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Motivated and inspired by Korpelevich’s and Noor’s extragradient methods, we suggest an
extragradient method by using the sunny nonexpansive retraction which has strong convergence
for solving the generalized variational inequalities in Banach spaces.

1. Introduction

In the present paper, we focus on the following generalized variational inequality:

Find x∗ ∈ C such that 〈Ax∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Banach space E, A : C → E is a
nonlinear mapping, and J : E → 2E

∗
is the normalized duality mapping defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2, ∥∥f∥∥ = ‖x‖

}
, ∀x ∈ E. (1.2)

We use S(C,A) to denote the solution set of (1.1). It is clear that (1.1) is reduced to the
following variational inequality in Hilbert spaces:

Find x∗ ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.3)
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which was introduced and studied by Stampacchia [1]. Variational inequalities are
being used as mathematical programming tools and models to study a wide class of
unrelated problems arising in mathematical, physical, regional, engineering, and nonlinear
optimization sciences. See, for instance, [2–23]. In order to solve (1.3), especially, Korpelevich
[24] introduced the following well-known extragradient method:

yn = PC(I − λA)xn,

xn+1 = PC

(
xn − λAyn

)
, n ≥ 0,

(1.4)

where PC is the metric projection from Rn onto its subset C, λ ∈ (0, 1/k) and A : C → Rn is
a monotone operator. He showed that the sequence {xn} converges to some solution of the
above variational inequality (1.3). Noor [10] further suggested and analyzed the following
new iterative methods:

xn+1 = PC

(
yn − λAyn

)
,

yn = PC[xn − λAxn], n ≥ 0,
(1.5)

which is known as the modified Noor’s extragradient method. We would like to point out
that this algorithm (1.5) is quite different from the method of Koperlevich. However, these
two algorithms fail, in general, to converge strongly in the setting of infinite-dimensional
Hilbert spaces.

The generalized variational inequality (1.1) was introduced by Aoyama et al. [25]
which is connected with the fixed point problem for nonlinear mapping. For solving the
aforementioned generalized variational inequality (1.1), Aoyama et al. [25] introduced an
iterative algorithm:

xn+1 = αnxn + (1 − αn)QC[xn − λnAxn], n ≥ 0, (1.6)

where QC is a sunny nonexpansive retraction from E onto C, and {αn} ⊂ (0, 1) and {λn} ⊂
(0,∞) are two real number sequences. Aoyama et al. [25] obtained on the aforementioned
method (1.6) for solving variational inequality (1.1). Motivated by (1.6), Yao and Maruster
[26] presented a modification of (1.5):

xn+1 = βnxn +
(
1 − βn

)
QC[(1 − αn)(xn − λAxn)], n ≥ 0. (1.7)

Yao and Maruster [26] proved that (1.7) converges strongly to the solution of the generalized
variational inequality (1.1). Yao et al. [27] further considered the following extended
extragradient method for solving (1.1):

yn = QC[xn − λnAxn],

xn+1 = αnu + βnxn + γnQC

[
yn − λAyn

]
, n ≥ 0.

(1.8)

In this paper, motivated and inspired by Korpelevich’s and Noor’s extragradient me-
thods, (1.7) and (1.8), we suggest a modified Noor’s extragradient method via the sunny
nonexpansive retraction for solving the variational inequalities (1.1) in Banach spaces.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Banach space E. Recall that a mapping A
of C into E is said to be accretive if there exists j(x − y) ∈ J(x − y) such that

〈
Ax −Ay, j

(
x − y

)〉 ≥ 0, (2.1)

for all x, y ∈ C. A mapping A of C into E is said to be α-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥x − y

∥∥2
, (2.2)

for all x, y ∈ C. A mapping A of C into E is said to be α-inverse-strongly accretive if, for α > 0,

〈
Ax −Ay, j

(
x − y

)〉 ≥ α
∥∥Ax −Ay

∥∥2
, (2.3)

for all x, y ∈ C.
Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to uniformly convex if, for each

ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (2.4)

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.5)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.5) is attained
uniformly for x, y ∈ U. The norm of E is said to be Fréchet differentiable if, for each x ∈ U,
the limit (2.5) is attained uniformly for y ∈ U. And we define a function ρ : [0,∞) → [0,∞)
called the modulus of smoothness of E as follows:

ρ(τ) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : x, y ∈ X, ‖x‖ = 1,
∥∥y∥∥ = τ

}
. (2.6)

It is known that E is uniformly smooth if and only if limτ → 0(ρ(τ)/τ) = 0. Let q be a fixed real
number with 1 < q ≤ 2. Then a Banach space E is said to be q-uniformly smooth if there exists
a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0.

We need the following lemmas for proof of our main results.

Lemma 2.1 (see [28]). Let q be a given real number with 1 < q ≤ 2 and let E be a q-uniformly
smooth Banach space. Then

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ 2

∥∥Ky
∥∥q (2.7)
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for all x, y ∈ E, whereK is the q-uniformly smoothness constant of E and Jq is the generalized duality
mapping from E into 2E

∗
defined by

Jq(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖q, ∥∥f∥∥ = ‖x‖q−1

}
, ∀x ∈ E. (2.8)

LetD be a subset of C and letQ be a mapping of C intoD. ThenQ is said to be sunny if

Q(Qx + t(x −Qx)) = Qx, (2.9)

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called
a retraction if Q2 = Q. If a mapping Q of C into itself is a retraction, then Qz = z for every
z ∈ R(Q), where R(Q) is the range ofQ. A subsetD of C is called a sunny nonexpansive retract
of C if there exists a sunny nonexpansive retraction from C ontoD. One knows the following
lemma concerning sunny nonexpansive retraction.

Lemma 2.2 (see [29]). Let C be a closed convex subset of a smooth Banach space E, let D be a
nonempty subset of C, and letQ be a retraction from C ontoD. ThenQ is sunny and nonexpansive if
and only if

〈
u −Qu, j

(
y −Qu

)〉 ≤ 0 (2.10)

for all u ∈ C and y ∈ D.

Remark 2.3. (1) It is well known that if E is a Hilbert space, then a sunny nonexpansive
retraction QC is coincident with the metric projection from E onto C.

(2) Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E and let T be a nonexpansive mapping of C into itself with F(T)/= ∅.
Then the set F(T) is a sunny nonexpansive retract of C.

The following lemma characterized the set of solution of (1.1) by using sunny non-
expansive retractions.

Lemma 2.4 (see [25]). Let C be a nonempty closed convex subset of a smooth Banach space X. Let
QC be a sunny nonexpansive retraction from X onto C and letA be an accretive operator of C into X.
Then for all λ > 0,

S(C,A) = F(QC(I − λA)), (2.11)

where S(C,A) = {x∗ ∈ C : 〈Ax∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C}.

Lemma 2.5 (see [30]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space E and let T be nonexpansive mapping of C into itself. If {xn} is a sequence of C such
that xn → x weakly and xn − Txn → 0 strongly, then x is a fixed point of T .

Lemma 2.6 (see [31]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, n ≥ 0, (2.12)
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where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(a)
∑∞

n=0 γn = ∞;

(b) lim supn→∞(δn/γn ) ≤ 0 or
∑∞

n=0 |δn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section, we will state and prove our main result.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C and
letA : C → E be an α-strongly accretive and L-Lipschitz continuous mapping with S(C,A)/= ∅. For
given x0 ∈ C, let the sequence {xn} be generated iteratively by

yn = QC[xn − λAxn],

xn+1 = QC

[
(1 − αn)

(
yn − λAyn

)]
, n ≥ 0,

(3.1)

where {αn} and {βn} are two sequences in (0, 1) and λ is a constant in [a, b] for some a, b with
0 < a < b < α/K2L2. Assume that the following conditions hold:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(b) limn→∞(αn+1/αn) = 1.

Then {xn} defined by (3.1) converges strongly to Q′(0), where Q′ is a sunny nonexpansive
retraction of E onto S(C,A).

Proof. First, we note that A must be α/L2-inverse-strongly accretive mapping. Take p ∈
S(C,A). By using Lemmas 2.1 and 2.4, we easily obtain the following facts.

(1) p = QC[p − λAp] for all λ > 0; in particular,

p = QC

[
p − λ(1 − αn)Ap

]
= QC

[
αnp + (1 − αn)

(
p − λAp

)]
, n ≥ 0. (3.2)

(2) If λ ∈ (0, α/K2L2], then I − λA is nonexpansive and for all x, y ∈ C

∥∥(I − λA)x − (I − λA)y
∥∥2 ≤ ∥∥x − y

∥∥2 + 2λ
(
K2λ − α

L2

)∥∥Ax −Ay
∥∥2

. (3.3)

Indeed, from Lemma 2.1, we have

∥∥(I − λA)x − (I − λA)y
∥∥2 =

∥∥(x − y
) − λ

(
Ax −Ay

)∥∥2

≤ ∥∥x − y
∥∥2 − 2λ

〈
Ax −Ay, j

(
x − y

)〉
+ 2K2λ2

∥∥Ax −Ay
∥∥2

≤ ∥∥x − y
∥∥2 − 2λ

α

L2

∥∥Ax −Ay
∥∥2 + 2K2λ2

∥∥Ax −Ay
∥∥2

=
∥∥x − y

∥∥2 + 2λ
(
K2λ − α

L2

)∥∥Ax −Ay
∥∥2

.

(3.4)
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From (3.1), we have

∥∥yn − p
∥∥ =

∥∥QC(xn − λAxn) −QC

(
p − λAp

)∥∥
≤ ∥∥(xn − λAxn) −

(
p − λAp

)∥∥
≤ ∥∥xn − p

∥∥.
(3.5)

By (3.1) and (3.5), we have

∥∥xn+1 − p
∥∥ =

∥∥QC

[
(1 − αn)

(
yn − λAyn

)] −QC

[
αnp + (1 − αn)

(
p − λAp

)]∥∥
≤ ∥∥[(1 − αn)

(
yn − λAyn

)] − [
αnp + (1 − αn)

(
p − λAp

)]∥∥
≤ αn

∥∥p∥∥ + (1 − αn)
∥∥(yn − λAyn

) − (
p − λAp

)∥∥
≤ αn

∥∥p∥∥ + (1 − αn)
∥∥yn − p

∥∥
≤ αn

∥∥p∥∥ + (1 − αn)
∥∥xn − p

∥∥
≤ max

{∥∥p∥∥,∥∥x0 − p
∥∥}.

(3.6)

Therefore, {xn} is bounded. We observe that

∥∥yn − yn−1
∥∥ = ‖QC[xn − λAxn] −QC[xn−1 − λAxn−1]‖
≤ ‖(xn − λAxn) − (xn−1 − λAxn−1)‖
≤ ‖xn − xn−1‖,

(3.7)

and hence

‖xn+1 − xn‖ =
∥∥QC

[
(1 − αn)

(
yn − λAyn

)] −QC

[
(1 − αn−1)

(
yn−1 − λAyn−1

)]∥∥
≤ ∥∥[(1 − αn)

(
yn − λAyn

)] − [
(1 − αn−1)

(
yn−1 − λAyn−1

)]∥∥
=
∥∥(1 − αn)

[(
yn − λAyn

) − (
yn−1 − λAyn−1

)]
+ (αn−1 − αn)

(
yn−1 − λAyn−1

)∥∥
≤ (1 − αn)

∥∥(yn − λAyn

) − (
yn−1 − λAyn−1

)∥∥ + |αn − αn−1|
∥∥yn−1 − λAyn−1

∥∥
≤ (1 − αn)

∥∥yn − yn−1
∥∥ + |αn − αn−1|

∥∥yn−1 − λAyn−1
∥∥

≤ (1 − αn)‖xn − xn−1‖ + |αn − αn−1|
∥∥yn−1 − λAyn−1

∥∥.
(3.8)

By Lemma 2.6, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.9)
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From (3.1), we also have

∥∥yn − p
∥∥2 =

∥∥QC[xn − λAxn] −QC

[
p − λAp

]∥∥2

≤ ∥∥(xn − λAxn) −
(
p − λAp

)∥∥2

≤ ∥∥xn − p
∥∥2 + 2λ

(
K2λ − α

L2

)∥∥Axn −Ap
∥∥2
.

(3.10)

By (3.1) and (3.10), we obtain

∥∥xn+1 − p
∥∥2 ≤ ∥∥αn

(−p) + (1 − αn)
[(
yn − λAyn

) − (
p − λAp

)]∥∥2

≤ αn

∥∥p∥∥2 + (1 − αn)
∥∥(yn − λAyn

) − (
p − λAp

)∥∥2

≤ αn

∥∥p∥∥2 + (1 − αn)
[∥∥yn − p

∥∥2 + 2λ
(
K2λ − α

L2

)∥∥Ayn −Ap
∥∥2
]

≤ αn

∥∥p∥∥2 + (1 − αn)
[∥∥xn − p

∥∥2 + 2λ
(
K2λ − α

L2

)∥∥Axn −Ap
∥∥2
]

+ 2(1 − αn)λ
(
K2λ − α

L2

)∥∥Ayn −Ap
∥∥2

≤ αn

∥∥p∥∥2 +
∥∥xn − p

∥∥2 + 2(1 − αn)λ
(
K2λ − α

L2

)∥∥Axn −Ap
∥∥2

+ 2(1 − αn)λ
(
K2λ − α

L2

)∥∥Ayn −Ap
∥∥2
.

(3.11)

Therefore, we have

0 ≤ −2(1 − αn)λ
(
K2λ − α

L2

)∥∥Axn −Ap
∥∥2 − 2(1 − αn)λ

(
K2λ − α

L2

)∥∥Ayn −Ap
∥∥2

≤ αn

∥∥p∥∥2 +
∥∥xn − p

∥∥2 − ∥∥xn+1 − p
∥∥2

= αn

∥∥p∥∥2 +
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)(∥∥xn − p
∥∥ − ∥∥xn+1 − p

∥∥)

≤ αn

∥∥p∥∥2 +
(∥∥xn − p

∥∥ +
∥∥xn+1 − p

∥∥)‖xn − xn+1‖.

(3.12)

Since lim infn→∞2(1 − αn)λ(K2λ − α/L2 ) > 0, αn → 0 and ‖xn − xn+1‖ → 0, we obtain

lim
n→∞

∥∥Axn −Ap
∥∥ = lim

n→∞
∥∥Ayn −Ap

∥∥ = 0. (3.13)

It follows that

lim
n→∞

∥∥Ayn −Axn

∥∥ = 0. (3.14)

Since A is α-strongly accretive, we deduce

∥∥Ayn −Axn

∥∥ ≥ α
∥∥yn − xn

∥∥, (3.15)
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which implies that

lim
n→∞

∥∥yn − xn

∥∥ = 0, (3.16)

that is,

lim
n→∞

‖QC(xn − λAxn) − xn‖ = 0. (3.17)

Next, we show that

lim sup
n→∞

〈
Q′(0), j

(
xn −Q′(0)

)〉 ≥ 0. (3.18)

To show (3.18), since {xn} is bounded, we can choose that a sequence {xni} of {xn} converges
weakly to z such that

lim sup
n→∞

〈
Q′(0), j

(
xn −Q′(0)

)〉
= lim sup

i→∞

〈
Q′(0), j

(
xni −Q′(0)

)〉
. (3.19)

We first prove z ∈ S(C,A). It follows that

lim
i→∞

‖QC(I − λA)xni − xni‖ = 0. (3.20)

By Lemma 2.5 and (3.20), we have z ∈ F(QC(I − λA)); it follows from Lemma 2.4 that z ∈
S(C,A).

Now, from (3.19) and Lemma 2.2, we have

lim sup
n→∞

〈
Q′(0), j

(
xn −Q′(0)

)〉
= lim sup

i→∞

〈
Q′(0), j

(
xni −Q′(0)

)〉

=
〈
Q′(0), j

(
z −Q′(0)

)〉

≥ 0.

(3.21)

Since xn+1 = QC[(1 − αn)(yn − λAyn)] and x∗ = QC[αnx
∗ + (1 − αn)(x∗ − λAx∗)] for all n ≥ 0,

we can deduce from Lemma 2.2 that

〈
QC

[
(1 − αn)

(
yn − λnAyn

)] − [
(1 − αn)

(
yn − λnAyn

)]
, j(xn+1 − x∗)

〉 ≤ 0 ,
〈
[αnx

∗ + (1 − αn)(x∗ − λnAx∗)] −QC[αnx
∗ + (1 − αn)(x∗ − λnAx∗)], j(xn+1 − x∗)

〉 ≤ 0.
(3.22)
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Therefore, we have

‖xn+1 − x∗‖2 = 〈
QC

[
(1 − αn)

(
yn − λnAyn

)] −QC[αnx
∗ + (1 − αn)(x∗ − λnAx∗)], j(xn+1 − x∗)

〉

=
〈
QC

[
(1 − αn)

(
yn − λnAyn

)] − [
(1 − αn)

(
yn − λnAyn

)]
, j(xn+1 − x∗)

〉

+
〈[
(1 − αn)

(
yn − λnAyn

)] − [αnx
∗ + (1 − αn)(x∗ − λnAx∗)], j(xn+1 − x∗)

〉

+
〈
[αnx

∗+(1 − αn)(x∗−λnAx∗)]−QC[αnx
∗+(1 − αn)(x∗ − λnAx∗)], j(xn+1 − x∗)

〉

≤ 〈
(1 − αn)

(
yn − λnAyn

) − (1 − αn)(x∗ − λnAx∗) − αnx
∗, j(xn+1 − x∗)

〉

≤ (1 − αn)
∥∥yn − x∗∥∥‖xn+1 − x∗‖ − αn〈x∗, j(xn+1 − x∗)〉

≤ (1 − αn)‖xn − x∗‖‖xn+1 − x∗‖ − αn

〈
x∗, j(xn+1 − x∗)

〉

≤ 1 − αn

2

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
− αn

〈
x∗, j(xn+1 − x∗)

〉
,

(3.23)

which implies that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn

〈−z, j(xn+1 − z)
〉
. (3.24)

Finally, by Lemma 2.6 and (3.24), we conclude that xn converges strongly to Q′(0).
This completes the proof.

4. Conclusion

Variational inequality theory provides a simple, natural, and unified framework for a general
treatment of unrelated problems. These activities have motivated to generalize and extend
the variational inequalities and related optimization problems in several directions using new
and novel techniques. Awell-knownmethod to solve the VI is the following gradientmethod:

xn+1 = PC(xn − αnA(xn)), n ≥ 0, (4.1)

This method requires some monotonicity properties of A. However, we remark that there
is no chance of relaxing the assumption on A to plain monotonicity. To overcome this
weakness of the method, Korpelevich proposed a so-called Korpelevich’s method which
has been extensively extended and studied. Noor [10] especially, suggested another method
referred as Noor’s method which is different from Korpelevich’s method. However, these
two algorithms fail, in general, to converge strongly in the setting of infinite-dimensional
Hilbert spaces. In the present paper, we suggested a modified Noor’s method which has
strong convergence in Banach spaces. We hope that the ideas and technique of this paper
may stimulate further research in this field.
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