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This paper discusses the importance of starting point in the simplex algorithm. Three different
methods for finding a basic feasible solution are compared throughout performed numerical test
examples. We show that our two methods on the Netlib test problems have better performances
than the classical algorithm for finding initial solution. The comparison of the introduced optimi-
zation softwares is based on the number of iterative steps and on the required CPU time. It is
pointed out that on average it takesmore iterations to determine the starting point than the number
of iterations required by the simplex algorithm to find the optimal solution.

1. Introduction

There are two main methods for solving linear programming problem: the Simplex method
and the interior point method. In both of these two methods it is necessary to determine the
initial point. It is known that the application of the simplex algorithm requires at least one
basic feasible solution. For the interior point method, in most cases it is enough that the point
belongs to the so-called central path. Note also that in most algorithms based on interior point
methods, the starting point need not to be feasible. However, in practical implementation it is
shown that the numerical stability of the algorithm still depends on the choice of the starting
point. These issues are investigated in papers [1, 2].

Two classical algorithms for generating the initial point for the Simplex algorithm are
the two-phase Simplex algorithm and the Big-M method. The main drawback of these algorithms
is requiring the introduction of artificial variables, increasing the dimension of the problem.
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Table 1

xN,1 xN,2 · · · xN,n −1
a11 a12 · · · a1n b1 = −xB,1

· · · · · · · · · · · · · · · · · ·
am1 am2 · · · amn bm = −xB,m

c1 c2 · · · cn d = f

From that reason, algorithms which do not require the introduction of artificial variables are
developed. A heuristic for finding the starting point of a linear programming problem, which
is based on the method of minimal angles, is proposed in [3]. Unfortunately, these heuristics
can be used only for certain classes of problems. Similar heuristics are investigated in the
papers [4–6]. Different versions of the algorithm which does not introduce artificial variables
are given in the papers [7–12]. One variant of these algorithms is introduced and discussed
in the paper [11], which was the inspiration for our paper. We compare three different
methods for finding an initial basic feasible solution (the starting point for the Simplex algo-
rithm) throughout performed numerical test examples. Twomethods, calledM1 andM2, are
introduced in [13], while the third method, called NFB, is established in [11].

2. The Simplex Method and Modifications

Consider the linear programming (LP) problem in the standard matrix form:

Maximize cTx − d,

subject to Ax = b,

x ≥ 0,

(2.1)

where A ∈ R
m×(m+n) is the full row rank matrix (rank(A) = m), c ∈ R

n+m, and the system
Ax = b is defined by x ∈ R

m+n, b ∈ R
m. It is assumed that (i, j)-th entry inA is denoted by aij ,

b = (b1, . . . , bm)
T , d ∈ R, xT = (x1, . . . , xn+m), and cT = (c1, . . . , cn+m).

Then we choose m basic variables xB,1, . . . , xB,m, express them as a linear combination
of nonbasic variables xN,1, . . . , xN,n, and obtain the canonical form of the problem (2.1). We
write this canonical form in Table 1.

Coefficients of the transformed matrix A and the transformed vector c are again
denoted by aij and cj , respectively, without loss of generality.

For the sake of completeness we restate one version of the two-phase maximization
simplex algorithm from [12, 14] for the problem (2.1), represented in Table 1.

Within each iteration of the simplex method, exactly one variable goes from nonbasic
to basic and exactly one variable goes from basic to nonbasic. Usually there is more than one
choice for the entering and the leaving variables. The next algorithm describes the move from
the current base to the new base when the leaving-basic and entering-nonbasic variables have
been selected.
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Algorithm 2.1 (consider interchange a basic variable xB,p and nonbasic variable xN,j).

a1
ql =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
apj

, q = p, l = j

apl

apj
, q = p, l /= j

−aqj

apj
, q /= p, l = j

aql −
aplaqj

apj
, q /= p, l /= j

, b1l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bp

apj
, l = p

bl −
bp

apj
alj , l /= p

,

c1l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cl −
cjapl

apj
, l /= j,

− cj

apj
, l = j

, d1 = d − bpcj

apj
.

(2.2)

The next algorithm finds an optimal solution of the LP problem when the condition
b1, . . . , bm ≥ 0 is satisfied.

Algorithm 2.2.
Step S1A. If c1, . . . , cn ≤ 0, then the basic solution is an optimal solution.
Step S1B. Choose cj > 0 according to the Bland’s rule [15].
Step S1C. If a1j , . . . , amj ≤ 0, stop the algorithm. Maximum is +∞.
Otherwise, go to the next step.
Step S1D. Compute

min
1≤i≤m

{
bi
aij

| aij > 0

}

=
bp

apj
. (2.3)

If the condition b1, . . . , bm ≥ 0 is not satisfied, we use the algorithm from [12, 14] to
search for the initial basic feasible solution. In contrast to approach used in [16], it does not
use artificial variables and therefore does not increase the size of the problem. It is restated
here as the following Algorithm 2.3.

Algorithm 2.3.
Step S2. Select the last bi < 0.
Step S3. If ai1, . . . , ain ≥ 0, then STOP. LP problem is infeasible.
Step S4. Otherwise, find aij < 0, compute

min
k>i

({
bi
aij

}

∪
{

bk
akj

| akj > 0

})

=
bp

apj
, (2.4)

choose xN,j as the entering-nonbasic variable, xB,p as the leaving-basic variable, apply
Algorithm 2.1, and go to Step S2.
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Note that Algorithm 2.3 and the NFB algorithm from [11] are equivalent. As shown
in the paper [13], the lack of the algorithm from [12] is that when it is applied to transform
the selected coordinate from the basic solution into a positive, it can increase the number of
negative coordinates.

The problem of selecting a leaving-basic variable and corresponding entering-
non-basic variable in the two-phase simplex method is contained in Step S1D of
Algorithm 2.2 and Step S4 of Algorithm 2.3. We observed two drawbacks of Step S4. By i
we denote the index of the last negative bi.

(1) If p = i for each index t < i = p such that

bt
atj

<
bp

apj
, bt > 0, atj > 0 (2.5)

in the next iteration xB,t becomes negative:

x1
B,t = b1t = bt −

bp

apj
atj < bt − bt

atj
atj = 0. (2.6)

(2) If p > i, in the next iteration b1i is negative:

bp

apj
<

bi
aij

=⇒ b1i = bi −
bp

apj
aij < 0. (2.7)

Although there may exist bt < 0, t < i such that

min
k>t

({
bt
atj

, atj < 0

}

∪
{

bk
akj

| akj > 0, bk > 0

})

=
bt
atj

. (2.8)

In such case, it is possible to choose atj for the pivot element and obtain

xB,t = b1t =
bt
atj

≥ 0. (2.9)

Also, since bt/atj ≤ bk/akj , each bk > 0 remains convenient for the next basic feasible solution:

xB,k = b1k = bk − bt
atj

akj ≥ 0. (2.10)

Therefore, it is possible that the choice of entering and leaving variable defined by
Step S4 reduces the number of positive b’s after the application of Algorithm 2.1. Our
goal is to obviate the observed disadvantages in Step S4. For this purpose, we propose a
modification of Step S4, which gives a better heuristic for the choice of basic and nonbasic
variables.
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Proposition 2.4 (see [13]). Let the problem (2.1) be feasible and let x be the basic infeasible solution
with bi1 , . . . , biq < 0, q ≤ m. Consider the index set I = {i1, . . . , iq}.

The following statements are valid.

(1) It is possible to produce a new basic solution x1 = {x1
B,1, . . . , x

1
B,m} with at most q − 1

negative coordinates in only one step of the simplex method in the following two cases:

(a) q = m,
(b) q < m and there exist r ∈ I and s ∈ {1, . . . , n} such that

min
h/∈I

{
bh
ahs

| ahs > 0
}

≥ br
ars

, ars < 0. (2.11)

(2) It is possible to produce a new basic solution x1 = {x1
B,1, . . . , x

1
B,m} with exactly q negative

coordinates in one step of the simplex method if neither condition (a) nor condition (b) is
valid.

Proof. We restate the proof from [13] for the sake of completeness.
(1) (a) If q = m, for an arbitrary pivot element ajs < 0, we get a new basic solutionwith

at least one positive coordinate:

x1
B,j = b1j =

bj

ajs
> 0. (2.12)

The existence of negative ajs is ensured by the assumption that the problem (2.1) is feasible.
(b) Now assume that the conditions q < m, r ∈ I, and (2.11) are satisfied. Choose ars

for the pivot element and apply Algorithm 2.1. Choose arbitrary bk ≥ 0, k /= r.
In the case aks < 0 it is obvious that

x1
B,k = bk − br

ars
aks ≥ bk ≥ 0. (2.13)

In the case aks > 0, using bk/aks ≥ br/ars, we conclude immediately

x1
B,k = b1k = bk − br

ars
aks ≥ bk − bk

aks
aks = 0. (2.14)

On the other hand, for br < 0 we obtain from Algorithm 2.1

b1r =
br
ars

≥ 0. (2.15)

Therefore, all nonnegative bk remain nonnegative and br < 0 becomes nonnegative.
(2) If neither condition (a) nor condition (b) is valid, let r /∈ I and s ∈ {1, . . . , n} be

such that

min
h/∈I

{
bh
ahs

| ahs > 0
}

=
br
ars

. (2.16)
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By choosing ars as the pivot element and by applying the transformations defined in
Algorithm 2.1 we obtain the same number of negative elements in the vector b. This fact
can be proved similarly as the part 1 (b).

Remark 2.5. From Proposition 2.4 we get three proper selections of the pivot element in
Step S4:

(i) arbitrary ajs < 0 in the case q = m;

(ii) arbitrary ars < 0 satisfying (2.11)when the conditions 0 < q < m, r ∈ I are satisfied;

(iii) arbitrary ars > 0 satisfying (2.16) when 0 < q < m, and there is no ars < 0 satisfying
conditions in the previous case.

In accordance with Proposition 2.4 and considerations in Remark 2.5, we propose the
following improvement of Algorithm 2.3.

AlgorithmM1 (modification of Algorithm 2.3)

Step 1. If b1, . . . , bm ≥ 0, perform Algorithm 2.2. Otherwise continue.
Step 2. Select the first bis < 0.
Step 3. If ais,1, . . . , ais,n ≥ 0, then STOP. LP problem is infeasible.
Otherwise, construct the set

Q =
{
ais,jp < 0, p = 1, . . . , t

}
, (2.17)

initialize variable p by p = 1 and continue.
Step 4. Compute

min
1≤h≤m

{
bh
ah,jp

| ah,jp > 0, bh > 0

}

= min
h/∈I

{
bh
ah,jp

| ah,jp > 0

}

=
br
ar,jp

. (2.18)

Step 5. If bis/ais,jp ≤ bh/ah,jp , then interchange entering-nonbasic variable xN,jp and leaving-
basic variable xB,is (apply Algorithm 2.1) and go to Step 1. Otherwise go to Step 6.
Step 6. If p > t, interchange xN,jp and xB,r (apply Algorithm 2.1) and go to Step 1. Otherwise,
put p = p + 1 and go to Step 3.

Algorithm M1 chooses one fixed (the first) value bis < 0 satisfying conditions of
Proposition 2.4. But there may exist some other bi < 0 such that conditions of Proposition 2.4
are satisfied, and in the next iteration we can obtain a basic solution with smaller number of
negative b’s. From that reason, in [13] we gave improved version of Algorithm M1, named
M2.

AlgorithmM2

Step 1. If b1, . . . , bm ≥ 0, perform Algorithm 2.2. Otherwise, construct the set

B =
{
ik | bik < 0, k = 1, . . . , q

}
. (2.19)
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Step 2. Set s = 1 and perform the following.

Step 2.1. If ais,1, . . . , ais,n ≥ 0 then STOP. LP problem is infeasible.

Otherwise, construct the set

Q =
{
ais,jp < 0, p = 1, . . . , t

}
, (2.20)

put p = 1, and continue.

Step 2.2. Find the minima:

p′ = argmin

{
bk
ak,jp

| bk < 0, ak,jp < 0

}

,

M
(
j
)
= min

{
bk
ak,jp

| bk > 0, ak,jp > 0

}

.

(2.21)

If bk/ak,jp ≤ M(jp), then choose ap′,jp for the pivot element,

apply Algorithm 2.1, and go to Step 1.

(In the next iteration bk becomes positive.)

Step 2.3. If p < t, then put p = p + 1 and go to Step 2.2,

otherwise continue.

Step 2.4. If s < q, then put s = s + 1 and go to Step 2.1,

otherwise continue.

Step 3. If q < m and there do not exist r ∈ I and s ∈ {1, . . . , n} such that

min
h/∈I

{
bh
ahs

| ahs > 0
}

≥ br
ars

, ars < 0, then move to the following. (2.22)

Step 3.1. Select j0 = argmin{xN,l | aiq,l < 0}.
Step 3.2. Compute

p′′ = argmin

{

xB,p | bp

ap,j0

= M
(
j0
)
}

. (2.23)

Step 3.3. Choose ap′′,j0 for pivot element,

apply Algorithm 2.1, and go to Step 1.
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Algorithm M1 and Algorithm M2 are well defined. If there is no br < 0 such that
the condition (2.11) is valid, we choose pivot element according to Remark 2.5 to obtain a
solution with the same number of negative b’s. To avoid the cycling in this case, we will
present an anticycling rule which is based on the following result from [13].

Proposition 2.6 (see [13]). Assume that there is no br < 0 such that the conditions (2.11) of
Proposition 2.4 are satisfied. After choosing the pivot element according to (2.16), we obtain a new
base where 0 > b1i ≥ bi, holds for all i ∈ I.

Since is in Step 2 of AlgorithmM1 is fixed, AlgorithmM1may cycle only if b1is = bis . For
that reason, if the minimum in (2.18) is not unique, we choose jp according to the Bland’s rule
which guarantees that the simplex method always terminates [15] and [17, Theorem 3.3].
Therefore, according to Proposition 2.6, finite number of iterations value of bis will start to
increase orwewill conclude that the problem is infeasible (ais,j are positive for all j = 1, . . . , n).

In the sequel we show that our methods have better performances than the Nabli’s
NFB method from [11]. Algorithms M1 and M2 are implemented in the software package
MarPlex, reused from [13] and tested on some standard linear programming test problems.

3. Results of Comparison

We already mentioned that we were motivated with the paper [11] to consider the number
of iterations needed to find the starting point. This yields an exact indicator of the quality
of the applied linear programming solvers. In the paper [11] that the quotient of the total
number of iterations required to determine the initial solution and the number of variables is
equal to 0.334581 = 268/801 for the NFB, 0.483249 = 439/985 for the two-phase algorithm and
0.445685 = 476/985 for the Big-M method. It is obvious that the NFB algorithm is better than
the Two-phases and the Big-Mmethods with respect to this criterion.

Note that the results of the paper [11] are obtained on a small sample of test problems
in which the number of variables is relatively small. To resolve this drawback, we applied
the NFB algorithm to the Netlib collection test problems. In addition, we tested our two
algorithms, marked with M1 and M2. In this paper we consider the results of practical
application of these algorithms in accordance with the methodologies used in the papers
[11, 18].

The comparison of different optimization softwares from [11] is based on the number
of iterative steps. In the tables below, columns labeled by n contain the number of variables
in the problem, while the columns marked with NFB, M1, and M2 contain the number of
iterations that is required for the corresponding algorithm. The names of the Netlib problems
are given in the column LP. The number of iterations that are necessary to find initial basic
feasible solutions in particular test examples is presented in Table 2.

The quotient of the total number of iterations required to determine the initial solution
Simplex algorithm and the total number of variables is equal to 32856/52509 = 0.625721 for
the NFB algorithm, for the AlgorithmM1 is equal to 27005/52509 = 0.514293, and for theM2
method is 16118/52509 = 0.306957. For the NFB algorithm we get a higher value compared
to the result from [11], as consequence of the larger size and the computational effort to solve
the tested problems. Algorithm M1 shows a slightly better efficiency, while M2 produces
significantly smaller quotient.

In Table 3 we give comparative results of the total number of iterations required to
solve the same test problems.
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Table 2: Number of iterations for generating the initial solutions computation.

LP n NFB M1 M2
adlittle 97 77 21 57
agg 615 84 38 67
agg3 758 141 51 71
beaconfd 295 1 1 1
brandy 303 2248 624 1276
czprob 3562 11261 6824 6933
etamacro 816 185 162 191
fit1d 1049 1 1 1
gfrd-pnc 1160 240 126 229
grow22 946 1 1 1
israel 316 2 2 2
lotfi 366 339 111 76
sc105 163 1 1 1
sc50a 78 1 1 1
scagr7 185 90 69 81
scorpion 466 114 70 90
sctap2 2500 739 246 666
share2b 162 123 92 135
ship04l 2166 450 100 8
ship08l 4363 461 144 320
ship12l 5533 938 232 49
sierra 2733 65 82 75
standata 1274 76 146 21
stocfor1 165 1 1 1
afiro 51 17 2 4
agg2 758 52 31 40
bandm 472 3128 1495 273
blend 114 1 1 1
capri 482 214 1316 251
e226 472 5663 395 215
finnis 1064 276 809 141
ganges 1706 1 1 1
grow15 645 1 1 1
grow7 301 1 1 1
kb2 68 1 1 1
recipe 204 8 9 9
sc205 317 1 1 1
sc50b 78 1 1 1
scfxm1 600 2478 311 1133
sctap1 660 496 131 320
sctap3 3340 618 369 469
share1b 253 366 368 89
shell 1777 55 78 41
ship04s 1506 116 57 14
ship08s 2467 169 67 54
ship12s 2869 429 166 55
stair 614 686 11066 2450
standmps 1274 260 752 131
vtp.base 346 179 430 69
Sum 52509 32856 27005 16118
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Table 3: The total number of iterations.

LP n NFB M1 M2
adlittle 97 115 76 101
agg 615 115 63 89
agg3 758 222 194 148
beaconfd 295 34 34 34
brandy 303 2329 714 1348
czprob 3562 11886 7472 7524
etamacro 816 361 377 448
fit1d 1049 835 835 835
gfrd-pnc 1160 577 437 534
grow22 946 3570 3570 3570
israel 316 159 159 159
lotfi 366 397 248 204
sc105 163 57 57 57
sc50a 78 27 27 27
scagr7 185 125 95 122
scorpion 466 151 140 128
sctap2 2500 934 816 942
share2b 162 169 117 173
ship04l 2166 574 474 259
ship08l 4363 825 775 850
ship12l 5533 2846 1943 1068
sierra 2733 490 392 401
standata 1274 174 262 159
stocfor1 165 18 18 18
afiro 51 22 11 12
agg2 758 118 154 109
bandm 472 3299 1622 432
blend 114 733 733 733
capri 482 352 1479 371
e226 472 6230 759 533
finnis 1064 584 1034 516
ganges 1706 421 421 421
grow15 645 880 880 880
grow7 301 241 241 241
kb2 68 51 51 51
recipe 204 37 37 39
sc205 317 136 136 136
sc50b 78 28 28 28
scfxm1 600 2878 434 1220
sctap1 660 553 268 328
sctap3 3340 865 1278 721
share1b 253 435 431 154
shell 1777 334 356 317
ship04s 1506 301 251 186
ship08s 2467 408 339 312
ship12s 2869 985 632 494
stair 614 719 1234 2492
standmps 1274 415 824 240
vtp.base 346 250 477 124
Sum 52509 48265 43405 30288
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From Table 3 it is apparent that M2 is the best algorithm. It is interesting to note that
theM1 algorithm requires less total number of iterations compared to the NFB, although the
Simplex algorithm after applying Algorithm M1 requires more iterations. Hence the choice
of algorithm for determining the starting point is very important for the overall efficiency of
the software for solving the LP problems.

From Tables 2 and 3 it follows that the total number of iterations spent in the Simplex
algorithm to generate the optimal solution is equal to 15409,16400,14170 for the NFB,M1, and
M2 methods, respectively. Therefore, it is clear that the total number of iterations required
for the initial basic feasible solution is greater than the number of iterations required by the
Simplex algorithm to find the optimal solution. This fact is very important, especially if we
observe from Table 2 that about 25% of the considered problems are suitable for determining
the starting point in one step. Taking into account the results of the paper [11] from which
it follows that the number of iterations of the classical two-phase method for determining the
starting point is significantly higher than the number of iterations of algorithms that do not
introduce artificial variables, the fact becomes more important. This means that finding the
starting point represents a very important part in solving LP problems.

The better performances of the M2 method primarily (and particularly the M1
method), compared to the NFB method, can also be confirmed by using the so-called per-
formance profile, introduced in [18]. The underlying metric is defined by the number of
iterative steps. Following the notations given in the paper [18] we have that the number of
solvers is ns = 3 (the NFB,M1, andM2) and the number of numerical experiments is np = 49.
For the performance metrics we use the number of iterative steps. By ip,s we denote the num-
ber of iterations required to solve problem p by the solver s. The quantity

rp,s =
ip,s

min
{
ip,s : s ∈ {NFB,M1,M2}} (3.1)

is called the performance ratio. Finally, the performance of the solver s is defined by the
following cumulative distribution function

ρs(τ) =
1
np

size
{
p ∈ P : rp,s ≤ τ

}
, s ∈ {NFB,M1,M2}, (3.2)

where τ ∈ R and P represents the set of problems. Figure 1 shows the performance profiles
for NFB, M1, and M2 regarding the number of iterations. Figure 1(a) (resp., Figure 1(b))
illustrates data arranged in Table 2 (resp., Table 3).

It is clear from Figure 1(a), that M1 and M2 methods show better performances
compared to NFB. Comparison of M1 and M2 algorithms gives somewhat contradictory
results. Namely, the probability of being the optimal solver regarding the number of iterative
steps required for generating the starting point is in favor of the M1 algorithm, which is
confirmed by ρM1(1) = 0.64 > ρM2(1) = 0.60 > ρNFB(1) = 0.38. On the other hand, the pro-
bability ρM2(τ) of Algorithm M2 is greater than the probability ρM1(τ) for all values τ > 1.
On the other hand, ρM2(τ) > ρNFB(τ) is always satisfied.

From Figure 1(b), it is evident that the inequality ρM2(τ) ≥ max{ρNFB(τ), ρM1(τ)} is
always satisfied, which means that Algorithm M2 has the highest probability of being the
optimal solver with respect to the total number of iterations required to solve the problem.

In sequel, the total CPU time is the comparison criteria. The required CPU time
for NFB, M1 and M2 methods is given in Table 4. The time ratio and the number of
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Table 4: The CPU time, the CPU time ratio, and the number of iteration ratios.

LP Time Time Time Time ratio Time ratio No. it. ratio No. it. ratio
NFB M1 M2 M1/NFB M2/NFB M1/NFB M2/NFB

adlittle 1.19 0.94 0.74 0.789 0.621 0.660 0.878
agg 0.71 0.61 0.68 0.859 0.957 0.547 0.773
agg3 0.69 0.58 0.48 0.840 0.695 0.873 0.666
beaconfd 0.63 0.63 0.64 1 1.015 1 1
brandy 1.45 1.28 1.39 0.882 0.958 0.306 0.578
czprob 37.2 45.3 185.3 1.217 4.981 0.628 0.633
etamacro 0.46 0.53 0.59 1.152 1.282 1.044 1.241
fit1d 1.45 1.45 1.45 1 1 1 1
gfrd-pnc 0.59 0.39 0.75 0.661 1.271 0.757 0.925
grow22 180.2 180.2 180.2 1 1 1 1
israel 0.51 0.51 0.51 1 1 1 1
lotfi 0.62 0.53 0.45 0.854 0.725 0.624 0.513
sc105 0.55 0.55 0.55 1 1 1 1
sc50a 0.42 0.42 0.42 1 1 1 1
scagr7 0.44 0.38 0.35 0.863 0.795 0.76 0.976
scorpion 0.44 0.35 0.37 0.795 0.840 0.9271 0.847
sctap2 4.2 3.1 15.1 0.738 3.590 0.873 1.008
share2b 0.65 0.44 0.43 0.676 0.661 0.692 1.023
ship04l 0.41 0.73 0.35 1.780 0.853 0.825 0.451
ship08l 4.1 6.9 10.1 1.682 2.463 0.939 1.03
ship12l 17.2 16.1 14.9 0.936 0.866 0.682 0.375
sierra 4.9 4.5 5.5 0.918 1.122 0.8 0.818
standata 0.39 0.41 0.46 1.051 1.179 1.505 0.913
stocfor1 0.57 0.57 0.57 1 1 1 1
afiro 0.42 0.29 0.36 0.690 0.857 0.5 0.545
agg2 0.39 0.49 0.38 1.256 0.974 1.305 0.923
bandm 12.2 5.8 2.5 0.475 0.204 0.491 0.130
blend 0.52 0.52 0.52 1 1 1 1
capri 0.53 4.1 0.42 7.735 0.792 4.201 1.053
e226 12.7 0.56 0.39 0.044 0.030 0.121 0.085
finnis 0.62 0.95 0.41 1.532 0.661 1.770 0.883
ganges 0.77 0.77 0.77 1 1 1 1
grow15 26.3 26.3 26.3 1 1 1 1
grow7 2.1 2.1 2.1 1 1 1 1
kb2 0.51 0.51 0.51 1 1 1 1
recipe 0.37 0.39 0.44 1.054 1.189 1 1.054
sc205 0.42 0.42 0.42 1 1 1 1
sc50b 0.41 0.41 0.41 1 1 1 1
scfxm1 8.3 0.45 4.8 0.054 0.578 0.150 0.423
sctap1 0.67 0.34 0.38 0.507 0.567 0.484 0.593
sctap3 4.1 4.9 14.3 1.195 3.487 1.477 0.833
share1b 0.47 0.49 0.34 1.042 0.723 0.990 0.354
shell 0.46 0.51 0.64 1.108 1.391 1.065 0.949
ship04s 0.68 0.35 0.34 0.514 0.5 0.833 0.617
ship08s 1.5 1.2 1.4 0.8 0.933 0.830 0.764
ship12s 2.4 2.1 2.5 0.875 1.041 0.641 0.501
stair 3.5 96.1 33.2 27.457 9.485 15.624 3.465
standmps 0.44 0.53 0.36 1.204 0.818 1.985 0.578
vtp.base 0.29 0.31 0.38 1.068 1.310 1.908 0.496
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Figure 1: (a) Performance profile regarding the number of iterations in Table 2. (b) Performance profile
regarding the number of iterations in Table 3.
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Figure 2: Performance profiles regarding the CPU time.

iteration ratio, of AlgorithmsM1 andM2 with respect to the NFB algorithm are also given in
Table 4.

The situation in this case is not quite clear. Namely, comparing the time ratio with
respect to the number of iterations ratio given in columns labeledM1/NFB andM2/NFB, we
conclude the number of required iterations of M1 and M2 algorithms for problems czprob,
share1b, ship04l, and ship08l is smaller then the number of iterations of NFB algorithm but this
is not in accordance with required CPU time ratio. This is the consequence of the greatest
number of conditions that must be checked in theM1 andM2 algorithms with respect to the
NFB algorithm. The difficulties of that type may occur especially when the LP problem has
dense matrix. Note that for all others test problems accordance of the number of iterations
ratio with respect to the required CPU time ratio does exist.

Figure 2 shows the performance profiles for NFB,M1,M2 regarding the required CPU
time.
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It is clear from Figure 2 that the probability of being the optimal solver regarding the
CPU time required is in favor of the M2 algorithm, which is confirmed by the inequalities
ρM2(1) > ρM2(1) > ρNFB(1). On the other hand, further comparison when τ increases gives
contradictory results. Unfortunately,M2 algorithm is not the best solver for all value τ . In the
case 1.5 ≤ τ ≤ 4.5 it follows that M1 algorithm is the best option except for τ = 2 when NFB
algorithm takes advantage. Further, for 5 ≤ τ ≤ 9 we have ρM2(τ) = ρNFB(τ) = ρM1(τ), which
means that the considered solvers are equivalent. Finally, for values τ > 9 Algorithm M2 is
the best again.

4. Conclusion

The importance of selecting the starting point is known problem from the linear program-
ming theory. In this paper, we investigated that problem in terms of the number of iterations
required to find the initial point and the optimal point as well as in the terms of the required
CPU time.

We observed that our Algorithm M2 achieved the lowest total number of iterations
for finding the starting point for the Simplex method as well as the minimal total number
of iterations for determining the optimal point. On the other hand, Algorithm M1 has the
highest probability to achieve the minimal number of iterations to find the initial basic
feasible solution. Algorithm M2 has the highest probability of being the optimal solver with
respect to the total number of iterations required to solve the problem.

Comparison with respect to the required CPU time gives that the probability of being
the optimal solver is in favor of the M2 algorithm for τ = 1 and for τ ≥ 9.5. It is clear that
CPU time generally depends on the number of iterations, but it is obvious that there are some
others important factors. Further research will be in that direction.

Acknowledgments

The authors would like to thank the anonymous referees for useful suggestions. P. S.
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