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An equilibrium problem and a strictly pseudocontractive nonself-mapping are investigated.
Strong convergence theorems of common elements are established based on hybrid projection
algorithms in the framework of real Hilbert spaces.

1. Introduction

Bifunction equilibrium problems which were considered by Blum and Oettli [1] have
intensively been studied. It has been shown that the bifunction equilibrium problem
covers fixed point problems, variational inequalities, inclusion problems, saddle problems,
complementarity problem, minimization problem, and the Nash equilibrium problem; see
[1–4] and the references therein. Iterative methods have emerged as an effective and
powerful tool for studying a wide class of problems which arise in economics, finance,
image reconstruction, ecology, transportation, network, elasticity, and optimization; see [5–
16] and the references therein. In this paper, we investigate an equilibrium problem and a
strictly pseudocontractive nonself-mapping based on hybrid projection algorithms. Strong
convergence theorems of common elements lie in the solution set of the equilibrium problem
and the fixed point set of the strictly pseudocontractive nonself-mapping.

Throughout this paper, we always assume thatH is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty closed convex subset of H and F a
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bifunction of C×C into R, where R denotes the set of real numbers. In this paper, we consider
the following equilibrium problem:

Find x ∈ C such that F
(
x, y

) ≥ 0, ∀y ∈ C. (1.1)

The set of such an x ∈ C is denoted by EP(F), that is,

EP(F) =
{
x ∈ C : F

(
x, y

) ≥ 0, ∀y ∈ C
}
. (1.2)

Given a mapping T : C → H, let F(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then z ∈ EP(F) if and
only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, that is, z is a solution of the variational inequality.

To study the equilibrium problem (1.1), we may assume that F satisfies the following
conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim sup
t↓0

F
(
tz + (1 − t)x, y

) ≤ F
(
x, y

)
; (1.3)

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

If H is an Euclidean space, then we see that F(x, y) = x − y is a simple example
satisfying the above assumptions. See [2] for more details. Let S : D(S) → R(S), where
D(S) and R(S) denote the domain and the range of the mapping S. If D(S) = R(S), then the
mapping S is said to be a self-mapping. If D(S)/=R(S), then the mapping S is said to be a
nonself-mapping. Let S : C → H be a nonself-mapping. In this paper, we use F(S) to denote
the fixed point set of S. Recall the following definitions. S is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.4)

S is said to be strictly pseudocontractive if there exists a constant κ ∈ [0, 1) such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (1.5)

For such a case, S is also said to be κ-strict pseudocontraction. It is clear that (1.5) is equivalent
to

〈
Sx − Sy, x − y

〉 ≤ ∥∥x − y
∥∥2 − 1 − κ

2
∥∥(x − Sx) − (

y − Sy
)∥∥2

, ∀x, y ∈ C. (1.6)

S is said to be pseudocontractive if

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 +
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (1.7)
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It is clear that (1.7) is equivalent to

〈
Sx − Sy, x − y

〉 ≤ ∥
∥x − y

∥
∥2

, ∀x, y ∈ C. (1.8)

The class of κ-strict pseudocontractions which was introduced by Browder and Petryshyn
[17] in 1967 has been considered by many authors. It is easy to see that the class of strict
pseudocontractions falls into the one between the class of nonexpansive mappings and the
class of pseudocontractions. For studying the class of strict pseudocontractions, Zhou [18]
proposed the following convex combination method: define a mapping St : C → H by

Stx = tx + (1 − t)Sx, ∀x ∈ C. (1.9)

He showed that St is nonexpansive if t ∈ [κ, 1); see [18] for more details.
Recently, many authors considered the problem of finding a common element in the

fixed point set of a nonexpansive mapping and in the solution set of the equilibrium problem
(1.1) based on iterative methods; see, for instance, [19–27].

In 2007, Tada and Takahashi [23] considered an iterative method for the equilibrium
problem (1.1) and a nonexpansive nonself-mapping. To be more precise, they obtained the
following results.

Theorem TT. Let C be a closed convex subset of a real Hilbert space H, let f : C × C → R

be a bifunction satisfying (A1)–(A4), and let S be a nonexpansive mapping of C into H such that
F(S) ∩ EP(f)/= ∅. Let {xn} and {un} be sequences generated by x1 = x ∈ H, and let

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

wn = (1 − αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx,

(1.10)

for every n ∈ N, where {αn} ⊂ [a, 1], for some a ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies lim infn→∞rn >
0. Then the sequence {xn} converges strongly to PF(S)∩EP(f)(x).

We remark that the iterative process (1.10) is called the hybrid projection iterative
process. Recently, the hybrid projection iterative process which was first considered by
Haugazeau [28] in 1968 has been studied for fixed point problem of nonlinear mappings and
equilibrium problems bymany authors. Since the sequence generated in the hybrid projection
iterative process depends on the sets Cn andQn, the hybrid projection iterative process is also
known as “CQ” iterative process; see [29] and the reference therein.

Recently, Takahashi et al. [30] considered the shrinking projection process for the
fixed point problem of nonexpansive self-mapping. More precisely, they obtain the iterative
sequence monontonely without the help of the set Qn; see [30] for more details.

In this paper, we reconsider the same shrinking projection process for the equilibrium
problem (1.1) and a strictly pseudocontractive nonself-mapping. We show that the sequence
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generated in the proposed iterative process converges strongly to some common element in
the fixed point set of a strictly pseudocontractive nonself-mapping and in the solution set of
the equilibrium problem (1.1). The main results presented in this paper mainly improved the
corresponding results in Tada and Takahashi [23].

2. Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert spaceH. Let PC be the metric
projection fromH onto C. That is, for x ∈ H, PCx is the only point in C such that ‖x −PCx‖ =
inf{‖x − z‖ : z ∈ C}. We know that the mapping PC is firmly nonexpansive, that is,

∥
∥PCx − PCy

∥
∥2 ≤ 〈

PCx − PCy, x − y
〉
, ∀x, y ∈ H. (2.1)

The following lemma can be found in [1, 2].

Lemma 2.1. Let C be a nonempty closed convex subset ofH, and let F : C ×C → R be a bifunction
satisfying (A1)–(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.2)

Further, define

Trx =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.3)

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single valued;

(b) Tr is firmly nonexpansive, that is,

∥∥Trx − Try
∥∥2 ≤ 〈

Trx − Try, x − y
〉
, ∀x, y ∈ H; (2.4)

(c) F(Tr) = EP(F);

(d) EP(F) is closed and convex.

Lemma 2.2 (see [18]). Let H be a real Hilbert space, C a nonempty closed convex subset of H, and
S : C → H a strict pseudocontraction. Then the mapping I − S is demiclosed at zero, that is, if {xn}
is a sequence in C such that xn ⇀ x and xn − Sxn → 0, then x ∈ F(S).

Lemma 2.3 (see [18]). Let C be a nonempty closed convex subset of a real Hilbert space H and
S : C → H a κ-strict pseudocontraction. Define a mapping Sαx = αx + (1 − α)Sx for all x ∈ C. If
α ∈ [κ, 1), then the mapping Sα is a nonexpansive mapping such that F(Sα) = F(S).
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3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F1 and F2 be
two bifunctions from C × C to R which satisfy (A1)–(A4), respectively. Let S : C → H be a κ-strict
pseudocontraction. Assume that F := EP(F1) ∩ EP(F2) ∩ F(S)/= ∅. Let {αn}, {βn}, and {γn} be
sequences in [0, 1]. Let {xn} be a sequence generated in the following manner:

x1 ∈ H,

C1 = H,

zn = γnun +
(
1 − γn

)
vn,

yn = αnxn + (1 − αn)
(
βnzn +

(
1 − βn

)
Szn

)
,

Cn+1 =
{
w ∈ Cn :

∥
∥yn −w

∥
∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, n ≥ 0,

(Δ)

where un is chosen such that

F1(un, u) +
1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ C, (3.1)

and vn is chosen such that

F2(vn, v) +
1
sn

〈v − vn, vn − xn〉 ≥ 0, ∀v ∈ C. (3.2)

Assume that the control sequences {αn}, {βn}, {γn}, {rn}, and {sn} satisfy the following restrictions:

(a) 0 ≤ αn ≤ a < 1, κ ≤ βn ≤ b < 1, 0 < c ≤ γn ≤ d < 1;

(b) 0 < e ≤ rn, 0 < f ≤ sn

for some a, b, c, d, e, f ∈ R. Then the sequence {xn} generated in the (Δ) converges strongly to some
point x, where x = PFx1.

Proof. First, we show that Cn is closed and convex for each n ≥ 1. It is easy to see that Cn is
closed for each n ≥ 1. We only show that Cn is convex for each n ≥ 1. Note that C1 = H is
convex. Suppose that Cm is convex for some positive integer m. Next, we show that Cm+1 is
convex for the same m. Note that ‖yn −w‖ ≤ ‖xn −w‖ is equivalent to

2
〈
xn − yn,w

〉 ≤ ‖xn‖2 −
∥∥yn

∥∥2
. (3.3)

Take w1 and w2 in Cm+1, and put w = tw1 + (1 − t)w2. It follows that w1 ∈ Cm,w2 ∈ Cm,

2
〈
xn − yn,w1

〉 ≤ ‖xn‖2 −
∥∥yn

∥∥2
,

2
〈
xn − yn,w2

〉 ≤ ‖xn‖2 −
∥∥yn

∥∥2
.

(3.4)
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Combining (3.4), we can obtain that 2〈xn−yn,w〉 ≤ ‖xn‖2−‖yn‖2, that is, ‖yn−w‖ ≤ ‖xn−w‖.
In view of the convexity of Cm, we see thatw ∈ Cm. This shows thatw ∈ Cm+1. This concludes
that Cn is closed and convex for each n ≥ 1.

Define a mapping Sn : C → H by Snx = βnx + (1 − βn)Sx for all x ∈ C. It follows
from Lemma 2.3 that Sn is nonexpansive and F(Sn) = F(S) for all n ≥ 1. Next, we show that
F ⊂ Cn for all n ≥ 1. It is easy to see that F ⊂ C1 = H. Suppose that F ⊂ Ck for some integer
k ≥ 1. We intend to claim that F ⊂ Ck+1 for the same k. For any p ∈ F ⊂ Ck, we have

∥
∥yk − p

∥
∥ ≤ αk

∥
∥xk − p

∥
∥ + (1 − αk)

∥
∥Skzk − p

∥
∥

≤ αk

∥
∥xk − p

∥
∥ + (1 − αk)

∥
∥zk − p

∥
∥

≤ αk

∥
∥xk − p

∥
∥ + (1 − αk)

(
γk
∥
∥uk − p

∥
∥ +

(
1 − γk

)∥∥vk − p
∥
∥)

= αk

∥∥xk − p
∥∥ + (1 − αk)

(
γk
∥∥Trkxk − p

∥∥ +
(
1 − γk

)∥∥Tskxk − p
∥∥)

≤ αk

∥∥xk − p
∥∥ + (1 − αk)

(
γk
∥∥xk − p

∥∥ +
(
1 − γk

)∥∥xk − p
∥∥)

=
∥∥xk − p

∥∥.

(3.5)

This shows that p ∈ Ck+1. This proves that F ⊂ Cn for all n ≥ 1.
Since xn = PCnx1 and xn+1 = PCn+1x1 ∈ Cn+1 ⊂ Cn, we have that

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉

≤ − ‖x1 − xn‖2 + ‖x1 − xn‖‖x1 − xn+1‖.

(3.6)

It follows that

‖x1 − xn‖ ≤ ‖x1 − xn+1‖. (3.7)

On the other hand, for any p ∈ F ⊂ Cn, we see that ‖x1 −xn‖ ≤ ‖x1 −p‖. In particular, we have

‖x1 − xn‖ ≤ ‖x1 − PFx1‖. (3.8)
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This shows that the sequence {xn} is bounded. In view of (3.7), we see that limn→∞‖xn − x1‖
exists. It follows from (3.6) that

‖xn − xn+1‖2

= ‖xn − x1 + x1 − xn+1‖2

= ‖xn − x1‖2 + 2〈xn − x1, x1 − xn+1〉 + ‖x1 − xn+1‖2

= ‖xn − x1‖2 + 2〈xn − x1, x1 − xn + xn − xn+1〉 + ‖x1 − xn+1‖2

= ‖xn − x1‖2 − 2‖xn − x1‖2 + 2〈xn − x1, xn − xn+1〉 + ‖x1 − xn+1‖2

≤ ‖x1 − xn+1‖2 − ‖xn − x1‖2.

(3.9)

This yields that

lim
n→∞

‖xn − xn+1‖ = 0. (3.10)

Since xn+1 = PCn+1x1 ∈ Cn+1, we see that

∥∥yn − xn+1
∥∥ ≤ ‖xn − xn+1‖. (3.11)

It follows that

∥∥yn − xn

∥∥ ≤ ∥∥yn − xn+1
∥∥ + ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖. (3.12)

From (3.10), we obtain that

lim
n→∞

∥∥xn − yn

∥∥ = 0. (3.13)

On the other hand, we have

∥∥xn − yn

∥∥ = ‖xn − αnxn − (1 − αn)Snzn‖ = (1 − αn)‖xn − Snzn‖. (3.14)

From the restriction (a), we obtain from (3.13) that

lim
n→∞

‖xn − Snzn‖ = 0. (3.15)
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For any p ∈ F, we have that

∥
∥un − p

∥
∥2 =

∥
∥Trnxn − Trnp

∥
∥2

≤ 〈
Trnxn − Trnp, xn − p

〉

=
〈
un − p, xn − p

〉

=
1
2

(∥
∥un − p

∥
∥2 +

∥
∥xn − p

∥
∥2 − ‖un − xn‖2

)
.

(3.16)

This implies that

∥
∥un − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − ‖un − xn‖2. (3.17)

In a similar way, we get that

∥∥vn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖vn − xn‖2. (3.18)

It follows from (3.17) and (3.18) that

∥∥yn − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Snzn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥zn − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

(
γn
∥∥un − p

∥∥2 +
(
1 − γn

)∥∥vn − p
∥∥2
)

≤ ∥∥xn − p
∥∥2 − (1 − αn)γn‖un − xn‖2 − (1 − αn)

(
1 − γn

)‖vn − xn‖2.

(3.19)

This implies that

(1 − αn)γn‖un − xn‖2 ≤
∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2

≤ (∥∥xn − p
∥∥ +

∥∥yn − p
∥∥)∥∥xn − yn

∥∥.
(3.20)

In view of the restriction (a), we obtain from (3.13) that

lim
n→∞

‖un − xn‖ = 0. (3.21)

It also follows from (3.19) that

(1 − αn)
(
1 − γn

)‖vn − xn‖2 ≤
∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2

≤ (∥∥xn − p
∥∥ +

∥∥yn − p
∥∥)∥∥xn − yn

∥∥.
(3.22)
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In view of the restriction (a), we obtain from (3.13) that

lim
n→∞

‖vn − xn‖ = 0. (3.23)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ q. From (3.21)
and (3.23), we see that uni ⇀ q and vni ⇀ q, respectively. From (3.21) and the restriction (b),
we see that

lim
n→∞

‖un − xn‖
rn

= 0. (3.24)

Now, we are in a position to show that q ∈ EP(F1). Note that

F1(un, u) +
1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ C. (3.25)

From (A2), we see that

1
rn
〈u − un, un − xn〉 ≥ F1(u, un). (3.26)

Replacing n by ni, we arrive at

〈
u − uni ,

uni − xni

rni

〉
≥ F1(u, uni). (3.27)

In view of (3.24) and (A4), we get that

F1
(
u, q

) ≤ 0, ∀u ∈ C. (3.28)

For any twith 0 < t ≤ 1 and u ∈ C, let ut = tu+ (1− t)q. Since u ∈ C and q ∈ C, we have ut ∈ C
and hence F1(ut, q) ≤ 0. It follows that

0 = F1(ut, ut) ≤ tF1(ut, u) + (1 − t)F1
(
ut, q

) ≤ tF1(ut, u), (3.29)

which yields that

F1(ut, u) ≥ 0, ∀u ∈ C. (3.30)

Letting t ↓ 0, we obtain from (A3) that

F1
(
q, u

) ≥ 0, ∀u ∈ C. (3.31)
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This means that q ∈ EP(F1). In the same way, we can obtain that q ∈ EP(F2). Next, we show
that q ∈ F(S). Note that

‖zn − xn‖ ≤ γn‖un − xn‖ +
(
1 − γn

)‖vn − xn‖. (3.32)

It follows from (3.21) and (3.23) that

lim
n→∞

‖zn − xn‖ = 0. (3.33)

On the other hand, we have

‖xn − Snxn‖ ≤ ‖Snxn − Snzn‖ + ‖Snzn − xn‖
≤ ‖xn − zn‖ + ‖Snzn − xn‖.

(3.34)

It follows from (3.15) and (3.33) that

lim
n→∞

‖xn − Snxn‖ = 0. (3.35)

Note that

‖Sxn − xn‖ ≤ ‖Sxn − Snxn‖ + ‖Snxn − xn‖
≤ βn‖Sxn − xn‖ + ‖Snxn − xn‖,

(3.36)

which yields that

(
1 − βn

)‖Sxn − xn‖ ≤ ‖Snxn − xn‖. (3.37)

This implies from the restriction (a) and (3.35) that

lim
n→∞

‖Sxn − xn‖ = 0. (3.38)

It follows from Lemma 2.2 that q ∈ F(S). This shows that q ∈ F. Since x = PFx1, we obtain
that

‖x1 − x‖ ≤ ∥∥x1 − q
∥∥ ≤ lim inf

i→∞
‖x1 − xni‖

≤ lim sup
i→∞

‖x1 − xni‖ ≤ ‖x1 − x‖,
(3.39)

which yields that

lim
i→∞

‖x1 − xni‖ =
∥∥x1 − q

∥∥ = ‖x1 − x‖. (3.40)
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It follows that {xni} converges strongly to x. Therefore, we can conclude that the sequence
{xn} converges strongly to x = PFx1. This completes the proof.

From Theorem 3.1, we have the following results.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction fromC×C to R which satisfies (A1)–(A4). Let S : C → H be a κ-strict pseudocontraction.
Assume that F := EP(F)∩F(S)/= ∅. Let {αn} and {βn} be sequences in [0, 1]. Let {xn} be a sequence
generated in the following manner:

x1 ∈ H,

C1 = H,

yn = αnxn + (1 − αn)
(
βnun +

(
1 − βn

)
Sun

)
,

Cn+1 =
{
w ∈ Cn :

∥∥yn −w
∥∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, n ≥ 0,

(3.41)

where un is chosen such that

F(un, u) +
1
rn
〈u − un, un − xn〉 ≥ 0, ∀u ∈ C. (3.42)

Assume that the control sequences {αn}, {βn}, and {rn} satisfy the following restrictions:

(a) 0 ≤ αn ≤ a < 1, κ ≤ βn ≤ b < 1;

(b) 0 < e ≤ rn

for some a, b, e ∈ R. Then the sequence {xn} converges strongly to some point x, where x = PFx1.

Proof. Putting F1 ≡ F2 ≡ F and rn ≡ sn in Theorem 3.1, we see that zn ≡ un. From the proof of
Theorem 3.1, we can conclude the desired conclusion immediately.

Remark 3.3. Corollary 3.2 improves Theorem TT in the following aspects.

(1) From the viewpoint of mappings, the class of nonexpansive mappings is extended
to the class of strict pseudocontractions.

(2) From the viewpoint of computation, the set Qn is removed.



12 Abstract and Applied Analysis

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S : C → H
be a κ-strict pseudocontraction with fixed points. Let {αn} and {βn} be sequences in [0, 1]. Let {xn}
be a sequence generated in the following manner:

x1 ∈ H,

C1 = H,

yn = αnxn + (1 − αn)
(
βnPCxn +

(
1 − βn

)
SPCxn

)
,

Cn+1 =
{
w ∈ Cn :

∥
∥yn −w

∥
∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, n ≥ 0.

(3.43)

Assume that the control sequences {αn} and {βn} satisfy the restrictions 0 ≤ αn ≤ a < 1 and κ ≤
βn ≤ b < 1 for some a, b ∈ R. Then the sequence {xn} converges strongly to some point x, where
x = PF(S)x1.

Proof. Putting F1 ≡ F2 ≡ 0 and rn ≡ sn ≡ 1, we can obtain from Theorem 3.1 the desired
conclusion easily.

If S is nonexpansive and βn ≡ 0, then Corollary 3.4 is reduced to the following.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S : C → H
be a nonexpansive mapping with fixed points. Let {αn} be a sequence in [0, 1]. Let {xn} be a sequence
generated in the following manner:

x1 ∈ H,

C1 = H,

yn = αnxn + (1 − αn)SPCxn,

Cn+1 =
{
w ∈ Cn :

∥∥yn −w
∥∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, n ≥ 0.

(3.44)

Assume that the control sequence {αn} satisfies the restriction 0 ≤ αn ≤ a < 1 for some a ∈ R. Then
the sequence {xn} converges strongly to some point x, where x = PF(S)x1.

Recently, many authors studied the following convex feasibility problem (CFP):

finding an x ∈
N⋂

m=1

Cm, (3.45)

where N ≥ 1 is an integer and each Cm is a nonempty closed and convex subset of a
real Hilbert space H. There is a considerable investigation on CFP in the setting of Hilbert
spaces which captures applications in various disciplines such as image restoration, computer
tomography, and radiation therapy treatment planning.

Next, we consider the case that each Cm is the solution set of an equilibrium problem.
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Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Fm be a
bifunction from C × C to R which satisfies (A1)–(A4) for each 1 ≤ m ≤ N. Assume that F :=
∩N
m=1EP(Fm)/= ∅. Let {αn}, {γ(n,1)}, . . ., and {γ(n,N)} be sequences in [0, 1]. Let r(n,1), . . ., and r(n,N)

be sequences in (0,∞). Let {xn} be a sequence generated in the following manner:

x1 ∈ H,

C1 = H,

Fm

(
u(n,m), u

)
+

1
r(n,m)

〈
u − u(n,m), u(n,m) − xn

〉 ≥ 0, ∀u ∈ C,

yn = αnxn + (1 − αn)
N∑

m=1

γ(n,m)u(n,m),

Cn+1 =
{
w ∈ Cn :

∥
∥yn −w

∥
∥ ≤ ‖xn −w‖},

xn+1 = PCn+1x1, n ≥ 0.

(3.46)

Assume that the control sequences satisfy the following restrictions:

(a) 0 ≤ αn ≤ a < 1,
∑N

m=1 γ(n,m) = 1, 0 < cm ≤ γ(n,m) ≤ dm < 1;

(b) 0 < em ≤ r(n,m),

where a, c1, . . . , cm, d1, . . . , dm, e1, . . . , em ∈ R. Then the sequence {xn} generated in the above
iterative process converges strongly to some point x, where x = PFx1.

Proof. Let S be the identity mapping and βn ≡ 0, then we can obtain from Theorem 3.1 the
desired conclusion easily.
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