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This paper deals with a nonlinear p-Laplacian equation with singular boundary conditions. Under
proper conditions, the solution of this equation quenches in finite time and the only quenching
point that is x = 1 are obtained. Moreover, the quenching rate of this equation is established.
Finally, we give an example of an application of our results.

1. Introduction

In this paper, we consider the following problem:

(ψ(u))t = (|ux|p−2ux)x, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −g(u(1, t)), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.1)

where ψ(u) is a monotone increasing function with ψ(0) = 0, p > 1, g(u) > 0, g ′(u) < 0
for u > 0, and limu→ 0+g(u) = +∞. The initial value u0(x) is positive and satisfying some
compatibility conditions.

If ψ(u) = u1/m with m > 0, (1.1) becomes the well-known non-Newtonian filtration
equation, which is used to describe the non-stationary flow in a porous medium of fluids
with a power dependence of the tangential stress on the velocity of the displacement under
polytropic conditions (see [1, 2]).

Many papers have been devoted to the study of critical exponents of non-Newtonian
filtration equation, see [3–5]. There are many results on the quenching phenomenon, see,
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for instance [6–12]. By the quenching phenomenon we mean that the solution approaches
a constant but its derivative with respect to time variable t tends to infinity as (x, t) tends to
some point in the spatial-time space. The study of the quenching phenomenon beganwith the
work of Kawarada through the famous initial boundary problem for the reaction-diffusion
equation: ut = uxx + 1/(1 − u) (see [13]).

As an example of the type of results, we wish to obtain, let us recall results for a closely
related problem

ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.2)

where q > 0. In [14], it was shown that u quenches in finite time for all u0, and the only
quenching point is x = 1. Furthermore, the behavior of u near quenching was described
there. It is easily seen that (1.2) is a special case of (1.1).

If p = 2, then (1.1) reduces to the following equation:

(ψ(u))t = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −g(u(1, t)), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.3)

Deng and Xu proved in [15] the finite time quenching for the solution and established results
on quenching set and rate for (1.3). If ψ(u) = u, then (1.1) reduces to the following equation,
see [11],

ut = (|ux|p−2ux)x, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −g(u(1, t)), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.4)

and they obtained that the bounds for the quenching rate, and the quenching occurs only at
x = 1.

In this paper, we extend the equation ut = (|ux|p−2ux)x, see [11], to a more general
form (ψ(u))t = (|ux|p−2ux)x. We prove that quenching occurs only at x = 1. We determine the
bounds for the quenching rate, and present an example which shows the applicability of our
results.

The main results are stated as follows.

Theorem 1.1. Suppose that the initial data satisfies u′0(x) ≤ 0 and u′′0(x) ≤ 0 for 0 ≤ x ≤ 1, and one
of the following conditions holds:

(i) ψ ′′(u) > 0 for u > 0,

(ii) ψ ′′(u) < 0 for u > 0, lim supu→ 0+(g
′(u)/ψ ′(u)) < 0.

Then every solution of (1.1) quenches in finite time, and the only quenching point is x = 1.
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Next, we deal with the quenching rate. Before we establish upper bounds for the
quenching rate, we introduce the following hypothesis:

(H1) ψ ′′(u)g(u) ≥ 2(p − 1)ψ ′(u)g ′(u), ψ ′(u)[(p − 2)g ′2(u) + g(u)g ′′(u)] ≥ ψ ′′(u)g(u)g ′(u).

Theorem 1.2. Suppose that the conditions of Theorem 1.1 and the hypothesis (H1) hold. Then there
exists a positive constant C1 such that

∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

≤ C1(T − t). (1.5)

Next, we will give the lower bound on the quenching rate, the derivation of which
is in the spirit of [15]. We need the following additional hypotheses: there exists a constant
σ(−∞ < σ ≤ σ0 = min{1, 2 − 1/(p − 1)}) such that

(H2) (g(p−1)(σ−1)(u)g ′(u)/ψ ′(u))
′′
< 0,

(H3) (5p − 2σp − 2σ − 6)(g(p−1)(σ−1)(u)g ′(u))′ψ ′(u) ≥ (p − 1)(3− σ)g(p−1)(σ−1)(u)g ′(u)ψ ′′(u),

(H4) (g(p−1)(σ−1)−1(u)g ′(u)/ψ ′(u))′ < 0.

Theorem 1.3. Suppose that the hypotheses of Theorem 1.1 hold. Furthermore, suppose that the
hypotheses (H2)–(H4) hold. Then there exists a positive constant C2 such that

∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

≥ C2(T − t). (1.6)

Furthermore, if (H1) holds, then the quenching rates are

C1(T − t) ≥
∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

≥ C2(T − t). (1.7)

Next, as an application of the main results of this paper, we study the following con-
crete example:

(um)t = (|ux|p−2ux)x, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.8)

where q > 0, p > 1, and m > 0. We will verify that (1.8) satisfies the hypotheses (H1)–(H4),
and we give the following theorem.

Theorem 1.4. Suppose that u′0(x) ≤ 0 and u′′0(x) ≤ 0 for 0 ≤ x ≤ 1. Then the solution of (1.8)
satisfies

C4 ≤ u(1, t)(T − t)−1/(m+pq+1) ≤ C3, (1.9)

where C3 and C4 are positive constants.
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The plan of this paper is as follows. In Section 2, we prove that quenching occurs only
at x = 1, that is the proof of Theorem 1.1. In Section 3, we derive the estimates for the quench-
ing rate, that is the proof of Theorems 1.2 and 1.3. In Section 4, we present results for certain
ψ(u) and g(u), that is the proof of the Theorem 1.4.

2. Quenching on the Boundary

In this section, we prove finite time quenching. We rewrite problem (1.1) into the following
form:

ut = a(u)(|ux|p−2ux)x, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −g(u(1, t)), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(2.1)

where a(u) = 1/(ψ ′(u)). Clearly, ψ ′(u)/= 0 for u > 0.

Lemma 2.1. Assume the solution u of problem (2.1) exists in (0, T0) for some T0 > 0, and u′0(x) ≤ 0,
u′′0(x) ≤ 0 for 0 ≤ x ≤ 1. Then ux(x, t) < 0 and ut(x, t) < 0 in (0, 1] × (0, T0).

Proof. Let v(x, t) = ux(x, t). Then v(x, t) satisfies

vt = a(u)(|v|p−2v)xx + a′(u)v(|v|p−2v)x, 0 < x < 1, 0 < t < T0,

v(0, t) = 0, v(1, t) = −g(u(1, t)), 0 < t < T0,

v(x, 0) = u′0(x), 0 ≤ x ≤ 1.

(2.2)

The maximum principle leads to v(x, t) < 0, and thus ux(x, t) < 0 in (0, 1] × (0, T0). Then it is
easy to see that the problem (2.2) is nondegenerate in (0, 1] × (0, T0). So ux(x, t) is a classical
solution of (2.2). Similarly, letting w(x, t) = ut(x, t), we have

wt = a′(u)(|ux|p−2ux)xw +
(
p − 1

)
a(u)(|ux|p−2wx)x, 0 < x < 1, 0 < t < T0,

wx(0, t) = 0, wx(1, t) = −g ′(u(1, t))w(1, t), 0 < t < T0,

w(x, 0) =
(
p − 1

)
a(u0(x))

∣∣u′0(x)∣∣p−2u′′0(x), 0 ≤ x ≤ 1.

(2.3)

Making use of the maximum principle, we obtain ut(x, t) < 0 in (0, 1] × (0, T0). Hence, the
solutions of problem (2.1) u ∈ C2,1((0, 1] × (0, T0)) with ux(x, t) < 0 and ut(x, t) < 0 in (0, 1] ×
(0, T0).

The Proof of Theorem 1.1

By the maximum principle, we know that 0 < u(·, t) ≤ M for all t in the existence interval,
whereM = max0≤x≤1u0(x). Define F(t) =

∫1
0 ψ(u(x, t))dx. Then F(t) satisfies

F ′(t) =
∫1

0
(ψ(u(x, t)))tdx =

∫1

0

(
|ux|p−2ux

)
x
dx = −g(u(1, t))∣∣g(u(1, t))∣∣p−2 ≤ −gp−1(M).

(2.4)
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Thus F(t) ≤ F(0) − gp−1(M)t, which means that F(t0) = 0 for some t0 > 0. From the fact that
ψ(u) > 0 for u > 0 and ux(x, t) < 0 for 0 < x ≤ 1, we find that there exists a T(0 < t ≤ T0)
such that limt→ T−u(1, t) = 0. By virtue of the singular nonlinearity in the boundary condition,
umust quench at x = 1. In what follows, we only need to prove that quenching cannot occur
in ((1/2), 1) × (η, T) for some η(0 < η < T). Consider two cases.

Case 1. ψ ′′(u) > 0 for u > 0. Let h(x, t) = |ux|p−2ux + ε(x − (1/4))gp−1(M) in ((1/4), 1) × (η, T),
where ε is a positive constant. Then h(x, t) satisfies

ht =
(
|ux|p−2ux

)
t
=
(
p − 1

)|ux|p−2uxt = (p − 1
)|ux|p−2

[
a(u)

(
|ux|p−2ux

)
x

]
x

=
(
p − 1

)|ux|p−2
(
a′(u)ux

ut
a(u)

+ a(u)hxx
)

≤ (p − 1
)
a(u)|ux|p−2hxx,

(2.5)

for (x, t) ∈ ((1/4), 1) × (η, T), since (a′(u))/(a(u)) = −(ψ′′(u))/(ψ ′(u)) ≤ 0. On the parabolic
boundary, h((1/4), t) = |ux|p−2ux((1/4), t) < 0 for η ≤ t < T ; if ε is sufficiently small, h(1, t) ≤
gp−1(M)((3ε/4) − 1) < 0 for η ≤ t < T , and h(x, η) ≤ −|ux((1/4), η)|p−1 + (3ε/4)gp−1(M) < 0
for (1/4) ≤ x ≤ 1. Thus by the maximum principle, we have h(x, t) ≤ 0 in ((1/4), 1) × (η, T),
which leads to

|ux|p−2ux + ε
(
x − 1

4

)
gp−1(M) ≤ 0 in

(
1
4
, 1
)
× (η, T). (2.6)

So we have

[
ε

(
x − 1

4

)
gp−1(M)

]1/(p−1)
≤ −ux. (2.7)

Integrating (2.7) from x to 1, we obtain

u(x, t) ≥ u(1, t) +
∫1

x

[
ε

(
x − 1

4

)
gp−1(M)

]1/(p−1)
dx >

∫1

x

[
ε

(
x − 1

4

)
gp−1(M)

]1/(p−1)
dx > 0.

(2.8)

It then follows that u(x, t) > 0 if x < 1.

Case 2. ψ ′′(u) < 0 for u > 0. Let k(x, t) = ut − ε(x − (1/2))ux in ((1/2), 1) × (η, T). Then k(x, t)
satisfies

kt = utt − ε
(
x − 1

2

)
utx

=
(
p − 1

)
a(u)|ux|p−2kxx +

(
p − 1

)(
p − 2

)
a(u)|ux|p−2(−uxx)kx + a′(u)

(
|ux|p−2ux

)
x
k

+ εp
(
p − 1

)
a(u)|ux|p−2uxx

≤ (p − 1
)
a(u)|ux|p−2kxx +

(
p − 1

)(
p − 2

)
a(u)|ux|p−2(−uxx)kx + a′(u)

(
|ux|p−2ux

)
x
k,

(2.9)
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for (x, t) ∈ ((1/2), 1) × (η, T). On the boundary, k((1/2), t) = ut((1/2), t) < 0 for η ≤ t < T .
Since limt→ T−u(1, t) = 0 and lim supu→ 0+((g

′(u))/(ψ ′(u))) < 0, if η is close to T and ε is small
enough, g ′(u(1, t)) + (εψ(u(1, t))′/2(p − 1)g(p−2)u(1, t)) + 2 ≤ 0 for η ≤ t < T . Thus

kx(1, t) = utx(1, t) − ε

2
uxx(1, t) − εux(1, t)

= −
[
g ′(u(1, t)) +

εψ ′(u(1, t))
2
(
p − 1

)
gp−2(u(1, t))

+ 2

]
ut(1, t) + 2k(1, t)

≤ 2k(1, t).

(2.10)

It is easily seen that k(x, η) ≤ 0 for (1/2) ≤ x ≤ 1. Hence, the maximum principle yields that
k(x, t) ≤ 0 in [(1/2), 1] × [η, T). In particular,

ut(1, t) +
ε

2
g(u(1, t)) ≤ 0 for η ≤ t < T. (2.11)

Integrating (2.11) from t to T , we obtain

∫u(1,t)
0

ds

g(s)
≥ ε

2
(T − t) for η ≤ t < T. (2.12)

Define G(u) =
∫u
0 (1/g(s))ds. Since G

′(u) = 1/g(u) > 0 for u > 0, the inverse G−1 exists. In
view of (2.12), we can see

u(1, t) = G−1(G(u(1, t))) ≥ G−1
(ε
2
(T − t)

)
for η ≤ t < T. (2.13)

LetH(x, t) = u(x, t) − c1(1 − x2) − c2G−1((ε/2)(T − t)), where c1 and c2 are positive constants.
Since g ′(u) < 0, ux(x, t) < 0, and by (2.13), we have that in (0, 1) × (η, T)

Ht =
(
p − 1

)
a(u)|ux|p−2uxx + εc2

2
g
(
G−1
(ε
2
(T − t)

))

≥ (p − 1
)
a(u)|ux|p−2Hxx − 2c1

(
p − 1

)
a(u)|ux|p−2 + εc2

2
g(u(1, t))

≥ (p − 1
)
a(u)|ux|p−2Hxx −

2c1
(
p − 1

)|ux|p−2
ψ ′(M)

+
εc2
2
g(M)

≥ (p − 1
)
a(u)|ux|p−2Hxx,

(2.14)

provided εc2g(M)ψ ′(M) ≥ 4c1(p − 1)|ux|p−2, which is true since 0 ≤ |ux(x, t)| ≤ g(u(1, t)) =
g(M0), where 0 < M0 ≤M. On the other hand,Hx(0, t) = 0;H(1, t) = u(1, t)−c2G−1((ε/2)(T−
t)) ≥ 0 if c2 ≤ 1 and H(x, η) ≥ 0 if c1 and c2 are small enough. Thus by the maximum
principle, we find thatH(x, t) ≥ 0 in (0, 1)×(η, T), which implies that u(x, t) ≥ c1(1−x2) > 0 if
x < 1.
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3. Bounds for Quenching Rate

In this section, we establish bounds on the quenching rate. We first present the upper
bound.

The Proof of Theorem 1.2

We define a function Φ(x, t) = |ux|p−2ux + ϕp−1(x)gp−1(u(x, t)) in (0, 1) × (η, T), where ϕ(x) is
given as follows:

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ [0, x0],

(x − x0)l
(1 − x0)l

, x ∈ (x0, 1],
(3.1)

with some x0 < 1 and l ≥ max{3, (1/(p − 1))} is chosen so large that ϕ(x) ≤ −(u′0(x)/
g(u0(x)) for x0 < x ≤ 1. It is easy to see that Φ(0, t) = Φ(1, t) = 0, and Φ(x, 0) ≤ 0. On
the other hand, in (0, 1) × (η, T), Φ satisfies

Φt =
(
p − 1

)
a(u)|ux|p−2Φxx +

(
p − 1

)
a′(u)ux|ux|p−2Φx − R1(x, t), (3.2)

where

R1(x, t) =
(
p − 1

)2
a(u)|ux|p−2ϕp−3(x)gp−1(u)

[(
p − 2

)
ψ ′2(x) + ϕ(x)ϕ′′(x)

]

+
(
p − 1

)2
a2(u)|ux|p−2uxϕp−2(x)ϕ′(x)gp−2(u)

[−g(u)ψ ′′(u) + 2
(
p − 1

)
g ′(u)ψ ′(u)

]

+
(
p − 1

)2
a(u)|ux|pϕp−1(x)gp−3(u)

[
−ψ

′′(u)
ψ ′(u)

g(u)g ′(u) +
(
p − 2

)
g ′2(u) + g(u)g ′′(u)

]
.

(3.3)

By (H1) and the definition of ϕ(x), it follows that

Φt ≤
(
p − 1

)
a(u)|ux|p−2Φxx +

(
p − 1

)
a′(u)ux|ux|p−2Φx. (3.4)

Thus, the maximum principle yields Φ(x, t) ≤ 0, that is

ϕ(x)g(u(x, t)) ≤ −ux(x, t), for [0, 1] × [η, T). (3.5)

Moreover, by the definition of the limit, we see that Φx(1, t) ≥ 0 since Φ(x, t) ≤ 0. In fact,

Φx(1, t) = lim
x→ 1−

Φ(x, t) −Φ(1, t)
x − 1

≥ 0, (3.6)
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which means

ut(1, t) ≥
(
p − 1

)
a(u(1, t))gp−1(u(1, t))

(
g ′(u(1, t)) − ϕ′(1)

)

≥ c3
(
p − 1

)
a(u(1, t))gp−1(u(1, t))g ′(u(1, t)).

(3.7)

Integrating (3.7) from t to T , we get

∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

≤ C1(T − t). (3.8)

We then give the lower bound.

The Proof of Theorem 1.3

Let d(u) = a(u)g(p−1)(σ−1)(u)g ′(u). Notice that the hypotheses (H2)–(H4) are equivalent to

(H̃2) d′′(u) ≤ 0,

(H̃3) d′(u)(5p − 2σp + 2σ − 6) ≥ (d(u)/a(u))a′(u)(2p − σp + σ − 3),

(H̃4) d(u)g ′(u) > d′(u)g(u),

respectively. Letting τ be close to T , we consider Ψ(x, t) = ut − εd(u)(−ux)(p−1)(2−σ) in (1 − T +
τ, 1) × (τ, T), where ε is a positive constant. Through a fairly complicated calculation, we find
that

Ψt =
(
p − 1

)
a(u)|ux|p−2Ψxx +

(
p − 1

)(
p − 2

)
a(u)| − ux|p−3(−uxx)Ψx + C(x, t)Ψ + R2(x, t),

(3.9)

where

C(x, t) =
[
a′(u)
a(u)

+ ε(2 − σ)d(u)
a(u)

(
2p − σp + σ − 3

)
(−ux)p−σp+σ−2

]
ut

+ ε2(2 − σ)d
2(u)
a(u)

(
2p − σp + σ − 3

)
(−ux)3p−2σp+2σ−4

+ ε
[
d′(u)

(
5p − 2σp + 2σ − 6

) − d(u)
a(u)

a′(u)
(
2p − σp + σ − 3

)]
(−ux)2(p−1)(2−σ),

R2(x, t) = ε3(2 − σ)d
3(u)
a(u)

(
2p − σp + σ − 3

)
(−ux)5p−3σp+3σ−6

+ ε2d(u)
[
d′(u)

(
5p − 2σp + 2σ − 6

) − d(u)
a(u)

a′(u)
(
2p − σp + σ − 3

)]
(−ux)2(p−1)(2−σ)

+ εa(u)
(
p − 1

)
d′′(u)(−ux)(p−1)(3−σ)+1.

(3.10)
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Since the hypotheses (H̃2)–(H̃3) hold, and d(u) < 0, a(u) > 0, we see that R2(x, t) < 0. Thus,
we have

Ψt ≤
(
p − 1

)
a(u)|ux|p−2Ψxx +

(
p − 1

)(
p − 2

)
a(u)(ux)p−3(−uxx)Ψx + C(x, t)Ψ, (3.11)

for (x, t) ∈ (1 − T + τ, 1) × (τ, T). On the parabolic boundary, since x = 1 is the only quenching
point, if ε is small enough, then bothΨ(1−T + τ, t) andΨ(x, τ) are negative. At x = 1, in view
of (H̃4), we have

Ψx(1, t) = −[1 − ε(2 − σ)]g ′(u(1, t))Ψ(1, t)

− ε{[1 − ε(2 − σ)]g ′(u(1, t))d(u(1, t)) − d′(u(1, t))g(u(1, t))
}
g(p−1)(2−σ)(u(1, t))

≤ −[1 − ε(2 − σ)]g ′(u(1, t))Ψ(1, t),
(3.12)

provided ε is sufficiently small. Hence, by the maximum principle, we have Ψ(x, t) ≤ 0 on
[1 − T + τ, 1] × [τ, T). In particular, Ψ(1, t) ≤ 0, that is,

ut(1, t) ≤ εd(u(1, t))g(p−1)(2−σ)(u(1, t)) = εa(u(1, t))gp−1(u(1, t))g ′(u(1, t)). (3.13)

Integration of (3.13) over (t, T), then leads to

∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

≥ C2(T − t). (3.14)

4. Results for Certain Nonlinearities

In this section, we give the concrete quenching rate of solutions for (1.8).

The Proof of Theorem 1.4

We first present the upper bound. Consider two cases.

Case 1. m + q(p − 1) ≥ 2. We only need to verify the hypothesis (H1). Since

ψ ′′(u)g(u) − 2
(
p − 1

)
ψ ′(u)g ′(u) = m

[
m + 2q

(
p − 1

) − 1
]
um−q−2 ≥ 0,

ψ ′(u)
[(
p − 2

)
g ′2(u) + g(u)g ′′(u)

]
− ψ ′′(u)g(u)g ′(u) = mq

[
pq − q +m − 2

]
um−2q−3 ≥ 0,

(4.1)

then we have

∫u(1,t)
0

ψ ′(s)ds
−gp−1(s)g ′(s)

=
∫u(1,t)
0

msm−1

−s−q(p−1)(−q)s−q−1ds =
m

q

∫u(1,t)
0

sqp+mds

=
m

q
(
m + qp + 1

)um+qp+1(1, t) ≤ C1(T − t).
(4.2)
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Therefore, we get the upper bound as

u(1, t)(T − t)−(1/(m+qp+1)) ≤
[
C1

m

q
(
m + qp + 1

)
]1/(m+qp+1)

:= C3. (4.3)

Case 2. m + q(p − 1) < 2. We use a modification of an argument from [16]. For t ∈ [η, T) with
some η such that u(1, η) < 1, set

y(t) = uγ(1, t)
∫1

1−ξ(t)
um(x, t)dx, (4.4)

with

ξ(t) = uq+1(1, t), (4.5)

where −(m + q + 1) < γ ≤ −(m + 1)(q + 1).

A routine calculation shows

y′(t) = γuγ−1(1, t)ut(1, t)
∫1

1−ξ(t)
um(x, t)dx +

(
q + 1

)
uq+γ(1, t)um(1 − ξ(t), t)ut(1, t)

+ uγ(1, t)
[
|ux|p−2ux(1, t) − |ux|p−2ux(1 − ξ(t), t)

]

≥ uγ−1(1, t)ut(1, t)I(t) − uγ−q(p−1)(1, t),

(4.6)

where I(t) = γ
∫1
1−ξ(t) u

m(x, t)dx + (q + 1)uq+1(1, t)um(1 − ξ(t), t). Since ux ≤ 0 and uxx ≤ 0 in
[0, 1] × [η, T), we find

u(1, t) ≤ u(x, t) ≤ u(1 − ξ(t), t) ≤ 2u(1, t), (4.7)

for any x ∈ [1 − ξ(t), 1] and t ∈ [η, T). By (4.4), (4.5) and (4.7), we have

uγ+m+q+1(1, t) ≤ y(t) ≤ 2muγ+m+q+1(1, t), (4.8)

or equivalently,

u(1, t) ≤ y1/(γ+m+q+1)(t) ≤ c4u(1, t) for t ∈ [η, T). (4.9)
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We now claim that I(t) ≤ 0 on [η, T). In fact

I(t) =
(
γ + q + 1

) ∫1

1−ξ(t)
um(x, t)dx − (q + 1

) ∫1

1−ξ(t)
(um(x, t) − um(1 − ξ(t), t))dx

=
(
γ + q + 1

) ∫1

1−ξ(t)
um(x, t)dx

− (q + 1
) ∫1

1−ξ(t)
mum−1(ζ(t), t)ux(ζ(t), t)(x − 1 + ξ(t))dx,

(4.10)

where 1 − ξ(t) < ζ(t) < 1. When 0 < m < 1, γ ≤ −(((m + 2)(q + 1))/2), because ux, uxx ≤ 0 and∫1
1−ξ(t)(1 − ξ(t), t)) dx = (1/2)u2q+2(1, t), we have

I(t) ≤ (γ + q + 1
) ∫1

1−ξ(t)
um(x, t)dx +m

(
q + 1

) ∫1

1−ξ(t)
um−1(1, t)(−ux(1, t))(x − 1 + ξ(t))dx

=

[
γ + q + 1 +

m
(
q + 1

)
2

]
um+q+1(1, t) ≤ 0;

(4.11)

when 1 ≤ m < 2, γ ≤ −(q + 1)(m + 1), we have

I(t) ≤ (γ + q + 1
) ∫1

1−ξ(t)
um(x, t)dx +m

(
q + 1

) ∫1

1−ξ(t)
(2u(1, t))m−1(−ux(1, t))(x − 1 + ξ(t))dx

=
[
γ + q + 1 + 2m−2m

(
q + 1

)]
um+q+1(1, t)

≤ [γ + q + 1 +m
(
q + 1

)]
um+q+1(1, t) ≤ 0.

(4.12)

In conclusion, when 0 < m < 2, γ ≤ −(q + 1)(m + 1), we have

I(t) ≤ 0. (4.13)

From (4.6), (4.9), and (4.13), it then follows that

y′(t) ≥ −uγ−q(p−1)(1, t) ≥ −c−γ+q(p−1)4 y(γ−q(p−1))/(γ+m+q+1)(1, t). (4.14)

Integrating the above inequality from t to T , we obtain

y(m+qp+1)/(γ+m+q+1)(t) ≤ m + qp + 1
γ +m + q + 1

c
−γ+q(p−1)
4 (T − t), (4.15)
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that is,

y1/(γ+m+q+1)(1, t) ≤ C3(T − t)1/(γ+m+q+1), (4.16)

which in conjunction with (4.9) yields the desired upper bound.
We then give the lower bound. We examine the validity of hypotheses (H2)–(H4).
Firstly, for (H2), we find

(
g(p−1)(σ−1)(u)g ′(u)

ψ ′(u)

)′′
= − q

m

[
q
(
pσ − σ − p + 2

)
+m
]

· [q(pσ − σ − p + 2
)
+m + 1

]
u−q(pσ−σ−p+2)−m−2 < 0,

(4.17)

provided σ < σ1 = −((m+ 1)/(q(p− 1))) + ((p− 2)/(p− 1)) or σ > σ2 = −(m/(q(p− 1))) + ((p−
2)/(p − 1)).

Secondly, for (H3), we have

(
5p − 2σp + 2σ − 6

)(
g(p−1)(σ−1)(u)g ′(u)

)′
ψ ′(u) − (p − 1

)
(3 − σ)g(p−1)(σ−1)(u)g ′(u)ψ ′′(u)

= qm
[
−2q(p − 1)2σ2 +

(
p − 1

)(
7pq − 10q −m − 1

)
σ

+
(
−5p2q + 16pq − 12q + 3pm + 2p − 3m − 3

)]
u−q(p−1)(σ−1)−q+m−3 ≥ 0,

(4.18)

provided σ3 ≤ σ ≤ σ4 with

σ3 =

(
p − 1

)(
7pq − 10q −m − 1

) − √
b2 − 4ac

4q(p − 1)2
,

σ4 =

(
p − 1

)(
7pq − 10q −m − 1

)
+
√
b2 − 4ac

4q(p − 1)2
,

(4.19)

where a = −2q(p − 1)2, b = (p−1)(7pq−10q−m−1), and c = −5p2q+16pq−12q+3pm+2p−3m−3.
Thirdly, for (H4), we obtain

(
g(p−1)(σ−1)−1(u)g ′(u)

ψ ′(u)

)′
= − q

m

[−q(p − 1
)
(σ − 1) −m]u−q(p−1)(σ−1)−m−1 < 0, (4.20)

provided σ < σ5 = 1 − (q/(m(p − 1))). Since σ2 > σ5, we choose a σ such that σ3 < σ <
min{σ1, σ4, σ5} and hypotheses (H2)–(H4) hold. Thus the proof is completed.
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