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This paper presents a necessary and sufficient condition for the weak invariance property of
a time-delayed system parametrized by a differential inclusion. The aforementioned condition
generalizes the well-known Hamilton-Jacobi inequality that characterizes weakly invariant
systems in the nondelay setting. The forward Euler approximation scheme used in the theory
of discontinuous differential equations is extended to the time-delayed context by incorporating
the delay and tail functions featuring the dynamics. Accordingly, an existence theorem of weakly
invariant trajectories is established under the extended forward Euler approach.

1. Introduction

The main goal of this paper is to establish a characterization of the so-called weakly invariant
property of a closed set S ∈ R

n with respect to the set of solutions of the time-delay differential
inclusion

ẋ(t) ∈ F(t, x(t), x(t − δ(t))), t ∈ I. (1.1)

Throughout, the prescribed delay function δ(·) is nonnegative and continuous on the interval
I := [0,+∞). The multifunction F : I ×R

n ×R
n –→R

n is endowed with the following structural
hypotheses (SH).

(i) F(t, x, y) is a nonempty, convex, and compact set for every (t, x, y).



2 Abstract and Applied Analysis

(ii) There are constants γ, c > 0 such that for each (t, x, y)

sup
{‖v‖ : v ∈ F(t, x, y)} ≤ γ(‖x‖ + ∥∥y∥∥) + c. (1.2)

(iii) F(·, ·, ·) is almost upper semicontinuous, which in presence of the previous assump-
tions, is equivalent to the following condition: for every compact interval Ĩ ⊂ I and
each ε > 0, there exists a closed setNε ⊆ Ĩ with Lebesgue measure μ(Ĩ \Nε) < ε, so
that the graph

G(F) := {(t, x, y, v) : v ∈ F(t, x, y)} (1.3)

is closed inNε × R
n × R

n × R
n.

A solution (or trajectory) to (1.1) is an absolutely continuous function x satisfying (1.1) for
almost all t ∈ [t0,∞), for some t0 ≥ 0. A more precise description and assumptions on the
elements defining the data are provided in the next section.

Time delay has been shown to appear in many deterministic dynamical systems (see
for instance [1–4]). When this feature is present, its study is essential to understand important
qualitative and quantitative aspects of the dynamics. Furthermore, ignoring an existing time
delay may result in an ill-posed model [5]. Based upon the nature of the state space, time-
delay systems can be investigated by means of either infinite ([6–8]) or finite dimensional
models ([1, 9, 10]). In the present work, the considered dynamics evolve according to the
differential inclusion (1.1), which fits in the category of finite dimensional models, since the
delay component of its right-hand side is being identified with the pointwise history of its
trajectories. This setting, we believe, will prove to be satisfactory to further study strong
invariance properties and their possible interconnections with Hamilton-Jacobi theory for
problems involving time-delayed differential inclusions on finite dimensional spaces.

A complete exposition on the invariance concept used in this paper for the nondelayed
setting can be consulted in [6, 11]. We also refer the reader to the comprehensive work
[12] where notions of approximate invariance are introduced and a complete set of criteria
for the weak and strong invariance properties are obtained in infinite dimensional Hilbert
spaces. Here we briefly recall the weak invariance terminology in terms of the time-delayed
differential inclusion (1.1). Given Δ > 0, a closed set S ⊆ R

n and a multifunction F, the pair
(S, F) is said to be weakly invariant if for every initial condition (t0, x0) ∈ I × S and every tail
function φ : [−Δ, t0] → R

n with φ(t0) = x0, there is a solution x to (1.1) satisfying x(t) = φ(t)
on [−Δ, t0] and x(t) ∈ S for all t ≥ t0.

The original motivation to study invariance properties rises from the qualitative theory
of dynamical systems under ordinary differential equations. Nevertheless, their applicability
branched out to other areas, including partial differential equations, dynamic optimization,
and control theory (see [6, 11, 13–16]).

The literature centered upon the invariance topic itself is abundant. We highlight the
primary works [17–20] given in the context of vector field differential equations and the
references [6–8, 13, 21–24] in the differential inclusion setting. All of the aforementioned
works provide either sufficient or necessary conditions for the weak invariance property.
However, it is noteworthy to mention that to the best of the authors’ knowledge, weak invari-
ance for dynamics exhibiting a time-delay behavior have only been discussed in the refer-
ences [6–8], with functional differential inclusions being employed to model the underlined
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dynamics. The conditions for weak invariance provided in [6–8] are of tangential type only
and roughly speaking they assert that weak invariance is equivalent to having, at each x ∈ S,
the corresponding set of velocities overlapping the Bouligand cone of S at x:

TBS (x) :=
{
lim
i→∞

xi − x
ti

: xi
S−→ x, ti ↓ 0

}
, (1.4)

where xi
S−→ x means that xi ∈ S converges to the point x, which is identified as the initial

condition of the weakly invariant trajectory of (1.1). The closed cone (1.4) coincides with the
tangent space if S is a smooth manifold, but of course TBS (x) encloses a more general tangency
concept.

A condition that is dual with the previous and that has been revisited by several
authors (see [6, 11, 12, 15–17, 22, 24, 25]) to characterize the weak invariance property in
the nondelayed framework is the following (we recall here the autonomous version). The
pair (S, F) is weakly invariant if and only if

hF(x, ξ) ≤ 0, ∀x ∈ S, ∀ξ ∈NP
S (x), (1.5)

where

hF(x, ξ) := inf{〈v, ξ〉 : v ∈ F(x)}, (1.6)

is the Hamiltonian of the multifunction F : R
n –→R

n and

NP
S (x) :=

{
ξ : ∃σ > 0 such that

〈
x′ − x, ξ〉 ≤ σ∥∥x′ − x∥∥2 ∀x′ ∈ S

}
(1.7)

is the Proximal Normal Cone to S at x.
The Hamiltonian inequality (1.5) has proven to be an important link between some

of the invariance properties of nondelayed systems (S, F) and the theory of generalized
solutions of Hamilton-Jacobi equations (see [11, 16, 18, 22, 26, 27]). As it was pointed out
previously, this Hamiltonian interpretation is not available for time-delayed systems. To our
knowledge, the only results deriving a Hamilton-Jacobi equation for time-delayed systems
involve a game-theoretic approach in which the dynamics are prescribed by a continuous
differential equation [28]. However, it is well understood that a great deal of applications
stemming from optimal control theory, including discontinuous differential equations mod-
els, can be reformulated in terms of the more general paradigm (1.1). Therefore, the investi-
gation about the form and the vality of (1.5) under the context of the time-delay differential
inclusion (1.1) is of natural interest and represents in particular the main goal of this article.

The remaining material of this paper has been organized in three additional sections.
Section 2 introduces the extension of the forward Euler solution concept given in [29] to
Cauchy problems with time-delay components and establishes the corresponding existence
theorem. Section 3 reveals the connection between the new solution concept and the traj-
ectories of the time-delayed differential inclusion (1.1). The final section (Section 4) contains
our main result, which is a Hamiltonian characterization of the weak invariance property for
time-delayed systems modeled by (1.1).
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2. Delayed Forward Euler Solutions

Motivated by the problem of asymptotic stabilization, Bressan introduced the forward Euler
approximation scheme in [29] to provide a suitable class of generalized solutions for non-
delayed discontinuous differential equations. The new category of solutions subsumes the
one generated by the classic Euler polygonal approach and provides some topological advan-
tages when compared with the classes of Krasovskii and Filippov solutions that are used in
the theory of discontinuous feedback controls [30, 31]. The aim of this section is to extend
Bressan’s solution concept to a more general setting where the dynamics exhibit a time delay
behavior. This will serve as the initial step to show that weakly invariant trajectories of (1.1)
can be identified within a wider class of solutions of certain initial value problems given in
terms of time-delayed feedback selections. In this context, we consider for T > 0 and every
0 ≤ t0 < T the following time-delayed Cauchy problem:

ẋ(t) = f(t, x(t), x(t − δ(t))), t ∈ [t0, T]

x(t) = φ(t), t ∈ [−Δ, t0],
(2.1)

where the tail function φ : [−Δ, t0] → R
n is Lebesgue measurable and bounded, the delay

function δ : [0, T] → [0,Δ] is continuous and for some positive constants γ and c, the vector
field f : [0, T] × R

n × R
n → R

n satisfies the following linear growth condition:

∥∥f(t, x, y)∥∥ ≤ γ(‖x‖ + ∥∥y∥∥) + c, ∀(t, x, y) ∈ [0, T] × R
n × R

n. (2.2)

We start with a partition of the interval [t0, T]

π = {t0, t1, . . . , tk}, (2.3)

where tk = T . As usual, the diameter of π is defined by μπ = max{ti − ti−1 : 1 ≤ i ≤ k}. Given
an initial point x0 and a set of outer perturbations q0, q1, . . . , qk, all of them in R

n, we construct
a delayed forward Euler polygonal as follows:

ψπ(t) = φ(t) if −Δ ≤ t < t0, (2.4)

ψπ(t0) = x0

ψπ(t) = ψπ(ti) +
[
f
(
ti, ψπ(ti), ψπ(ti − δ(ti))

)
+ qi
]
(t − ti) for 0 ≤ i ≤ k − 1, t ∈ [ti, ti+1].

(2.5)

A function x : [−Δ, T] → R
n is a delayed forward Euler solution (DFES) to the initial value pro-

blem (2.1) if there are sequences xm0 → φ(t0), qmi → 0, for all i = 0, 1, . . . , k, such that the cor-
responding sequence of delayed forward Euler polygonals ψπm converges uniformly to x, as
μπm → 0.

The existence of a DFES is established by proving the stabilization of the previous
scheme for certain subsequences of delayed forward Euler polygonals. This is done with the
help of the following two discrete versions of Gronwall’s inequality.
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Lemma 2.1. Assume xi, yi are sequences of nonnegative real numbers having the property that for
some α ≥ 0

yi ≤ α +
∑
0≤j<i

yjxj , ∀i ≥ 0. (2.6)

Then the following estimate holds:

yi ≤ αe(
∑

0≤j<i xj ), ∀i ≥ 0. (2.7)

Proof. To prove the lemma we first show by induction that if (2.6) holds, then

yi ≤ α
⎛⎝1 +

∑
0≤j<i

xj
∏
j<k<i

(1 + xk)

⎞⎠, ∀i ≥ 0. (2.8)

In fact, since a sum with zero terms is defined as 0 and the product of zero factors is defined
as 1, inequality (2.6) implies y0 ≤ α = α(1 + 0), which is (2.8) for i = 0. Let i > 0 and assume
that (2.8) holds for j < i. Using hypothesis (2.6) we can write

yi ≤ α +
∑
0≤j<i

xjyj

≤ α +
∑
0≤j<i

xjα

⎛⎝1 +
∑
0≤k<j

xk
∏
k<r<j

(1 + xr)

⎞⎠

= α

⎛⎝1 +
∑
0≤j<i

xj +
∑
0≤j<i

xj
∑
0≤k<j

xk
∏
k<r<j

(1 + xr)

⎞⎠.

(2.9)

On the other hand, notice that (using induction again on i)

∑
0≤j<i

xj
∑
0≤k<j

xk
∏
k<r<j

(1 + xr) =
∑
0≤k<i

xk
∑
k<j<i

xj
∏
k<r<j

(1 + xr). (2.10)

The expansion of the last sum and product on the right hand side of (2.10) yields

1 +
∑
k<j<i

xj
∏
k<r<j

(1 + xr)

= (1 + xk+1) + xk+2(1 + xk+1) + · · · + xi−1(1 + xk+1) · · · (1 + xi−2)
= (1 + xk+1)(1 + xk+2 + · · · + xi−1(1 + xk+2) · · · (1 + xi−2))
...
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= (1 + xk+1)(1 + xk+2) · · · (1 + xi−1)

=
∏
k<r<i

(1 + xr).

(2.11)

The following estimate follows from the tautology
∑

0≤j<i xj =
∑

0≤k<i xk and from taking
(2.10) into (2.9) and then using (2.11):

yi ≤ α
⎛⎝1 +

∑
0≤k<i

xk +
∑
0≤k<i

xk
∑
k<j<i

xj
∏
k<r<j

(1 + xr)

⎞⎠
= α

⎛⎝1 +
∑
0≤k<i

xk

⎛⎝1 +
∑
k<j<i

xj
∏
k<r<j

(1 + xr)

⎞⎠⎞⎠
= α

(
1 +
∑
0≤k<i

xk
∏
k<r<i

(1 + xr)

)
.

(2.12)

The last inequality completes the induction. Finally, we use (2.8) to obtain the exponential
estimate (2.7). For every r it is clear that 1 + xr ≤ exr . Therefore,

yi ≤ α
(
1 +
∑
0≤k<i

(1 + xk − 1)
∏
k<r<i

(1 + xr)

)

= α

(
1 +
∑
0≤k<i

(∏
k≤r<i

(1 + xr) −
∏
k<r<i

(1 + xr)

))

= α

(
1 +
∏
0≤r<i

(1 + xr) −
∏

i−1<r<i
(1 + xr)

)

= α

(
1 +
∏
0≤r<i

(1 + xr) − 1

)
= α
∏
0≤r<i

(1 + xr)

≤ αe(
∑

0≤r<i xr),

(2.13)

which is precisely the sought-after inequality.

Lemma 2.2. Let r0, r1, . . . , rN be nonnegative numbers satisfying

ri+1 ≤ (1 + di)ri +Di, i = 0, 1, . . . ,N − 1, (2.14)

where di ≥ 0, Di ≥ 0 and r0 = 0. Then

rN ≤ e(
∑N−1

i=0 di)
N−1∑
i=0

Di. (2.15)
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Proof. This lemma is an exercise proposed in page 183 of [11].

It is noteworthy to mention that the existence of forward Euler solutions has been
clarified by Bressan in the context of nondelay patchy vector fields by comparing the new
set of solutions with the set of Carathéodory solutions (see Theorem 3, part (iv) in [29]).
The following existence result contrasts with Bressan’s approach by following the ideas from
Theorem 1.7 in ([11], Chapter 4) and extending it to the time-delayed framework under the
more general class of vector fields satisfying (2.2).

Theorem 2.3. Suppose that f satisfies the linear growth condition (2.2) and is otherwise arbitrary.
Then, at least one DFES exists for the time-delayed Cauchy problem (2.1) and the restriction of any
DFES on [t0, T] is Lipschitz.

Proof. To relax the notation, we assume without loss of generality that t0 = 0. Let N be a
natural number. For the uniform partition of [0, T]

π :=
{
ti =

T

N
i : i = 0, 1, . . . ,N

}
, (2.16)

let ψπ be the corresponding delayed forward Euler polygonal with outer perturbations qi,
nodes xi = ψπ(ti), and delayed nodes yi = ψπ(ti − δ(ti)), for i = 0, 1, . . . ,N. We assume
max{‖qi‖ : 0 ≤ i ≤N} ≤ 1/N and ‖x0 − φ(0)‖ < 1/N. Let i ∈ {0, 1, . . . ,N} be fixed. Due to the
hypothesis on f , for every t ∈ (ti, ti+1) we have

∥∥ψ̇π(t)∥∥ =
∥∥f(ti, xi, yi) + qi∥∥ ≤ γ(‖xi‖ + ∥∥yi∥∥) + (1 + c). (2.17)

Let β = max{‖φ(t)‖ : t ∈ [−Δ, 0]} and choose an index pi ∈ {0, 1, . . . , i − 1} such that ‖xpi‖ =
max{‖xp‖ : 0 ≤ p ≤ i− 1}. The definition of yi implies ‖yi‖ ≤ ‖xpi‖+ β. Using this observation,
(2.4), and (2.17) we can write

∥∥xi+1 − φ(0)∥∥ ≤ ‖xi+1 − xi‖ +
∥∥xi − φ(0)∥∥

≤ [γ(‖xi‖ + ∥∥yi∥∥) + c + 1
] T
N

+
∥∥xi − φ(0)∥∥

≤ [γ(∥∥xi − φ(0)∥∥ + ∥∥φ(0)∥∥ + ∥∥yi∥∥) + c + 1
] T
N

+
∥∥xi − φ(0)∥∥

≤
(
γ
T

N
+ 1
)∥∥xi − φ(0)∥∥ + [γ(β + ∥∥yi∥∥) + c + 1

] T
N

≤
(
γ
T

N
+ 1
)∥∥xi − φ(0)∥∥ + (3γβ + γ∥∥xpi − φ(0)∥∥ + c + 1

) T
N
.

(2.18)

LetM := 3γβ + c + 1. Using the identifications

ri =
∥∥xi − φ(0)∥∥, di = γ

T

N
, Di =

(
M + γ

∥∥xpi − φ(0)∥∥) TN (2.19)
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and applying Lemma 2.2 to the last inequality, we have

∥∥xi+1 − φ(0)∥∥ ≤ eγT
i∑
j=0

[
M + γ

∥∥∥xpj − φ(0)∥∥∥] TN
= eγTM

i∑
j=0

T

N
+ γeγT

i∑
j=0

∥∥∥xpj − φ(0)∥∥∥ TN
≤ eγTMT + γeγT

T

N

i∑
j=0

∥∥xj − φ(0)∥∥.
(2.20)

If we set α = eγTMT and ρ = γeγTT , the application of Lemma 2.1 on (2.20) leads to

∥∥xi − φ(0)∥∥ ≤ αeρ, (2.21)

and thus, all nodes xi lie in B(φ(0), αeρ). By convexity the delayed forward Euler polygonal,
including its tail φ, must lie completely within the ball B(φ(0), αeρ + 2β). For t ∈ (ti, ti+i)
inequality (2.17) then implies

∥∥ψ̇π(t)∥∥ ≤ γ(‖xi‖ + ∥∥yi∥∥) + ∥∥qi∥∥ + c ≤ γ(2αeρ + 3β
)
+ c + 1 =: k. (2.22)

Therefore, the restriction of ψπ on [0, T] is Lipschitz of rank k. If πm is a sequence of uniform
partitions such that μπm → 0 as m → ∞, we can apply the theorem of Arzela-Ascoli to the
family {ψπm} restricted on [0, T], which is equicontinuous and uniformly bounded, to obtain
a subsequence that converges uniformly to a continuous function x on [0, T]. Notice that not
only does x inherit the Lipschitz constant k on [0, T], but also x(0) = limm→∞ψπm(0). Finally,
a DFES of (2.1) is obtained by appending x and φ.

3. Trajectories of Time-Delay Differential Inclusions

This section identifies a particular set of trajectories of the time-delay differential inclusion
problem (TDDI)

ẋ(t) ∈ F(t, x(t), x(t − δ(t))) a.e. t ∈ [t0,∞),

x(s) = φ(s) for s ∈ [−Δ, t0],
(3.1)

where the data above consists of the interval I = [0,+∞), a multifunction F : I×R
n×R

n → R
n

satisfying SH, a positive constantΔ, an initial time t0 ∈ I, a continuous delay function δ : I →
[0,Δ], and a tail function φ : [−Δ, t0] → R

n that is assumed to be Lebesgue measurable and
bounded. As in the nondelay case [11], we show that any DFES associated to selections of the
multifunction F are indeed trajectories of TDDI. The following lemma plays a key role in this
regard. The proof is a slight modification of Lemma 1.1 in [32] and therefore it is omitted.
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Lemma 3.1. Suppose x is a continuous function on [t0, T] and satisfies

‖x(t)‖ ≤ a + b
∫ t
t0

‖x(s)‖ds + c
∫ t
t0

‖x(s − δ(s))‖ds, t ∈ [t0, T],

x(t) = φ(t), t ∈ [−Δ, t0],
(3.2)

where a, b, c ≥ 0 and φ(·) is measurable and bounded by λ > 0 on [−Δ, t0]. Then the following ine-
quality holds:

‖x(t)‖ ≤ (a + c(t − t0)λ)e(b+c)(t−t0), t ∈ [t0, T]. (3.3)

The next theorem is themain result of this section. It generalizes Corollary 1.12 of ([11],
Chapter 4) to the context of a time-delayed differential inclusion with trajectories defined on
a semi-infinite interval. For this purpose, it is necessary to extend the concept of a DFES to
semi-infinite intervals by considering selections of F. Recall that a selection is a function f : I×
R
n×R

n → R
n satisfying f(t, x, y) ∈ F(t, x, y) for almost all t ∈ I and all (x, y) ∈ R

n×R
n. Under

this extended domain, we agree that a function x is a delayed forward Euler solution of the
corresponding Cauchy problem for f if for every T > 0 the restriction of x on [−Δ, T] is a DFES
for f in the regular sense. This definition becomes coherent under the same argument that
is used to extend nondelayed Euler solutions: an appropriate sequence of delayed forward
Euler polygonals on [−Δ,∞) is constructed, then a convergent subsequence on [−Δ, T] is
obtained for a fixed T > 0, a further convergent subsequence on [−Δ, 2T], and so on (see [11]).

Theorem 3.2. Let f be a selection of F as above. If x is a DFES for the Cauchy problem (2.1) on
[−Δ,∞), then x is a trajectory of F.

Proof. Let ψm be a sequence of delayed forward Euler polygonals that converge uniformly to
x and that coincide with φ on [−Δ, t0]. Choose T > t0. Let πm = {tm0 , tm1 , . . . , tmN} be the partition
of [t0, T] associated with ψm, and for t ∈ (tmi , t

m
i+1)we define the following functions:

τm(t) = tmi ,

wm(t) = ψm(τm(t)) − ψm(t),
zm(t) = ψm(τm(t) − δ(τm(t))) − ψm(t − δ(t)).

(3.4)

For any α > 0, it is readily seen that

τ−1m (α,∞) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N⋃
i=0

(
tmi , t

m
i+1

)
, if α < tm0 ,

N⋃
i=j+1

(
tmi , t

m
i+1

)
, if tmj ≤ α < tmj+1, j ∈ {0, 1, . . . ,N − 1},

∅, if tmN−1 ≤ α,

(3.5)
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which guarantees the measurability of τm. Moreover, ψm and δ are continuous functions,
whence the composites ψm ◦τm and δ ◦τm turn out to be measurable, and so also do the linear
combinations wm and zm.

If k is the Lipschitz constant for ψm on [t0, T], then the following estimates hold:

‖wm(t)‖ ≤ kμπm,
‖τm(t) − t‖ ≤ μπm,

‖zm(t)‖ ≤ k(μπm + ‖δ(t) − δ(τm(t))‖
)
.

(3.6)

Thus wm, zm both converge to zero in L2[t0, T] and τm(t) converges to t a.e. Since f is a
selection of F, at every nonpartition point t we have

ψ̇m(t) ∈ F
(
τm(t), ψm(t) +wm(t), ψm(t − δ(t)) + zm(t)

)
. (3.7)

Therefore, for almost all t ∈ [t0, T] the linear growth condition on F implies

∥∥ψ̇m(t)∥∥ ≤ γ(∥∥ψm(t)∥∥ + ∥∥ψm(t − δ(t))∥∥) + γ(‖wm(t)‖ + ‖zm(t)‖) + c. (3.8)

We now apply Gronwall’s inequality ([11], page 179) on (3.8), followed by Lemma 3.1 with
a = eγ(T−t0)‖ψm(0)‖ + γeγ(T−t0)(‖wm‖1 + ‖zm‖1 + c(T − t0))), b = 0, and c = γeγ(T−t0) to obtain

∥∥ψm(t)∥∥ ≤
(
a + γeγ(t−t0)(t − t0)λ

)
eγ(t−t0)e

γ(t−t0)
, t ∈ [t0, T]. (3.9)

The last inequality leads to a uniform bound for ‖ψm‖ and hence for ‖ψ̇m‖2 due to (3.8). Given
the theorem of Arzela-Ascoli and the weak compactness in L2

n[t0, T], we may choose con-
verging subsequences of {ψm} and {ψ̇m}, respectively (without relabeling), so that

ψm(t) = ψm(t0) +
∫ t
t0

ψ̇m(s)ds −→ φ(t0) +
∫ t
t0

ẋ(s)ds = x(t), as m −→ ∞. (3.10)

A simple variant of the sequential compactness result given in Chapter 3 of [11] that holds
under SH can be applied to obtain that x is a trajectory of F on [t0, T]. Repeating the argument
described above on [t0, 2T] with the subsequence {ψm} shows that x is a trajectory of F on
[t0, 2T]. We may continue in this fashion to establish the desired property for x on I.

4. The Main Result

The following observation provides a sufficient condition for delayed forward Euler solutions
of (2.1) to approach a closed set S ⊂ R

n. It plays in particular a crucial role in the main
contribution of this article (Theorem 4.2 below) by linking the existence result given in
Theorem 3.2 and the weak invariance property of TDDI.
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Theorem 4.1. Suppose f : [0, T] × R
n × R

n → R
n satisfies (2.2) and let x be a DFES for f

on [−Δ, T]. Let Ω be an open set containing x(t) for all t ∈ [−Δ, T] and suppose that for every
(t, z, y) ∈ [t0, T] ×Ω ×Ω there exists s ∈ projS(z) such that 〈f(t, z, y), z − s〉 ≤ 0. Then one has

dS(x(t)) ≤ dS(x(t0)) ∀t ∈ [t0, T]. (4.1)

Proof. Let ψπ be one element from the sequence of delayed forward Euler polygonals con-
verging uniformly to x and let π = {t0, t1, . . . , tN} be its associated partition. Let q0, q1, . . . , qN
be the external perturbations defining ψπ and as in the previous result, we denote by xi and
yi their associated nodes and delayed nodes. Given ε > 0, due to the uniform convergence
we may assume that ψπ lies completely inΩ and ‖qi‖ < ε/2 for i = 0, 1, . . . ,N. The hypothesis
asserts that for each i there is a point si ∈ projS(xi) such that 〈f(ti, xi, yi), xi − si〉 ≤ 0. If k is as
in (2.22), then the following estimates hold:

d2
S(xi+1) ≤ ‖xi+1 − si‖2 (since si ∈ S)

= ‖xi+1 − xi‖2 + ‖xi − si‖2 + 2〈xi+1 − xi, xi − si〉

≤ k2(ti+1 − ti)2 + d2
S(xi) + 2

∫ ti+i
ti

〈
f
(
ti, xi, yi

)
+ qi, xi − si

〉
dt

≤ k2(ti+1 − ti)2 + d2
S(xi) + 2

∫ ti+i
ti

∥∥qi∥∥‖xi − si‖dt
≤ k2(ti+1 − ti)2 + d2

S(xi) + ε(ti+1 − ti)dS(xi).

(4.2)

The recursive application of last inequality yields

d2
S(xi+1) ≤ d2

S(x0) +
i∑
j=0

k2(tj+1 − tj)2 +
i∑
j=0

ε
(
tj+1 − tj

)
dS
(
xj
)

≤ d2
S(x0) + k

2μπ
N−1∑
j=0

(
tj+1 − tj

)
+

i∑
j=0

ε
(
tj+1 − tj

)
dS
(
xj
)

≤ d2
S(x0) + k

2μπ(T − t0) +
i∑
j=0

ε
(
tj+1 − tj

)
dS
(
xj
)
.

(4.3)

Let Γ := {j : dS(xj) < 1}. If j /∈ Γ, then dS(xj) ≤ d2
S(xj). From this last and (4.3) we have

d2
S(xi+1) ≤ d2

S(x0) + k
2μπ(T − t0) +

∑
j∈Γ
ε
(
tj+1 − tj

)
+
∑
j/∈Γ
ε
(
tj+1 − tj

)
d2
S

(
xj
)

≤ d2
S(x0) +

(
k2μπ + ε

)
(T − t0) +

i∑
j=0

ε
(
tj+1 − tj

)
d2
S

(
xj
)
.

(4.4)
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We now apply Lemma 2.1 with α = d2
S(x0) + (k2μπ + ε)(T − t0) to obtain

d2
S(xi) ≤

(
d2
S(x0) +

(
k2μπ + ε

)
(T − t0)

)
e
∑i

j=0 ε(tj+1−tj )

≤
(
d2
S(x0) +

(
k2μπ + ε

)
(T − t0)

)
eε(T−t0).

(4.5)

The previous estimates holds at any node and then after passing to the limit when μπ → 0
we obtain

d2
S(x(t)) ≤

(
d2
S(x0) + ε(T − t0)

)
eε(T−t0), ∀t ∈ [0, T], (4.6)

which in turn implies

dS(x(t)) ≤ dS(x0), ∀t ∈ [t0, T], (4.7)

since ε is arbitrary.

In view of the previous result, weakly invariant trajectories for TDDI are naturally
identified as delayed forward Euler solutions of particular selections of F. Accordingly, the
Hamiltonian (1.5) plays an important role in the design of these selections and features the
following weakly invariant criterion, which is the main contribution of this paper.

Theorem 4.2. Let S ⊂ R
n be closed. Under the assumptions of TDDI, the pair (S, F) is weakly

invariant if and only if

h
(
t, x, y, ζ

) ≤ 0, a.e., t ∈ I, ∀(x, y) ∈ S × R
n, ∀ζ ∈NP

S (x). (4.8)

In this case, (4.8) holds at all points of density of a certain countable family of pairwise disjoint closed
sets Ik ⊂ I (k = 0, 1, . . .), for which F(·, ·, ·) is upper semicontinuous on each Ik × R

n × R
n.

Remarks 1. Recall that a point t ∈ R is a point of density of a measurable setM ⊂ R if

lim
δ→ 0

μ([t − δ, t + δ] ∩M)
2δ

= 1, (4.9)

where μ denotes the Lebesgue measure in R. The set of all points of density of M is denoted
by M̃ and has full measure in M. Furthermore, if V ⊂ M̃, then the equality cl(V) = cl(V \N)
holds for any null set N ⊂ R. It is clear that if M is closed, then M̃ ⊂ M (see [33]).

Proof. Let A ⊂ I be the set of full measure such that (4.8) holds for all t ∈ A. For every
(t, x, y) ∈ A×R

n×R
n we choose an element sx ∈ projS(x) and then select f(t, x, y) ∈ F(t, sx, y)

so that

h
(
t, sx, y, x − sx

)
= 〈f(t, x, y), x − sx〉. (4.10)
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We extend f , if necessary, by setting f(t, x, y) := 0 for all (t, x, y) ∈ (I \A)×R
n ×R

n. It follows
that the multifunction F induces the linear growth property (2.2) on f and also 〈f(t, x, y), x−
sx〉 ≤ 0 for all (t, x, y) ∈ I × R

n × R
n. Consequently, if x is a DFES of the problem ẋ(t) =

f(t, x(t), x(t − δ(t))) a.e., t ∈ [t0, T], with φ(t0) ∈ S, Theorem 4.1 implies x(t) ∈ S for all
t ∈ [t0, T]. We may extend x on I = [t0,∞) by considering the previous Cauchy problem on
the interval [t0, 2T] and so on. It turns out that the resulting arc is a solution to TDDI. In fact,
define

Fs
(
t, x, y

)
:= co

{
F
(
t, s, y

)
: s ∈ projS(x)

}
, ∀(t, x, y) ∈ I × R

n × R
n. (4.11)

Then Fs satisfies the standing hypotheses and we have Fs(t, x, y) = F(t, x, y) when x ∈ S.
It is clear that f(t, x, y) ∈ Fs(t, x, y) for almost all t ∈ I and all (x, y) ∈ R

n × R
n. Therefore,

Theorem 3.2 implies that x is a trajectory of Fs. Since x(t) ∈ S for all t ≥ t0, it follows that
Fs(t, x(t), x(t − δ(t))) = F(t, x(t), x(t − δ(t))) and hence x is also a trajectory of F.

To prove the converse, let us consider Ĩ = [0, 1] and recall that the almost upper
semicontinuity of F implies the existence of a countable family of pairwise disjoint closed sets
Ik ⊂ Ĩ such that F(·, ·, ·) is upper semicontinuous on Ik ×R

n×R
n for all k and the union

⋃
k≥1 Ik

has full measure in Ĩ (see page 29 in [34] or page 24 in [35]). Let Ĩk denote the points of density
of Ik, and define A := Ĩ \ ⋃k≥1 Ĩk, which has null measure, and take (t0, x0, y0) ∈ Ĩk × S × R

n

for some k. Let {tj} be a sequence in [t0,∞)
⋂
Ik satisfying tj → t0 and set hj = tj − t0. By

hypothesis, there is a weakly invariant solution x to TDDI such that x(t0) = x0. The absolute
continuity of x, the compact-convex valuedness of F and the upper semicontinuity of F on
Ik × R

n × R
n, lead to the existence of a subsequence {tjk}, which we relabel as {tj}, such that

v := lim
j→∞

x
(
tj
) − x(t0)
hj

= lim
j→∞

1
hj

∫ tj
t0

ẋ(s)ds ∈ F(t0, x0, y0). (4.12)

On the other hand, recall that x(tj) ∈ S for all j. Therefore, for any ξ ∈ NP
S (x0) the definition

(1.7) asserts the existence of σ > 0 such that

〈v, ξ〉 = lim
j→∞

〈
x
(
tj
) − x(t0)
hj

, ξ

〉

≤ σ lim
j→∞

∥∥∥∥∥x
(
tj
) − x(t0)
hj

∥∥∥∥∥∥∥x(tj) − x(t0)∥∥ = 0,

(4.13)

which implies the Hamiltonian inequality in the statement at the point (t0, x0, y0). Finally, we
repeat the previous argument on each of the intervals [1, 2], [2, 3], . . . to obtain that (4.8) is
satisfied almost everywhere on the whole interval I.
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