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The Bäcklund transformations and abundant exact explicit solutions for a class of nonlinear wave
equation are obtained by the extended homogeneous balance method. These solutions include the
solitary wave solution of rational function, the solitary wave solutions, singular solutions, and the
periodic wave solutions of triangle function type. In addition to rederiving some known solutions,
some entirely new exact solutions are also established. Explicit and exact particular solutions of
many well-known nonlinear evolution equations which are of important physical significance,
such as Kolmogorov-Petrovskii-Piskunov equation, FitzHugh-Nagumo equation, Burgers-Huxley
equation, Chaffee-Infante reaction diffusion equation, Newell-Whitehead equation, Fisher equa-
tion, Fisher-Burgers equation, and an isothermal autocatalytic system, are obtained as special cases.

1. Introduction

The existence of solitary wave solutions and periodic wave solutions is an important question
in the study of nonlinear evolution equations. The methods of finding such solutions for
integrable equations are well known: the solitary wave solutions can be found by inverse
scattering transformation [1] and the Hirota bilinear method [2], and the periodic solutions
can be represented by sums of equally spaced solitons represented by sech-function [3, 4].
Weiss et al. developed the singular manifold method to introduce the Painlevé property
in the theory of partial differential equations [5]. The beauty of the singular manifold
method is that this expansion for a nonlinear PDE contains a lot of information about
this PDE. For an equation that possesses the Painlevé property the singular manifold
method leads to the Bäcklund transformation, the Lax pair, and Miura transformations
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and makes connections to the Hirota bilinear method, Laplace-Darboux transformations
[6]. Most nonlinear nonintegrable equations do not possess the Painlevé property; that is,
they are not free from “movable” critical singularities. For some nonintegrable nonlinear
equations it is still possible to obtain single-value expansions by putting a constraint on
the arbitrary function in the Painlevé expansion. Such equations are said to be partially
integrable, and Weiss [7] conjectured that these systems can be reduced to integrable
equations. Another treatment of the partially integrable systems was offered by Hietarinta
[8] by the generalization of the Hirota bilinear formalism for nonintegrable systems. He
conjectured that all completely integrable PDEs can be put into a bilinear form. There are
also nonintegrable equations that can be put into the bilinear form and then the partial
integrability is associated with the levels of integrability defined by the number of solitons
that can be combined to an N-soliton solution. Partial integrability then means that the
equation allows a restricted number of multisoliton solutions. In [9] Berloff and Howard
suggested joining these treatments of the partial nonintegrability and using the Painlevé
expansion truncated before the “constant term” level as the transform for reducing a
nonintegrable PDE to a multilinear equation.

The Bäcklund transformation is not only a useful tool to obtain exact solutions of
some soliton equation from a trivial “seed” but also related to infinite conservation laws
and inverse scattering method [1]. In [10–12], Wang Mingliang proposed the homogeneous
balance method—an effective method solving nonlinear partial differential equations. Fan
and Zhang extended the homogeneous balance method and proposed an approach to obtain
Bäcklund transformation for the nonlinear evolution equations [13]. In a recent paper [14],
Shang obtained the Bäcklund transformation, a Lax pair, and some new explicit exact
solutions of Hirota-Satsuma SWW equation (2.3) by means of the Bäcklund transformations
and the extension of the hyperbolic function method presented in [15].

In this paper we investigate a general nonintegrable nonlinear convection-diffusion
equation

ut − uxx + αuux + βu + γu2 + δu3 = 0,
(1.1)

where α, β, γ , and δ are arbitrary real constants. Equation (1.1) include many well-
known nonlinear equations that are with applied background as special examples, such as
Burgers equation, Kolmogorov-Petrovskii-Piskunov equation, FitzHugh-Nagumo equation,
Burgers-Huxley equation, Chaffee-Infante reaction-diffusion equation, Newell-Whitehead
equation, Fisher equation, Fisher-Burgers equation, and an isothermal autocatalytic system.
The extended homogeneous balance method is applied for a reliable treatment of the
nonintegrable nonlinear equation (1.1). Some Bäcklund transformations and abundant
explicit exact particular solutions of the nonintegrable nonlinear equation (1.1) are obtained
by means of the extended homogeneous balance method. Some explicit exact solutions
obtained here have more general form than some known solutions, and some explicit exact
solutions obtained here are entirely new solutions.

2. Bäcklund Transformations for the Nonintegrable
Nonlinear Wave Equation

According to the extended homogeneous balance method, we suppose that the solution of
(1.1) is of the form

u(x, t) = f ′(φ
)
φx + u1(x, t),

(2.1)

where f , φ are two functions to be determined and u1(x, t) is a solution of (1.1).
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From (2.1), we have

ut = f ′′(φ
)
φxφt + f ′(φ

)
φxt + u1t, (2.2)

ux = f ′′(φ
)
φ2
x + f ′(φ

)
φxx + u1x, (2.3)

uxx = f ′′′(φ
)
φ3
x + 3f ′′(φ

)
φxφxx + f ′(φ

)
φxxx + u1xx, (2.4)

u2 =
(
f ′)2(φ

)
φ2
x + 2f ′φxu1(x, t) + u2

1(x, t),

u3 =
(
f ′)3(φ

)
φ3
x + 3

(
f ′)2φ2

xu1(x, t) + 3f ′φxu
2
1(x, t) + u3

1(x, t).
(2.5)

Substituting (2.1)–(2.5) into the left side of (1.1) and collecting all terms with φ3
x, we obtain

ut − uxx + αuux + βu + γu2 + δu3

=
(
αf ′′f ′ − f ′′′ + δ

(
f ′)3

)
φ3
x

+
[
f ′′φxφt − 3f ′′φxφxx + αf ′′φ2

xu1 + α
(
f ′)2φxφxx + γ

(
f ′)2φ2

x + 3δ
(
f ′)2φ2

xu1(x, t)
]

+ f ′
[
φxt − φxxx + αφxxu1 + αφxu1x + βφx + 2γφxu1 + 3δφxu

2
1

]

+
[
u1t − u1xx + αu1u1x + βu1 + γu2

1 + δu3
1

]
= 0.

(2.6)

Setting the coefficient of φ3
x in (2.6) to be zero, we obtain an ordinary differential equation for

f

αf ′′f ′ − f ′′′ + δ
(
f ′)3 = 0, (2.7)

which has a solution

f
(
φ
)
= λ ln

(
φ
)
, (2.8)

where λ = (α ±
√
α2 + 8δ)/2δ. And then

(
f ′)2 = (−λ)f ′′. (2.9)

By virtue of (2.7)–(2.9), (2.6) becomes

ut − uxx + αuux + βu + γu2 + δu3

= f ′′
[
φxφt − 3φxφxx + αφ2

xu1 − αλφxφxx − γλφ2
x − 3δλφ2

xu1(x, t)
]

+ f ′
[
φxt − φxxx + αφxxu1 + αφxu1x + βφx + 2γφxu1 + 3δφxu

2
1

]

+
[
u1t − u1xx + αu1u1x + βu1 + γu2

1 + δu3
1

]
= 0.

(2.10)
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Setting the coefficients of f ′′, f ′, f0 to be zero, respectively, it is easy to see from (2.10) that

φt +
(
αu1 − γλ − 3δλu1

)
φx − (3 + αλ)φxx = 0, (2.11)

φxt − φxxx + αφxxu1 + αφxu1x + βφx + 2γφxu1 + 3δφxu
2
1 = 0, (2.12)

u1t − u1xx + αu1u1x + βu1 + γu2
1 + δu3

1 = 0. (2.13)

Substituting (2.8) into (2.1), we obtain a Bäcklund transformation

u(x, t) = λ
φx

φ
+ u1(x, t), (2.14)

where λ = (α±
√
α2 + 8δ)/2δ, φ, u1 satisfy (2.11)–(2.13). Substituting a seed solution u1(x, t) of

(1.1) into linear equations (2.11) and (2.12), then solving (2.11) and (2.12), we can get a new
solution of (1.1) from (2.14). Thus we can obtain infinite solutions of (1.1) by the Bäcklund
transformation (2.14) and (2.11)-(2.12) from a seed solution of (1.1).

Taking u1 = 0, by (2.11)–(2.14), we obtain a transformation

u(x, t) = λ
φx

φ
, (2.15)

that transforms (1.1) into linear equations

φt − γλφx − (3 + αλ)φxx = 0,

φt − φxx + βφ = E,
(2.16)

where λ = (α ±
√
α2 + 8δ)/2δ, E is an arbitrary constant.

Taking u1 = (−γ ±
√
Δ)/2δ, from (2.11)–(2.14)we obtain another transformation

u(x, t) =
−γ ±

√
Δ

2δ
+ λ

φx

φ
. (2.17)

Equation (1.1) can be solved by solving two linear equations

φt +
(
αu1 − γλ − 3δλu1

)
φx − (3 + αλ)φxx = 0,

φxt − φxxx + αφxx + βφx + 2γφxu1 + 3δφxu
2
1 = 0,

(2.18)

where u1 = (−γ ±
√
Δ)/2δ, λ = (α ±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ.

3. Exact Explicit Solutions to (1.1)

In this section we want to obtain abundant exact explicit particular solutions of (1.1) from the
Bäcklund transformation (2.14) and a trivial solution of (1.1).
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Noting the homogeneous property of (2.16) we can expect that φ in (2.16) is of the
form

φ(x, t) = A sinh(kx +ωt + ξ0) + B cosh(kx +ωt + ξ0) + C (3.1)

with A, B, C, k, ω, and ξ0 constants to be determined. Substituting (3.1) into (2.16), one gets
a set of nonlinear algebraic equation

Aω − γλAk − (3 + αλ)Bk2 = 0,

Bω − γλBk − (3 + αλ)Ak2 = 0,

Aω − Bk2 + βB = 0,

Bω −Ak2 + βA = 0,

βC = E.

(3.2)

Solving (3.2), we have the following.

Case 1. A = B, C = E/β, ω = k2 − β, and k is a root of second-order algebraic equation
(2 + αλ)k2 + γλk + β = 0.

Case 2. A = −B, C = E/β, ω = β − k2, and k is a root of second-order algebraic equation
(2 + αλ)k2 − γλk + β = 0.

Thus we obtain the following explicit exact solutions of (1.1) given by

u(x, t) = λk
exp(kx +ωt + ξ0)

exp(kx +ωt + ξ0) + C
, (3.3)

where λ = (α ±
√
α2 + 8δ)/2δ, ω = k2 − β, k is a root of second-order algebraic equation

(2 + αλ)k2 + γλk + β = 0, C/= 0, and ξ0 are arbitrary constants.
We can also obtain the following explicit exact solutions of (1.1) given by

u(x, t) = λk
1

C exp(kx +ωt + ξ0) − 1
, (3.4)

where λ = (α ±
√
α2 + 8δ)/2δ, ω = β − k2, k is a root of second-order algebraic equation (2+

αλ)k2 − γλk + β = 0, C/= 0, and ξ0 are arbitrary constants.
By direct computation, we readily obtain the following two useful formulas:

exp(ξ)
C + exp(ξ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, for C = 0,

1
2

[
tanh

1
2
(ξ − lnC) + 1

]
, for C > 0,

1
2

[
coth

1
2
(ξ − ln(−C)) + 1

]
, for C < 0,

(3.5)
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1
C exp(ξ) − 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1, for C = 0,

1
2

[
coth

1
2
(ξ + lnC) − 1

]
, for C > 0,

1
2

[
tanh

1
2
(ξ + ln(−C)) − 1

]
, for C < 0,

(3.6)

where C is arbitrary.
Thanks to the two formulas (3.5) and (3.6), we can assert.
The solutions (3.3) ((3.4), resp.) are soliton solutions of kink type in the case of C > 0

(C < 0, resp.).
The solutions (3.3) ((3.4), resp.) are soliton-like solutions of singular type in the csae

of C < 0 (C > 0, resp.).
Analogously, we assume that φ in (2.16) is of the form

φ(x, t) = A sin(kx +ωt + ξ0) + B cos(kx +ωt + ξ0) + C (3.7)

with A, B, C, k, ω, and ξ0 constants to be determined. Substituting (3.7) into (2.16), one gets
a set of nonlinear algebraic equation

Aω − γλAk + (3 + αλ)Bk2 = 0,

−Bω + γλBk + (3 + αλ)Ak2 = 0,

Aω + Bk2 + βB = 0,

−Bω +Ak2 + βA = 0,

βC = E.

(3.8)

Solving (3.8), we have the following.

Case 1. A = Bi, C = E/β, ω = (k2 + β)i, and k is a root of second order algebraic equation
(2 + αλ)k2 − γλki − β = 0, i =

√−1.

Case 2. A = −Bi, C = E/β, ω = −i(k2 + β), and k is a root of second order algebraic equation
(2 + αλ)k2 + γλki − β = 0, i =

√−1.

According to the result of Case 1, from (2.15) and (3.7), we obtain the exact explicit
solutions of (1.1) given by

u(x, t) = λki
exp(iξ)

exp(iξ) + C
, (3.9)

where λ = (α ±
√
α2 + 8δ)/2δ, ξ = kx + ωt + ξ0, ω = i(k2 + β), k is a root of second-order

algebraic equation (2 + αλ)k2 − γλki − β = 0, i =
√−1.
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By the result of Case 2 and (2.15), (3.7), we can obtain the following exact explicit
solutions of (1.1) given by

u(x, t) = (−λki) 1
1 + C exp(iξ)

, (3.10)

where λ = (α ±
√
α2 + 8δ)/2δ, ξ = kx + ωt + ξ0, ω = (−i)(k2 + β), k is a root of second-order

algebraic equation (2 + αλ)k2 + γλki − β = 0, i =
√−1.

Analogously, we have the following two useful formulas:

exp i(ξ)
C + exp i(ξ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, for C = 0,

1
2

[
i tan

1
2
(ξ + i lnC) + 1

]
, for C > 0,

1
2

[
−i cot1

2
(ξ + i ln(−C)) + 1

]
, for C < 0,

(3.11)

1
C exp i(ξ) + 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, for C = 0,

1
2

[
1 − i tan

1
2
(ξ − i lnC)

]
, for C > 0,

1
2

[
1 + i cot

1
2
(ξ − i ln(−C))

]
, for C < 0.

(3.12)

Due to the formula (3.11), we have from(3.9)

u(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−λk
2

tan
[
1
2
(kx +ωt + ξ0 + i ln(C))

]
+
λki

2
, for C > 0,

λk

2
cot

[
1
2
(kx +ωt + ξ0 + i ln(−C))

]
+
λki

2
, for C < 0,

(3.13)

where λ = (α ±
√
α2 + 8δ)/2δ, ξ = kx + ωt + ξ0, ω = i(k2 + β), k is a root of second-order

algebraic equation (2 + αλ)k2 − γλki − β = 0, i =
√−1.

Owing to the formula (3.12), we have from (3.10)

u(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−λk
2

tan
[
1
2
(kx +ωt + ξ0 − i ln(C))

]
− λki

2
, for C > 0,

λk

2
cot

[
1
2
(kx +ωt + ξ0 − i ln(−C))

]
− λki

2
, for C < 0,

(3.14)

where λ = (α ±
√
α2 + 8δ)/2δ, ξ = kx + ωt + ξ0, ω = (−i)(k2 + β), k is a root of second-order

algebraic equation (2 + αλ)k2 + γλki − β = 0, i =
√−1.

By virtue of the homogeneous property of (2.18), we can expect that φ is of the linear
function form

φ(x, t) = kx +ωt + ξ0, (3.15)
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with k andω, ξ0 constants to be determined. Substituting (3.15) into (2.18), we find that (3.15)
satisfies (2.18), provided that k and ω satisfy the following algebraic equations:

ω +
(
αu1 − γλ − 3δλu1

)
k = 0,

βk + 2γku1 + 3δku2
1 = 0,

(3.16)

where u1 = (−γ ±
√
Δ)/2δ, λ = (α±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ. Solving (3.16), we obtain that

ω =
α ∓

√
α2 + 8δ
4δ

γk, k = arbitrary constant, u1 = − γ

2δ
, (3.17)

provided that coefficients β, γ , and δ of (1.1) satisfy condition γ2 = 4βδ.
Substituting (3.15) with (3.17) into (2.17), we obtain the exact particular solutions of

(1.1)

u(x, t) = − γ

2δ
+
α ±

√
α2 + 8δ
2δ

1

x +
((

α ∓
√
α2 + 8δ

)
/4δ

)
γt + ξ0

. (3.18)

Now we suppose that (2.18) has solutions of the form (3.1) substituting (3.1) into
(2.18), one gets a set of algebraic equations:

Aω +
(
αu1 − γλ − 3δλu1

)
Ak − (3 + αλ)Bk2 = 0,

Bω +
(
αu1 − γλ − 3δλu1

)
Bk − (3 + αλ)Ak2 = 0,

Akω − Bk3 + αAk2 + βBk + 2γu1Bk + 3δu2
1Bk = 0,

Bkω −Ak3 + αBk2 + βAk + 2γu1Ak + 3δu2
1Ak = 0.

(3.19)

In order to obtain nontrivial solutions of (1.1), we need to require that k, ω are all nonzero
constants. Solving (3.19), one gets the following solutions.

Case 1. One has

A = B, C = arbitrary constant,

ω = k2 − αk − β − 2γu1 − 3δu2
1, or ω = (3 + αλ)k2 +

(
γλ + 3δλu1 − αu1

)
k,

(3.20)

where k is a root of second-order algebraic equation (2+αλ)k2 + (γλ+ 3δλu1 +α−αu1)k + β +
2γu1 + 3δu2

1 = 0, u1 = (−γ ±
√
Δ)/2δ, λ = (α ±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ.

Case 2. One has

A = −B, C = arbitrary constant, ω = β + 2γu1 + 3δu2
1 − k2 − αk,

or ω =
(
γλ + 3δλu1 − αu1

)
k − (3 + αλ)k2,

(3.21)
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where k is a root of second-order algebraic equation (2+αλ)k2 + (αu1 − γλ− 3δλu1 −α)k + β +
2γu1 + 3δu2

1 = 0, u1 = (−γ ±
√
Δ)/2δ, λ = (α ±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ.

By Case 1, we obtain the exact solutions of the (1.1) from (2.17), (3.1)

u(x, t) =
−γ ±

√
Δ

2δ
+ λk

exp(kx +ωt + ξ0)
exp(kx +ωt + ξ0) + C

, (3.22)

where λ = (α ±
√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ, ω = k2 − αk − β − 2γu1 − 3δu2

1, k is a root of
second-order algebraic equation (2 + αλ)k2 + (γλ + 3δλu1 + α − αu1)k + β + 2γu1 + 3δu2

1 = 0,
u1 = (−γ ±

√
Δ)/2δ, ξ0, C/= 0 are arbitrary constants.

According to the result of Case 2 and (2.17), (3.1), one obtain the other exact solutions

u(x, t) =
−γ ±

√
Δ

2δ
+ λk

exp(kx +ωt + ξ0)
C exp(kx +ωt + ξ0) − 1

, (3.23)

where λ = (α ±
√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ, ω = β + 2γu1 + 3δu2

1 − k2 − αk, k is a root of
second-order algebraic equation (2 + αλ)k2 + (αu1 − γλ − 3δλu1 − α)k + β + 2γu1 + 3δu2

1 = 0,
u1 = (−γ ±

√
Δ)/2δ, ξ0, C/= 0 are arbitrary constants.

According to formulas (3.5), (3.6), we can get multiple new soliton solutions of kink
type and multiple new soliton-like solutions of singular type from (3.22) and (3.23).

Analogously, we assume that (2.18) has solutions of the form (3.7); substituting (3.7)
into (2.18), one gets a set of algebraic equations

Aω +
(
αu1 − γλ − 3δλu1

)
Ak + (3 + αλ)Bk2 = 0,

−Bω − (
αu1 − γλ − 3δλu1

)
Bk + (3 + αλ)Ak2 = 0,

−Akω − Bk3 − αAk2 − βBk − 2γu1Bk − 3δu2
1Bk = 0,

−Bkω +Ak3 − αBk2 + βAk + 2γu1Ak + 3δu2
1Ak = 0.

(3.24)

In order to obtain a nontrivial solution of (1.1), we also need to assume that k,ω are all
nonzero constants. Solving (3.24), we obtain the following.

Case 1. One has

A = Bi, C = arbitrary constant,

ω = ik2 − αk + i
(
β + 2γu1 + 3δu2

1

)
, or ω = (3 + αλ)ik2 +

(
γλ + 3δλu1 − αu1

)
k,

(3.25)

where k is a root of second-order algebraic equation (2 + αλ)ik2 + (γλ + 3δλu1 + α − αu1)k −
i(β + 2γu1 + 3δu2

1) = 0, u1 = (−γ ±
√
Δ)/2δ, λ = (α ±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ.
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Case 2. One has

A = −Bi, C = arbitrary constant,

ω = −ik2 − αk − i
(
β + 2γu1 + 3δu2

1

)
, or ω = −(3 + αλ)ik2 +

(
γλ + 3δλu1 − αu1

)
k,

(3.26)

where k is a root of second-order algebraic equation (2 + αλ)ik2 − (γλ + 3δλu1 + α − αu1)k −
i(β + 2γu1 + 3δu2

1) = 0, u1 = (−γ ±
√
Δ)/2δ, λ = (α ±

√
α2 + 8δ)/2δ, Δ = γ2 − 4βδ.

Collecting (2.17), (3.7), (3.25), and (3.26), we obtain the following explicit exact peri-
odic traveling wave solutions

u(x, t) =
−γ ±

√
Δ

2δ
+ iλk

exp(iξ)
exp(iξ) + C

, (3.27)

where λ = (α±
√
α2 + 8δ)/2δ,Δ = γ2 − 4βδ, ξ = kx+ωt+ ξ0, ω = ik2 −αk+ i(β+ 2γu1 + 3δu2

1), k
is a root of second-order algebraic equation (2+αλ)ik2 + (γλ+3δλu1 + α−αu1)k− i(β+2γu1 +
3δu2

1) = 0, u1 = (−γ ±
√
Δ)/2δ, ξ0, C/= 0 are arbitrary constants,

u(x, t) =
−γ ±

√
Δ

2δ
− iλk

C exp(iξ)
exp(iξ) + 1

,
(3.28)

where λ = (α±
√
α2 + 8δ)/2δ,Δ = γ2−4βδ, ξ = kx+ωt+ξ0,ω = −ik2−αk−i(β+2γu1+3δu2

1), k is a
root of second order algebraic equation (2+αλ)ik2−(γλ+3δλu1+α−αu1)k−i(β+2γu1+3δu2

1) = 0,
u1 = (−γ ±

√
Δ)/2δ, ξ0, C/= 0 are arbitrary constants.

By using of formulas (3.11) and (3.12), we can obtain multiple new periodic wave
solutions in form tan ξ and cot ξ.

Choosing the solutions (3.3) ((3.4), (3.13), (3.14), (3.18), (3.22), (3.23), (3.27) and (3.28),
resp.) as a new “seed” solution u1(x, t) and solving the linear PDEs (2.11), (2.12), one gets
a quasisolution φ(x, t). Then substituting the quasisolution φ(x, t) and u1(x, t) chosen above
into (2.14), we can obtain more andmore new exact particular solutions of (1.1). Taking C = 1
in solutions (3.3), (3.4), (3.22), and (3.23), we can obtain shock wave solutions and singular
traveling wave solutions of (1.1). Putting C = 1 in solutions (3.9), (3.10), (3.27), and (3.28),
we can obtain periodic wave solutions in form tan ξ and cot ξ.

4. Conclusion

It is worthwhile pointing out that the exact solutions obtained in this paper havemore general
form than some known solutions in previous studies. In addition to rederiving all known
solutions in a systematic way, several entirely new exact solutions can also be obtained.
Specially, choosing α = 0 in the all solutions above, one can obtain abundant explicit and
exact solutions to the Kolmogorov-Petrovskii-Piskunov equation [16]. Setting α = 0, γ = 0,
β = −δ in the all solutions above, one can get abundant explicit and exact solutions to the
Chaffee-Infante reaction diffusion equation [17]. We can also obtain abundant explicit and
exact solutions to the Burgers-Huxley equation [18] by taking α/= 0, β = δη, γ = −(1 + η)δ,
η arbitrary in the all solutions above. Go a step further, taking α = 0, β = η, γ = −(1 + η), η
arbitrary in the all solutions above, we also obtain abundant explicit and exact solutions to
the FitzHugh-Nagumo equation [19]. We can obtain abundant explicit exact solutions to the
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Newell-Whitehead equation when taking α = 0, β = −1, γ = 0, δ = 1 in the all solutions above
[17]. Putting α = 0, β = 1 − (3η/2), γ = (5η/2) − 2, δ = 1 − η in the all solutions above, we can
obtain abundant explicit and exact solutions to an isothermal autocatalytic system [20].
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