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A previous paper (2011), Pitea and Postolache, considered the problem of minimization of vectors
of curvilinear functionals (well known as mechanical work), thought as multitime multiobjective
variational problem, subject to PDE and/or PDI constraints. They have chosen the suitable frame-
work offered by the second-order jet bundle, and initiated an optimization theory for this class of
problems by introducing necessary conditions. As natural continuation of these results, the present
work introduces a dual program theory, the general setting, and the theory which is new as a
whole, containing our results.

1. Introduction

Fractional programming problems arise inwide areas of research in pure and applied sciences
and in the new technology as well. We have in mind portfolio selection, stock cutting, game
theory, and various decision problems in management science. The study of duality for this
class of problems is an active area of research due to its wide scope of applications, see [1] by
Chinchuluun and Pardalos, for an excellent paper in multiobjective optimization.

The duality theory for multiobjective optimization problems based on a vector-valued
Lagrangian function were extensively investigated in [2] by Bitran, and [3] by Tanino and
Sawaragi. Several authors were interested in this problem, see [4] by Egudo, [5] byMond and
Husain, [6] byWeir andMond. Later, an interesting and rich duality theory for such problems
was developed by Aghezzaf and Hachimi, [7], Preda [8, 9], and recently, duality problems
were studied in [10] by Boţ and Grad, [1] by Chinchuluun and Pardalos, [11] by Pitea et al.

In the problems of our study, the objective function is of curvilinear integral type and
could mould the mechanical work when we have in mind design problems in engineering.
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Also, such kind of problems proved to be useful tools for minimizing the cost or maximizing
the profit when we discuss economical problems.

Motivated by the study reported above, in a very recent work [12], Pitea and Post-
olache considered the problem of minimization of vectors of curvilinear functionals (well
known as mechanical work), thought as multitime multiobjective variational problem, sub-
ject to PDE and/or PDI constraints. They have chosen the suitable framework offered by the
second-order jet bundle and initiated an optimization theory for this class of problems by
introducing necessary conditions. As natural continuation of these results, the present work
introduces a dual program theory. It is organized as follows. Next, in Section 2, we introduce
the general setting, while in Section 3 we prove our results. Finally, we conclude the paper.

2. General Setting

Let (T, h) and (M,g) be Riemannian manifolds of dimensions p and n, respectively. The local
coordinates on T andMwill be written t = (tα) and x = (xi), respectively. Let J2(T,M) be the
second-order jet bundle associated to T and M, see [13].

Throughout this work, we use the customary relations between two vectors of the
same dimension, [11]. With the product-order relation on R

p, the hyperparallelepiped Ωt0,t1 ,
in R

p, with the diagonal opposite points t0 = (t10, . . . , t
p

0) and t1 = (t11, . . . , t
p

1), can be written as
interval [t0, t1]. Suppose γt0,t1 is a piecewise C2-class curve joining the points t0 and t1.

To simplify the notations, denote by

xγ(t) =
∂x

∂tγ
(t), γ = 1, p, xθσ(t) =

∂2x

∂tθ∂tσ
(t), θ, σ = 1, p, (2.1)

the partial velocities and partial accelerations, respectively. Also, in our subsequent theory,
we will set πx(t) = (t, x(t), xγ(t), xθσ(t)).

On J2(T,M)with values on R
r , consider the closed Lagrange 1-forms densities of C∞-

class:

fα =
(
f�
α

)
, kα =

(
k�
α

)
, � = 1, r, α = 1, p, (2.2)

which determine the following path-independent functionals:

F�(x(·)) =
∫

γt0 ,t1

f�
α (πx(t))dtα, K�(x(·)) =

∫

γt0 ,t1

k�
α(πx(t))dtα. (2.3)

The closeness conditions (complete integrability conditions) are

Dβf
�
α = Dαf

�
β , Dβk

�
α = Dαk

�
β, α, β = 1, p, α /= β, � = 1, r, (2.4)

where Dβ is the total derivative.
We accept that the Lagrange matrix densities:

g =
(
gb
a

)
: J2(T,M) −→ R

md, a = 1, d, b = 1, m, m < n, (2.5)
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of C∞-class define the partial differential inequations (PDI) of evolution

g(πx(t)) � 0, t ∈ Ωt0,t1 , (2.6)

and the Lagrange matrix densities,

h =
(
hb
a

)
: J2(T,M) −→ R

qd, a = 1, s, b = 1, q, q < n, (2.7)

define the partial differential equations (PDE), of evolution

h(πx(t)) = 0, t ∈ Ωt0,t1 . (2.8)

For each � = 1, r, suppose K�(x(·)) > 0, and consider

F(x(·))
K(x(·)) =

(
F1(x(·))
K1(x(·)) , . . . ,

Fr(x(·))
Kr(x(·))

)
. (2.9)

With conditions (2.6) and (2.8), we denote by

F(Ωt0,t1) =
{
x∈C∞(Ωt0,t1 ,M) | x(t0) =x0, x(t1) = x1, g(πx(t)) � 0, h(πx(t))=0, t ∈ Ωt0,t1

}
(2.10)

the set of all feasible solutions of problem:

(MFP)

⎧
⎪⎨
⎪⎩
min

F(x(·))
K(x(·)) ,

subject to x(·) ∈ F(Ωt0,t1),
(2.11)

a PDI- and/or PDE-constrained minimum problem.
In [12], we introduced necessary efficiency conditions for problem (MFP). The aim of

this work is to introduce and study two dual programs:

(1) the multitime multiobjective fractional variational problem (MFP) of minimizing a
vector of quotients of path-independent curvilinear functionals;
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(2) the multiobjective variational dual problem:

(MFD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
y(·)

(
F
(
y(·))

K
(
y(·))

)

subject to

Λ10
�

∂f�
α

∂y

(
πy(t)

) −Λ20
�

∂k�
α

∂y

(
πy(t)

)
+
〈
μα(t),

∂g

∂y

(
πy(t)

)〉

+
〈
να(t),

∂h

∂y

(
πy(t)

)〉 −Dγ

(
Λ10

�

∂f�
α

∂yγ

(
πy(t)

) −Λ20
�

∂k�
α

∂yγ

(
πy(t)

)

+

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉)

+D2
θσ

(〈
λ,

∂fα
∂xθσ

(
πy(t)

)〉
+
〈
μα(t),

∂g

∂xθσ

(
πy(t)

)〉

+
〈
να(t),

∂h

∂xθσ

(
πy(t)

)〉)
= 0, t ∈ Ωt0,t1 , α = 1, p

〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉
� 0, α = 1, p, t ∈ Ωt0,t1

Λ10 ≥ 0,
(2.12)

taking into account that the functions x(t) and y(t) have to satisfy the boundary
conditions x(t0) = x0, x(t1) = x1, or x(t)|∂Ωt0 ,t1

= χ = given, respectively, y(t0) = x0,
y(t1) = x1, or y(t)|∂Ωt0 ,t1

= χ = given, the partial differential inequations of evolution
(2.6), and the partial differential equations of evolution (2.8).

To develop the theory in our main section, we need the notion of efficient solution.

Definition 2.1. A feasible solution x◦(·) ∈ F(Ωt0,t1) is called efficient solution for the program
(MFP) if and only if for any feasible solution x(·) ∈ F(Ωt0,t1), one has the implication:

F(x(·))
K(x(·)) � F(x◦(·))

K(x◦(·)) =⇒ F(x(·))
K(x(·)) =

F(x◦(·))
K(x◦(·)) . (2.13)

3. Main Results

To state our results, we have to introduce an appropriate generalized convexity. For this pur-
pose, consider ρ be a real number, b : C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) → [0,∞) a functional,
and a = (aα), α = 1, p, a closed 1-form. To a we associate the curvilinear integral

A(x(·)) =
∫

γt0 ,t1

aα(πx(t))dtα. (3.1)
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Definition 3.1. The functional A is called [strictly] (ρ, b)-quasiinvex at the point x◦(·) if there
exists a vector function η : J2(Ωt0,t1 ,M) × J2(Ωt0,t1 ,M) → R

n, vanishing at the point
(πx◦(t), πx◦(t)), and the function θ defined on C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) to R

n, such that
for any x(·)[x(·)/=x◦(·)], the following implication holds:

(A(x(·)) ≤ A(x◦(·)))

=⇒
(
bx((·), x◦(·))

∫

γt0 ,t1

[〈
η(πx(t), πx◦(t)),

∂aα

∂x
(πx◦(t))

〉

+

〈
Dγη(πx(t), πx◦(t)),

∂aα

∂xγ
(πx◦(t))

〉

+
〈
D2

θση(πx(t), πx◦(t)),
∂aα

∂xθσ
(πx◦(t))

〉]
dtα

[<] ≤ −ρb(x(·), x◦(·))‖θ(x(·), x◦(·))‖2
)
.

(3.2)

The notion of quasiinvexity is used, in appropriate forms, in recent works for studies of
somemultiobjective programming problems, for example, see [14] byNahak andMohapatra.

Let us denote by �(x◦(·)) the minimizing functional vector of problem (MFP) at the
point x◦(·) ∈ F(Ωt0,t1) and by (δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) the maximizing functional vec-
tor of dual (MFD) at the point (y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) ∈ Δ, where Δ is the domain of
problem (MFD).

Theorem 3.2 (Weak Duality). Let x◦(·) be a feasible solution of the problem (MFP) and let y(·) be
an efficient solution of problem (MFP). Assume that the following conditions are fulfilled:

(a) Λ10
�

> 0, Λ20
�

> 0, Λ10
�
F�(y(·)) −Λ20

�
K�(y(·)) = 0, � = 1, r;

(b) for any � = 1, r, the functional F�(x(·)) is (ρ′�, b)-quasiinvex at the point y(·) and the
functional −K�(x(·)) is (ρ′′�, b)-quasiinvex at the point y(·) with respect to η and θ;

(c) the functional,

∫

γt0 ,t1

[〈
μα(t), g(πx(t))

〉
+ 〈να(t), h(πx(t))〉

]
dtα, (3.3)

is (ρ′′′, b)-quasiinvex at the point y(·) with respect to η and θ;

(d) either the functional of (b) or the functional of (c) is strictly quasiinvex;

(e) ρ′�Λ10
�
+ ρ′′�Λ20

�
+ ρ′′′ ≥ 0.

Then, the inequality�(x◦(·)) ≤ δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) is false.



6 Abstract and Applied Analysis

Proof. From condition (b), it follows that

(
F�(x◦(·))F�(y(·))

)

=⇒
(
b
(
x◦(·), y(·))

∫

γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,
∂f�

α

∂y

(
πy(t)

)〉

+

〈
Dγη

(
πx◦(t), πy(t)

)
,
∂f�

α

∂yγ

(
πy(t)

)〉

+

〈
D2

θση
(
πx◦(t), πy(t)

)
,
∂f�

α

∂yθσ

(
πy(t)

)〉]
dtα

� −ρ′�b(x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2

)
, � = 1, r,

(3.4)

(
−K�(x◦(·)) −K�(y(·))

)

=⇒
(
b
(
x◦(·), y(·))

∫

γt0 ,t1

[〈
−η(πx◦(t), πy(t)

)
,
∂k�

α

∂y

(
πy(t)

)〉

−
〈
Dγη

(
πx◦(t), πy(t)

)
,
∂k�

α

∂yγ

(
πy(t)

)〉

−
〈
D2

θση
(
πx◦(t), πy(t)

)
,
∂k�

α

∂yθσ

(
πy(t)

)〉]
dtα

� ρ′′�b
(
x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2

)
, � = 1, r.

(3.5)

We multiply (3.4) by Λ10
�

> 0 and (3.5) by Λ20
�

> 0. We make the sum and we obtain the fol-
lowing implications:

(
Λ10

� F�(x◦(·)) −Λ20
� K�(x◦(·)) � 0

)

=⇒
(
b
(
x◦(·), y(·))

∫

γt0 ,t1

{〈
η
(
πx◦(t), πy(t)

)
, Λ10

�

∂f�
α

∂y

(
πy(t)

) −Λ20
�

∂k�
α

∂y

(
πy(t)

)〉

+

〈
Dγη

(
πx◦(t), πy(t)

)
,Λ10

�

∂f�
α

∂yγ

(
πy(t)

) −Λ20
�

∂k�
α

∂yγ

(
πy(t)

)〉

+

〈
D2

θση
(
πx◦(t), πy(t)

)
,Λ10

�

∂f�
α

∂yθσ

(
πy(t)

) −Λ20
�

∂k�
α

∂yθσ

(
πy(t)

)〉}
dtα

� −b(x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2
(
ρ′�Λ10

� + ρ′′�Λ20
�

))
.

(3.6)
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According to hypothesis (c), we have

(∫

γt0 ,t1

[〈
μα(t), g(πx◦(t))

〉
+ 〈να(t), h(πx◦(t))〉]dtα

�
∫

γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα

)

=⇒
(
b
(
x◦(·), y(·))

∫

γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,

〈
μα(t),

∂g

∂y

(
πy(t)

)〉

+
〈
να(t),

∂h

∂y

(
πy(t)

)〉〉
+
〈
Dγη

(
πx◦(t), πy(t)

)〉
,

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉〉

+
〈
D2

θση
(
πx◦(t), πy(t)

)〉
,

〈
μα(t),

∂g

∂yθσ

(
πy(t)

)〉

+
〈
να(t),

∂h

∂yθσ

(
πy(t)

)〉〉]
dtα

� −ρ′′′b(x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2

)
.

(3.7)

Making the sum of the implications (3.6) and (3.7), it follows that

(
Λ10

� F�(x◦(·)) −Λ20
� K�(x◦(·))

+
∫

γt0 ,t1

[〈
μα(t), g(πx◦(t))

〉
+ 〈να(t), h(πx◦(t))〉]dtα

−
∫

γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα � 0

)

=⇒
(
b
(
x◦(·), y(·))

∫

γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,Λ10

�

∂f�
α

∂y

(
πy(t)

) −Λ20
�

∂k�
α

∂y

(
πy(t)

)

+
〈
μα(t),

∂g

∂y

(
πy(t)

)〉
+
〈
να(t),

∂h

∂y

(
πy(t)

)〉〉

+

〈
Dγη

(
πx◦(t), πy(t)

)
,Λ10

�

∂f�
α

∂yγ

(
πy(t)

) −Λ20
�

∂k�
α

∂yγ

(
πy(t)

)
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+

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉〉

+

〈
D2

θση
(
πx◦(t), πy(t)

)
, Λ10

�

∂f�
α

∂yθσ

(
πy(t)

) −Λ20
�

∂k�
α

∂yθσ

(
πy(t)

)

+
〈
μα(t),

∂g

∂yθσ

(
πy(t)

)〉
+
〈
να(t),

∂h

∂yθσ

(
πy(t)

)〉〉]
dtα

< −b(x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2
(
ρ′�Λ10

� + ρ′′�Λ20
� + ρ′′′

))
.

(3.8)

Since b(x◦(·), y(·)) > 0, we obtain

∫

γt0 ,t1

[〈
ηπx◦(t), πy(t),

∂Vα

∂yπy
(t), λ, μ(t), ν(t)

〉

+

〈
Dγη

(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t), λ, μ(t), ν(t)

)〉

+
〈
D2

θση
(
πx◦(t), πy(t)

)
,
∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉]
dtα

< −∥∥θ(x◦(·), y(·))∥∥2
(
ρ′�Λ10

� + ρ′′�Λ20
� + ρ′′′

)
,

(3.9)

where

Vα

(
πy(·), λ, μ(·), ν(·)

)
= Λ10

� f�
α

(
πy(t)

) −Λ20
� k�

α

(
πy(t)

)

+
〈
μα

(
y(t)

)
, g
(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉
, t ∈ Ωt0,t1 , α = 1, p.

(3.10)

The following relations hold:

〈
Dγη

(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t), λ, μ(t), ν(t)

)〉

= Dγ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t), λ, μ(t), ν(t)

)〉

−
〈
η
(
πx◦(t), πy(t)

)
, Dγ

(
∂Vα

∂yγ

)(
πy(t), λ, μ(t), ν(t)

)〉
,

(3.11)
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〈
D2

θση
(
πx◦(t), πy(t)

)
,
∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

= DθDσ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

−Dθ

〈
η
(
πx◦(t), πy(t)

)
, Dσ

∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

−Dσ

〈
η
(
πx◦(t), πy(t)

)
, Dθ

∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

+
〈
η
(
πx◦(t), πy(t)

)
, D2

σθ

∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉
.

(3.12)

By replacing the relations (3.11) and (3.12), and using Euler-Lagrange PDE, the relation (3.9)
becomes

∫

γt0 ,t1

[
Dγ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t), λ, μ(t), ν(t)

)〉

+DθDσ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

−Dθ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉

−Dσ

〈
η
(
πx◦(t), πy(t)

)
, Dθ

∂Vα

∂yθσ

(
πy(t), λ, μ(t), ν(t)

)〉]
dtα

< −∥∥θ(x◦(·), y(·))∥∥2
(
ρ′�Λ10

� + ρ′′�Λ20
� + ρ′′′

)
.

(3.13)

According to [15], §9, a total divergence is equal to a total derivative, therefore, the left-hand
side of (3.13) becomes null, and replacing into the inequality (3.13), it follows that

0 < −∥∥θ(x◦(·), y(·))∥∥2
(
ρ′�Λ10

� + ρ′′�Λ20
� + ρ′′′

)
. (3.14)

From hypothesis (e), the previous relation becomes 0 < 0, which is false. Next, from relation
(3.8), it follows that

0 � Λ10
� F�(x◦(·)) −Λ20

� K�(x◦(·))

+
∫

γt0 ,t1

[〈
μα(t), g(πx◦(t))

〉
+ 〈να(t), h(πx◦(t))〉]dtα

−
∫

γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα.

(3.15)
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Taking into account the inequality:

∫

γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα � 0, (3.16)

the above-mentioned relation becomes

Λ10
� F�(x◦(·)) −Λ20

� K�(x◦(·)) > 0, (3.17)

that is,

K�(x◦(·))K�(y(·))
[
F�(x◦(·))
K�(x◦(·)) −

F�
(
y(·))

K�
(
y(·))

]
> 0. (3.18)

Because K�(x◦(·))K�(y(·)) > 0, � = 1, r, we conclude that

F(x◦(·))
K(x◦(·)) −

F
(
y(·))

K
(
y(·)) � (0, . . . , 0), (3.19)

or

F(x◦(·))
K(x◦(·)) �

F
(
y(·))

K
(
y(·)) . (3.20)

Therefore, the relation �(x◦(·)) ≤ δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) is not satisfied, and this
completes the proof.

We will finish our considerations by giving the statements of two results on direct
duality and converse duality, respectively. Their proofs follow directly from the weak duality.

Theorem 3.3 (Direct Duality). Let x◦(·) be an efficient solution of (MFP). Suppose that the hypo-
theses of Theorem are satisfied. Then, there are Λ10 and Λ20 in R

r , and the smooth functions μ◦ :
Ωt0,t1 → R

msp and ν◦ : Ωt0,t1 → R
qsp, such that (x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)) is an efficient
solution of the dual (MFD), and �(x◦(·)) = δ(x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)).

We will present now a theorem concerning the converse duality, by changing some of
the hypotheses.

Theorem 3.4 (Converse Duality). Let (x◦(·), x◦
γ(·),Λ10,Λ20, μ◦(·), ν◦(·)) be an efficient solution of

the dual problem (MFD). Suppose the following conditions hold:

(a) x(·) is an efficient solution of the primal problem (MFP);

(b) for any � = 1, r, one has

F�(x◦(·)) > 0, K�(x◦(·)) > 0, Λ10
� F�(x◦(·)) −Λ20

� K�(x◦(·)) = 0; (3.21)
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(c) for any � = 1, r, the functional F�(x(·)) is (ρ′�, b)-quasiinvex at the point x◦(·) and the
functional −K�(x(·)) is (ρ′′�, b)-quasiinvex at the point x◦(·), with respect to η and θ;

(d) the functional,

∫

γt0 ,t1

[ 〈
μα(t), g(πx(t))

〉
+ 〈να(t), h(πx(t))〉

]
dtα, (3.22)

is (ρ′′′, b)-quasiinvex at the point x◦(·) with respect to η and θ;

(e) one of the functionals of (c), (d) is strictly (ρ′�, b)-, (ρ′′�, b)-, or (ρ′′′, b)-quasiinvex with
respect to η and θ, respectively;

(f) ρ′�Λ10
� + ρ′′�Λ20

� + ρ′′′ ≥ 0.

Then, x(·) = x◦(·), and �(x◦(·)) = δ(x◦(·), x◦
γ(·),Λ10,Λ20, μ◦(·), ν◦(·)).

4. Conclusions

In our previous work [12], we initiated an optimization theory for the second-order jet bun-
dle. We considered the problem of minimization of vectors of curvilinear functionals (well
known as mechanical work), thought as multitime multiobjective variational problem, sub-
ject to PDE and/or PDI constraints (limited resources). Within this framework, we introduced
necessary conditions. As natural continuation of our results in [12], and strongly motivated
by its possible applications in mechanics, the present work introduced a dual program theory
for this class of problems (for related but complementary research, see [16, 17]).
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[15] C. Udrişte, O. Dogaru, and I. Ţevy, “Null Lagrangian forms and Euler-Lagrange PDEs,” Journal of Ad-
vanced Mathematical Studies, vol. 1, no. 1-2, pp. 143–156, 2008.

[16] A. Pitea and M. Postolache, “Minimization of vectors of curvilinear functionals on the second order
jet bundle. Sufficient efficiency conditions,” Optimization Letters. In press.

[17] A. Pitea and M. Postolache, “Duality theorems for a new class of multitime multiobjective variational
problems,” Journal of Global Optimization. In press.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


