. Here (x∗

1, y
∗
1, . . . , x

∗
n, y

∗
n) is

the solution of (3.1), and δ = (1/2)
∑n

i=1(ciεibix
∗
i σ

2
1i + cieiδiy

∗
i σ

2
2i).

Proof. Define V : El = R2n
+ → R+:

V (X(t)) =
n∑

i=1

[

εi

(

xi − x∗
i − x∗

i log
xi

x∗
i

)

+ ei

(

yi − y∗
i − y∗

i log
yi

y∗
i

)]

. (3.2)
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Then

LV =
n∑

i=1

ci

⎧
⎨

⎩
εi
(
xi − x∗

i

)
⎡

⎣
(
ri − bixi − eiyi

)
+

n∑

j=1

dij

(
xj

xi
− αij

)
⎤

⎦

+ ei
(
yi − y∗

i

)(−γi − δiyi + εixi

)
+
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

⎫
⎬

⎭
.

(3.3)

By (3.1), we have

ri = bix
∗
i + eiy

∗
i −

n∑

j=1

dij

(
x∗
j

x∗
i

− αij

)

,

−γi = δiy
∗
i − εix

∗
i , i = 1, 2, . . . , n.

(3.4)

Substituting this into (3.3) gives

LV =
n∑

i=1

ci

⎡

⎣−εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 + εi
(
xi − x∗

i

) n∑

j=1

dij

(
xj

xi
−
x∗
j

x∗
i

)

+
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

⎤

⎦

=
n∑

i=1

ci

⎡

⎣ − εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

(
xj

x∗
j

− xi

x∗
i

− x∗
i xj

xix
∗
j

+ 1

)⎤

⎦

=
n∑

i=1

ci

⎧
⎨

⎩
− εibi

(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

[(

− xi

x∗
i

+ log
xi

x∗
i

)

−
(

−xj

x∗
j

+ log
xj

x∗
j

)

+

(

1 − x∗
i xj

xix
∗
j

+ log
x∗
i xj

xix
∗
j

)]⎫⎬

⎭

≤
n∑

i=1

ci

⎧
⎨

⎩
− εibi

(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

[(

− xi

x∗
i

+ log
xi

x∗
i

)

−
(

−xj

x∗
j

+ log
xj

x∗
j

)]⎫⎬

⎭
,

(3.5)
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Here we use the fact: 1 − a + loga ≤ 0, for a > 0 with equality holding if and only if a = 1.
Since (dij) is irreducible, εi > 0, x∗

j > 0, we know matrix A = (dijεix
∗
j ) is irreducible. Let

Gi(xi) = −xi/x
∗
i + log(xi/x

∗
i ), Gj(xj) = −xj/x

∗
j + log(xj/x

∗
j ), and by Lemma A.1, we have

n∑

i,j=1

ci
(
dijεix

∗
j

)(

− xi

x∗
i

+ log
xi

x∗
i

)

=
n∑

i,j=1

ci
(
dijεix

∗
j

)(

−xj

x∗
j

+ log
xj

x∗
j

)

(3.6)

which implies that

LV ≤
n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] +
1
2

n∑

i=1

(
ciεix

∗
i σ

2
1i + cieiy

∗
i σ

2
2i

)
. (3.7)

The following proof of ergodicity is similar to Theorem 3.2 in [19]. Assume δ =
(1/2)

∑n
i=1(ciεix

∗
i σ

2
1i + cieiy

∗
i σ

2
2i), then

LV ≤
n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] + δ. (3.8)

Note that δ < min{min1≤i≤n{ciεibi(x∗
i )

2},min1≤i≤n{cieiδi(y∗
i )

2}}, then the ellipsoid

n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] + δ = 0 (3.9)

lies entirely in R2n
+ . We can take U to be a neighborhood of the ellipsoid with U ⊂ El = R2n

+ ,
so for X ∈ El \ U, LV ≤ −N (N is a positive constant), which implies the condition (B.2)
in Lemma A.2 is satisfied. Therefore, the solution X(t) is recurrent in the domain U, which
together with Remark A.3 and Lemma A.4 implies X(t) is recurrent in any bounded domain
D ⊂ R2n

+ . Thus, for any D, there is

M = min
{
min
1≤i≤n

{
σ2
1ix

2
i

}
,min
1≤i≤n

{
σ2
2iy

2
i

}
,
(
x1, y1, . . . , xn, yn

) ∈ D

}
> 0 (3.10)

such that

n∑

i,j=1

aij(x)ξiξj =
n∑

i=1

(
σ2
1ix

2
i ξ

2
i + σ2

2iy
2
i ξ

2
i

)
≥ M‖ξ‖2, (3.11)

for all (x1, y1, . . . , xn, yn) ∈ U, ξ ∈ Rn, which implies that condition (B.1) is also satisfied.
Therefore, the stochastic system (1.3) has a stable stationary distribution μ(·) and it is ergodic.



12 Abstract and Applied Analysis

4. Extinction

In this section, we will show that if the noise is sufficiently large, the solution to the associated
SDE (1.3) will become extinct with probability 1, although the solution to the original
equation (1.1)may be persistent. For example, recall a simple case, namely, the scalar logistic
equation

dN(t) = N(t)(a − bN(t))dt, t ≥ 0, (4.1)

with initial value N0 > 0. It is well known that, when a > 0, b > 0, the solution N(t) is
persistent, because

lim
t→∞

N(t) =
b

a
. (4.2)

However, consider its associated stochastic equation

dN(t) = N(t)[(a − bN(t))dt + σdB(t)], t ≥ 0, (4.3)

where σ > 0, then the solution to this stochastic equation will become extinct with probability
1, that is to say, if σ2 > 2a,

lim
t→∞

N(t) = 0 a.s. (4.4)

The following theorem reveals the important fact that the environmental noise may make the
population extinct.

Theorem 4.1. For any given initial value X(0) ∈ R2n
+ , the solution of the SDE (1.3) has the property

that

lim sup
t→∞

log
(∑n

i=1 xi

)

t
≤ ľ1 −

σ̂2
1

2
a.s. (4.5)

Here

ľ1 = max

⎧
⎨

⎩
max
1≤i≤n

⎧
⎨

⎩
ri +

n∑

j=1

dji −
n∑

j=1

dijαij

⎫
⎬

⎭
, 0

⎫
⎬

⎭
,

σ̂2
1

2
=

1
2
∑n

i=1
(
1/σ2

1i

) . (4.6)

Particularly, if ľ1 − σ̂2
1/2 < 0, then limt→∞(x1(t), x2(t), . . . , xn(t)) = 0 a.s.

Proof. Define

V =
n∑

i=1

xi. (4.7)
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By Itô’s formula, we have

dV =
n∑

i=1

⎡

⎣rixi − bix
2
i − eixiyi +

n∑

j=1

dij

(
xj − αijxi

)
⎤

⎦dt +
n∑

i=1

σ1ixidB1i(t)

=
n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦dt +
n∑

i=1

σ1ixidB1i(t).

(4.8)

Thus we compute

d logV =
1
V
dV − 1

2V 2 (dV )2

=
1
V

n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦dt

+
1
V

n∑

i=1

σ1ixidB1i(t) − 1
2V 2

n∑

j=1

σ2
1ix

2
i dt,

(4.9)

Letting ľ1 = max{max1≤i≤n{ri +
∑n

j=1 dji −
∑n

j=1 dijαij}, 0}, we compute

1
V

n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦ ≤ 1
V

n∑

i=1

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi ≤ ľ1.

(4.10)

By Cauchy inequality, we compute also

− 1
2V 2

n∑

i=1

σ2
1ix

2
i = −

∑n
i=1

(
σ2
1ix

2
i

)

2
(∑n

i=1 xi

)2 ≤ −
(∑n

i=1 xi

)2

2
∑n

i=1
(
1/σ2

1i

) · (∑n
i=1 xi

)2 = − 1
2
∑n

i=1
(
1/σ2

1i

) =: − σ̂
2
1

2
,

(4.11)

where σ̂2
1/2 = 1/2

∑n
i=1(1/σ

2
1i). Substituting these two inequalities into (4.9) yields

d logV ≤
(

ľ1 −
σ̂2
1

2

)

dt +
1
V

n∑

i=1

σ1ixidB1i(t). (4.12)

This implies

logV (X(t)) ≤ logV (X(0)) +
∫ t

0

(

ľ1 −
σ̂2
1

2

)

dt +M(t), (4.13)
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where M(t) is a martingale defined by

M(t) =
∫ t

0

1
V

n∑

i=1

σ1ixi(s)dB1i(s) =
∫ t

0

∑n
i=1 σ1ixi(s)dB1i(s)

∑n
i=1 xi(s)

(4.14)

withM(0) = 0. The quadratic variation of this martingale is

〈M,M〉t =
∫ t

0

∑n
i=1 σ

2
1ix

2
i (s)

(∑n
i=1 xi(s)

)2ds ≤ σ̌2
1

∫ t

0

∑n
i=1 x

2
i (s)∑n

i=1 x
2
i (s)

ds = σ̌2
1 t, (4.15)

where σ̌1 = max1≤i≤n{σ1i}. By the strong law of large numbers for martingale (see [17, 20]),
we have

lim
t→∞

M(t)
t

= 0 a.s. (4.16)

It finally follows from (4.13) by dividing t on the both sides and then letting t → ∞ that

lim sup
t→∞

logV
t

≤ lim sup
t→∞

1
t

∫ t

0

(

ľ1 −
σ̂2
1

2

)

dt = ľ1 −
σ̂2
1

2
a.s. (4.17)

which implies the required assertion.

Remark 4.2. Theorem 4.1 shows that if the condition ľ1− σ̂2
1/2 < 0 holds, that is, when the prey

population is disturbed by large white noise, the species of prey will extinct.

Now we give the following theorem which describes the entire extinction.

Theorem 4.3. For any given initial value X(0) ∈ R2n
+ , the solution of the SDE (1.3) has the property

that

lim sup
t→∞

log
[∑n

i=1
(
εixi + eiyi

)]

t
≤ ľ − σ̂2

2
a.s. (4.18)

Here

l̆ = max

⎧
⎨

⎩
max
1≤i≤n

⎧
⎨

⎩
ri +

n∑

j=1

(
dji

εj

εi
− dijαij

)
⎫
⎬

⎭
, 0

⎫
⎬

⎭
,

σ̂2

2
=

1
2
∑n

i=1
(
1/σ2

1i + 1/σ2
2i

) . (4.19)

Particularly, if ľ − σ̂2/2 < 0, then limt→∞X(t) = 0 a.s.
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Proof. The proof of the theorem is similar to Theorem 4.1, we only give the main proof
procedure. Define

V (X(t)) =
n∑

i=1

(
εixi + eiyi

)
. (4.20)

Let ľ =: max{max1≤i≤n{ri+
∑n

j=1 dji(εj/εi)−
∑n

j=1 dijαij}, 0} and σ̂2/2 = 1/2
∑n

i=1(1/σ
2
1i+1/σ

2
2i).

By Itô’s formula, we compute

d logV ≤ 1
V

n∑

i=1

εi

⎛

⎝ri +
n∑

j=1

dji

εj

εi
−

n∑

j=1

dijαij

⎞

⎠xidt − 1
2V 2

n∑

i=1

(
ε2i σ

2
1ix

2
i + e2i σ

2
2iy

2
i

)
dt

+
1
V

(
n∑

i=1

εiσ1ixidB1i(t) +
n∑

i=1

eiσ2iyidB2i(t)

)

≤
(

ľ − σ̂2

2

)

dt +
1
V

n∑

i=1

(
εiσ1ixidB1i(t) + eiσ2iyidB2i(t)

)
.

(4.21)

The rest of the proof is similar to Theorem 4.1.

Remark 4.4. Theorem 4.3 states that when the prey and predator population are all disturbed
by large white noise and the condition ľ − σ̂2/2 < 0 holds, the two species will be extinct.

5. Numerical Simulation

In this section, in order to better study the effect of white noise in diffusion system, we assume
αij = 1, dij are nonnegative constants, (dij) is irreducible (i, j = 1, 2), and d11 = d22 = 1.
Consider the predator-prey system with n = 2, that is,

dx1 =
[
x1
(
r1 − b1x1 − e1y1

)
+ d12(x2 − x1)

]
dt + σ11x1dB11(t),

dy1 = y1
(−γ1 − δ1y1 + ε1x1

)
dt + σ21y1dB21(t),

dx2 =
[
x2
(
r2 − b2x2 − e2y2

)
+ d21(x1 − x2)

]
dt + σ12x2dB12(t),

dy2 = y2
(−γ2 − δ2y2 + ε2x2

)
dt + σ22y2dB22(t).

(5.1)
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Figure 1: The solution of stochastic system (5.1)with small white noise and its histogram: σ11 = σ12 = σ21 =
σ22 = 0.01.
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Figure 2: Population distribution scatter corresponding to Figure 1. The scatter points around (x∗
1, y

∗
1)

.=
(0.7174, 0.1545) and (x∗

2, y
∗
2)

.= (0.7107, 0.1356), respectively. The system has a stationary distribution.



Abstract and Applied Analysis 17

0

1

2

x
1

0 50 100

(t)

(a)

0

1

2

y
1

0 50 100

(t)

(b)

0

1

2

x
2

0 50 100

(t)

(c)

0

1

2

y
2

0 50 100

(t)

(d)

Figure 3: The solution of stochastic system compared to the deterministic system: σ11 = σ12 = σ21 = σ22 =
0.01. The blue and red lines represent the solutions of system (5.1), and the black and green lines represent
the solutions of corresponding undisturbed system. These lines are almost coincident.
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Figure 4: The solution of stochastic system with large white noise and its histogram: σ11 = 0.4, σ12 =
0.3, σ21 = 0.3, σ22 = 0.4. The fluctuations on the left figures are more intense and histogram distribution
is not concentrated comparing with Figure 1.
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Figure 5: Population distribution scatter corresponding to Figure 4. The scatter is not around the
equilibrium points of the corresponding deterministic system. There is not a stationary distribution in
system (5.1).
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Figure 6: The solution of stochastic system compared to the deterministic system: σ11 = 0.4, σ12 = 0.3, σ21 =
0.3, σ22 = 0.4. The predator population y2 will die out although its corresponding deterministic system is
globally stable. The blue and red lines represent the solutions of system (5.1), and the black and green lines
represent the solutions of corresponding undisturb system.
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Figure 7: The solution of stochastic system compared to the deterministic system: σ11 = 1.4, σ12 = 1.5, σ21 =
0.01, σ22 = 0.01. The prey population suffer the large white noise which leads to the prey and predator
extinction. The blue and red lines represent the solutions of system (5.1), and the black and green lines
represent the solutions of corresponding undisturb system.

In order to better study the previous results, we will numerically simulate the solution
of (5.1). By the method mentioned in [21], we consider the following discretized equation:

x1,k+1 = x1,k +
[
x1,k

(
r1 − b1x1,k − e1y1,k

)
+ d12(x2,k − x1,k)

]
h

+ σ11x1,k

√
hξ1,k +

1
2
σ2
11x1,k

(
hξ21,k − h

)
,

y1,k+1 = y1,k + y1,k
(−γ1 − δ1y1,k + ε1x1,k

)
h + σ21y1,k

√
hη1,k +

1
2
σ2
21y1,k

(
hη2

1,k − h
)
,

x2,k+1 = x2,k +
[
x2,k

(
r2 − b2x2,k − e2y2,k

)
+ d21(x1,k − x2,k)

]
h

+ σ12x2,k

√
hξ2,k +

1
2
σ2
12x2,k

(
hξ22,k − h

)
,

y2,k+1 = y2,k + y2,k
(−γ2 − δ2y2,k + ε2x2,k

)
h + σ22y2,k

√
hη2,k +

1
2
σ2
22y2,k

(
hη2

2,k − h
)
.

(5.2)

Using the discretized equation and the help of Matlab software, we choose the
appropriate parameters r1 = 0.4, r2 = 0.3, b1 = 0.5, b2 = 0.4, e1 = e2 = 0.2, d11 =
d22 = 1, d12 = 1.1, d21 = 1.2, γ1 = γ2 = 0.2, δ1 = δ2 = 0.1, ε1 = ε2 = 0.3, the initial
value (x1(0), y1(0), x2(0), y2(0)) = (0.8, 0.2, 0.7, 0.18), and time step h = 0.01; then E∗ =
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Figure 8: The solution of stochastic system compared to the deterministic system: σ11 = σ12 = 0.01, σ21 =
0.8, σ22 = 0.7. The predator population suffer the large white noise and then extinction. The blue and
red lines represent the solutions of system (5.1), and the black and green lines represent the solutions of
corresponding undisturb system.

(x∗
1, y

∗
1, x

∗
2, y

∗
2)

.= (0.7174, 0.1545, 0.7107, 0.1356). In order to better investigate the white noise,
we divide its intensity into small, medium, and large three cases to study.

In Figures 1, 2, and 3, we choose σ11 = σ12 = σ21 = σ22 = 0.01
and c1

.= 0.86088, c2
.= 0.78177 (c1, c2 satisfy Lemma A.1 and Theorem 3.2); then

δ = (1/2)
∑2

i=1(ciεibix
∗
i σ

2
1i + cieiδiy

∗
i σ

2
2i)

.= 9.9 × 10−6, and so the condition δ <

min{min1≤i≤2{ciεibi(x∗
i )

2},min1≤i≤2{cieiδi(y∗
i )

2}} .= 4.11 × 10−4 is also satisfied. Therefore, by
Theorem 3.2, there is a stationary distribution (see the histogram on the right in Figure 1).
From the left picture in Figure 1, we can see that the solution of system (5.1) is fluctuating in a
small neighborhood. Moreover, from Figure 2, we find that almost all population distribution
lies in the neighborhood, which can be imagined by a circular or elliptic region centered
at (x∗

1, y
∗
1), (x

∗
2, y

∗
2) (see the scatter picture in Figure 2). Figure 3 shows that when the white

noise is small, stochastic system imitates deterministic system and their curves are almost
coincident. Hence, the solution of (5.1) is ergodicity, although there is no equilibrium of the
stochastic system as the deterministic system. All of these imply system (5.1) is a stochastic
stability.

Comparing with small white noise as in Figures 1, 2, and 3, we select the relatively
large white noise σ11 = 0.4, σ12 = 0.3, σ21 = 0.3, σ22 = 0.4, c1

.= 0.86088, c2
.= 0.78177 in Figures 4,

5, and 6. We find that δ = 0.0107 > min{min1≤i≤2{ciεibi(x∗
i )

2},min1≤i≤2{cieiδi(y∗
i )

2}} = 2.875 ×
10−4, so the conditions of Theorem 3.2 are not satisfied; therefore, there is not a stationary
distribution although the deterministic system is global asymptotic stability. The condition
ľ− σ̂2/2 > 0, that is, all extinction condition does not hold by Theorem 4.3 and the predator y2

will die. From Figure 4, we see that the fluctuations on the left figures are more intense and
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histogram distribution is not concentrated comparing with Figure 1, y2(t) close to the point
0.

In Figure 7, we assume both the predator and the prey population suffered large white
noise; we choose σ11 = 1.4, σ12 = 1.5, σ21 = 0.01, σ22 = 0.01, which satisfy the cases said
in Theorem 4.1, that is ľ1 − σ̂2

1/2
.= −0.0239 < 0. As the case in Theorem 4.1 expected, the

large white noise leads to the extinction of the prey which also leads to the extinction of the
predator, so the solution of system (5.1) tends to zero.

In Figure 8, we choose the same parameters as in Figure 1, but change the value of
σ21, σ22 to σ21 = 0.8, σ22 = 0.7, which do not meet the conditions for extinction of the two
species as in Theorem 4.3. The predator population suffer the large white noises and then die
out, but the prey will survive.

From these figures, we can get the following conclusions: when the white noise is
small, system (5.1) imitates its deterministic system (see Figures 1, 2, and 3). But when the
white noise is relatively large, it will bring more big deviation (see Figures 4, 5, and 6)
even the extinction of the species (see Figures 6, 7, and 8), which will not happen in the
deterministic system. However, when the intensity of the white noise on prey species is large,
the predator and prey population will be extinct (see Figure 7). In real world, the large white
noise may be bad weather, serious epidemic, which can be considered as the decisive factors
responsible for the extinction of populations. Therefore, the study of stochastic model has
great practical significance.

Appendix

In this section, we list some theories used in the previous sections.

(1) Some Graph Theories [2, 22]

A directed graph or digraph G=(V, E) contains a set V = 1, 2, . . . , n of vertices and a set E of
arcs (i, j) leading from initial vertex i to terminal vertex j. In our convention, aij > 0 if and
only if there exists an arc from vertex j to vertex i in G.

A digraph G is weighted if each arc (j, i) is assigned a positive weight aij . Given a
weighted digraph (G, A) with n vertices, where A = (aij)n×n is weight matrix, whose entry
aij equals the weight of arc (j, i) if it exists, and 0 otherwise.

A digraph (G,A) is strongly connected if for any pair of distinct vertices, there exists a
directed path from one to the other. A weighted digraph (G, A) is strongly connected iff the
weight matrix A is irreducible.

The Laplacian matrix of (G, A) is defined as

LA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∑

i /= 1

a1i −a12 · · · −a1n

−a21

∑

i /= 2

a2i · · · −a2n

...
...

. . . · · ·
−an1 an2 · · ·

∑

i /=n

ani

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (A.1)

Let ci denote the cofactor of the ith diagonal element of LA, which has the following property.
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Lemma A.1 (see [2]). Assume n ≥ 2. If (G, A) is strongly connected. Then

(1) ci > 0 for 1 ≤ i ≤ n,

(2) the following identity holds:

n∑

i,j=1

ciaijGi(xi) =
n∑

i,j=1

ciaijGj

(
xj

)
, (A.2)

where Gi(xi) (1 ≤ i ≤ n) are arbitrary functions.

(2) Some Theories about the Stationary Distribution [23]

Let X(t) be a homogeneous Markov Process in El (El denotes l-space) described by the
stochastic equation

dX(t) = b(X)dt +
k∑

r=1

gr(X)dBr(t). (A.3)

The diffusion matrix is

A(x) =
(
aij(x)

)
, aij(x) =

k∑

r=1

gi
r(x)g

j
r(x). (A.4)

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ, having the
following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ El \ U, the mean time τ at which a path issuing from x reaches the set U is
finite and supx∈KExτ < ∞ for every compact subset K ⊂ El.

Lemma A.2 (see [23]). If Assumption B holds, then the Markov process X(t) has a stationary
distribution μ(A). Let f(·) be a function integrable with respect to the measure μ. Then

Px

{

lim
T →∞

1
T

∫T

0
f(X(t))dt =

∫

El

f(x)μ(dx)

}

= 1 (A.5)

for all x ∈ El.

Remark A.3. Theorem 2.1 shows that there exists a unique positive solution X(t) =
(x1(t), y1(t), . . . xn(t), yn(t)) of SDE (1.3). Besides, from the proof of Theorem 2.1, we obtain

LV ≤ K. (A.6)
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Now define V = V +K; then

LV ≤ V (A.7)

and we can get

VR = inf
X∈R2n

+ \Dm

V (X) −→ ∞ asm −→ ∞, (A.8)

where Dm = (1/m,m) × (1/m,m) × · · · × (1/m,m). By [23] (Remark 2 of Theorem 4.1), we
obtain the solution X(t) is a homogeneous Markov process in R2n

+ .

Lemma A.4 (see [23]). LetX(t) be a regular temporally homogeneous Markov process in El. IfX(t)
is recurrent relative to some bounded domainU, then it is recurrent relative to any nonempty domain
in El.
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