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Based on using suitable Lyapunov function and the properties of M-matrix, sufficient conditions
for complete synchronization of bidirectional coupled nonautonomous Cohen-Grossberg neural
networks are obtained. The methods for discussing synchronization avoid complicated error
system of Cohen-Grossberg neural networks. Two numerical examples are given to show the
effectiveness of the proposed synchronization method.

1. Introduction

It is well known that chaos synchronization has gained considerable attention due to the truth
that many benefits of chaos synchronization exist in various engineering fields such as secure
communication, image processing, and harmless oscillation generation. Since the pioneering
works of Pecora and Carroll [1], chaos synchronization has been widely investigated, and
many effective research methods such as feedback control, impulsive control, adaptive
control, and important results have been presented in [2–10] and references cited therein.
Synchronization of coupled chaotic systems also has received considerable attention [11–13].

Since Cohen andGrossberg proposed the Cohen-Grossberg neural networks (CGNNs)
in 1983 [14] and soon the networks have been the subject of active research due to their many
applications in various engineering and scientific areas such as patter recognition, associative
memory, and combination, and many dynamic analyses of equilibria or periodic solutions of
the networks with delays are investigated [15–20]. Unfortunately, so far, only a few works
have been done on synchronization of CGNNs, which remains challenging. In 2010, Li et al.
investigated the synchronization of discrete-time CGNNswith delays [6] and Chen discussed
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the synchronization of impulsive delayed CGNNs under noise perturbation [7], in 2010, Zhu
and Cao discussed adaptive synchronization of delayed CGNNs [21] and in 2012, Gan also
discussed adaptive synchronization of delayed CGNNs [22], and in 2011, Yu et al. discuss
synchronization of delayed CGNNs via periodically intermittent control [23].

Note that the previous methods in [6, 7, 21–23] have obtained error dynamical system
first, and then discuss the error system, but, the error dynamical system of Cohen-Grossberg
neural network which comparing the Hopfield neural networks becomes very complex
because of existence of the amplification functions of the neural network; hence the results
above turn to be quite complex, too. Comparing with foregoing works, the objective of this
paper is to study the complete synchronization of nonautonomous CGNNs with mixed time
delays by using suitable Lyapunov function and the properties ofM-matrix, and ourmethods
can avoid writing explicit complex error system which leads to complicated conditions for
synchronization.

The rest of this paper is organized as follows. The model, some definitions, and
assumptions are presented in Section 2. The sufficient conditions for complete synchroniza-
tion of bidirectional coupled CGNNs are obtained in Section 3. Two examples are given in
Section 4 to demonstrate the main results.

2. Model Description and Preliminaries

Consider the following bidirectional coupled nonautonomous CGNNs with time delays:

ẋi(t) = − ai(xi(t))
⎡
⎣bi(t, xi(t)) −

n∑
j=1

uij(t)fj
(
xj(t)
) −

n∑
j=1

vij(t)fj
(
xj
(
t − τij(t)

))

−
n∑
j=1

wij(t)
∫+∞
0

kij(s)fj
(
xj(t − s)

)
ds − Ii(t)

⎤
⎦

+
n∑
j=1

αij(t)
[
yj(t) − xj(t)

]
,

(2.1)

ẏi(t) = − ai
(
yi(t)
)
⎡
⎣bi
(
t, yi(t)

) −
n∑
j=1

uij(t)fj
(
yj(t)
) −

n∑
j=1

vij(t)fj
(
yj
(
t − τij(t)

))

−
n∑
j=1

wij(t)
∫+∞
0

kij(s)fj
(
yj(t − s)

)
ds − Ii(t)

⎤
⎦

+
n∑
j=1

βij(t)
[
xj(t) − yj(t)

]

(2.2)

for 1 ≤ i ≤ n, t > 0. xi(t) and yi(t) denote the state variable of the ith neuron in (2.1) and
(2.2), fj(·) denote the signal functions of the jth neuron at time t; Ii(t) denote inputs of the
ith neuron at time t; ai(·) represent amplification functions; bi(t, ·) are appropriately behaved
functions; uij(t), vij(t), and wij(t) are bounded connection weights of the neural networks,
respectively; τij(t) correspond to the finite speed of the axonal signal transmission, there exist
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positive τij and τ̇+ij such that 0 ≤ τij(t) ≤ τij and τ̇ij(t) ≤ τ̇+ij < 1; kij(·) correspond to the delay
kernel functions, coupledmatrix are (αij(t))n×n and (βij(t))n×n in which αii(t) ≥ 0 and βii(t) ≥ 0
and αij(t), βij(t) are bounded on [0,+∞).

Throughout this paper, we assume for system (2.1) and (2.2) that
(H1) amplification functions ai(·) are continuous and there exist constants ai, ai such

that 0 < ai ≤ ai(·) ≤ ai for 1 ≤ i ≤ n;
(H2) there exist positive continuous and bounded functions bi(t) such that

bi(t, x) − bi
(
t, y
)

x − y ≥ bi(t) > 0 (2.3)

for all x /=y, 1 ≤ i ≤ n;
(H3) for activation functions fj(·), there exist positive constants Lj such that

Lj = sup
x /=y

∣∣∣∣∣
fj(x) − fj

(
y
)

x − y

∣∣∣∣∣ (2.4)

for all x /=y, 1 ≤ j ≤ n;
(H4) the kernel functions kij(s) are nonnegative continuous function on [0,+∞) and

satisfy

∫+∞
0

seλskij(s)ds < +∞,

Kij(λ) =
∫+∞
0

eλskij(s)ds

(2.5)

are differentiable functions for λ ∈ [0, rij), 0 < rij < +∞, Kij(0) = 1 and limλ→ r−ijKij(λ) = +∞.

Remark 2.1. A typical example of kernel function is given by kij(s) = (sr/r!)rr+1ij e−rij s for s ∈
[0,+∞), where rij ∈ (0,+∞), r ∈ {0, 1, . . . , n}. These kernel functions are called as the gamma
memory filter [24] and satisfy condition (H4).

For any bounded function s(t) on [0,+∞), s and s denote inft∈[0,+∞){|s(t)|} and
supt∈[0,+∞){|s(t)|}, respectively.

For any x(t) = (xi(t), x2(t), . . . , xk(t))
T ∈ Rk, t > 0, define ‖x(t)‖1 =

∑k
i=1 |xi(t)|, and for

any ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕk(s))
T ∈ Rk, s ∈ (−∞, 0], define ‖ϕ‖ = sups∈(−∞,0]

∑k
i=1 |ϕi(s))|.

Denote

C
(
(−∞, 0], Rk

)
=
{
ψ : (−∞, 0] → Rk | ψ(s) is bounded and continuous for s ∈ (−∞, 0]

}
,

(2.6)

Then C((−∞, 0], Rk) is a Banach space with respect to ‖ · ‖.
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The initial conditions of system (2.1) and (2.2) are given by

xi(s) = ϕi(s), −∞ < s ≤ 0, 1 ≤ i ≤ n,
yi(s) = ςi(s), −∞ < s ≤ 0, 1 ≤ i ≤ n.

(2.7)

Definition 2.2. System (2.1) and system (2.2) are said to achieve global exponential complete
synchronization, if for any solution x(t, ψ1) of system (2.1) and any solution y(t, ψ2) of system
(2.2), there exist positive constants λ andM such that

∥∥y(t, ψ2
) − x(t, ψ1

)∥∥
1 ≤M

∥∥ψ2 − ψ1
∥∥e−λt, t ≥ 0, (2.8)

where ψ2(s) = (ς1(s), ς2(s), . . . , ςn(s))
T , ψ1(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s))

T ∈ C((−∞, 0], Rn).

Definition 2.3. A real matrix A = (aij)n×n is said to be a nonsingularM-matrix if aij ≤ 0 (i, j =
1, 2, . . . , n, i /= j), and all successive principle minors of A are positive.

Lemma 2.4 (see [25]). Amatrix with nonpositive offdiagonal elementsA = (aij)n×n is a nonsingular
M-matrix if and only if there exists a vector p = (pi)1×n > 0 such that pA > 0 or ApT > 0 holds.

Lemma 2.5 (see [26]). Let a < b ≤ +∞. Suppose that v(t) = (v1(t), v2(t), . . . , vn(t))
T satisfies the

following differential equality:

D+v(t) ≤ Pv(t) + (Q ⊗ ṽ(t))en +
∫+∞
0

(R ⊗K(s))v(t − s)ds, t ∈ [a, b),

v(a + s) ∈ C((−∞, 0], Rn), s ∈ (−∞, 0],

(2.9)

where

P =
(
pij
)
n×n, pij ≥ 0 for i /= j,

Q =
(
qij
)
n×n, qij ≥ 0, R =

(
rij
)
n×n, rij ≥ 0,

ṽ(t) =
(
vj
(
t − τij(t)

))
n×n, en = (1, 1, . . . , 1)T ∈ Rn, K(s) =

(∣∣kij(s)
∣∣)
n×n,

(2.10)

and ⊗ means Hadamard product. If initial conditions satisfy

v(t) ≤ κξe−λ(t−a), κ ≥ 0, t ∈ (−∞, a], (2.11)

where ξ = (ξ1, ξ2, . . . , ξn)
T > 0 and the positive number λ is determined by the following inequality:

[λE + P +Q ⊗ ε(λ) + (R ⊗K(λ))]ξ < 0 (2.12)
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in which

ε(λ) =
(
eλτij
)
n×n

, K(λ) =
(Kij(λ)

)
n×n, Kij(λ) =

∫+∞
0

eλs
∣∣kij(s)

∣∣ds, (2.13)

and E is an identity matrix. Then v(t) ≤ κξe−λ(t−a) for t ∈ [a, b).

3. Main Results

Theorem 3.1. Under assumptions (H1)–(H4), system (2.1) and system (2.2) will achieve global
exponential synchronization, if the following conditions hold:

(H5) M1 = A1 − C1 is a nonsingularM-matrix, where

A1 = diag

(
b1 +

γ
11

a1
, b2 +

γ
22

a2
, . . . , bn +

γ
nn

an

)
,

C1 =
(
cij
)
n×n, cij =

(
uij + vij

1
1 − τ̇+ij

+wij

)
Lj + qij ,

(3.1)

where qij = γij/ai, j /= i and qii = 0, γij(t) = αij(t) + βij(t), i, j = 1, 2, . . . , n.

Proof. Let x(t), y(t) be two solutions of system (2.1) with initial value ψ1 = (ϕ1, ϕ2, . . . , ϕn)
and system (2.2) with ψ2 = (ς1, ς2, . . . , ςn) ∈ C((−∞, 0], Rn), respectively.

Denote ei(t) = yi(t) − xi(t).
Note that conditions (H5), M1 is a nonsingular M-matrix implies that MT

1 is
a nonsingular M-matrix. From Lemma 2.4, we know that there exists a vector p =
(p1, p2, . . . , pn)

T such that MT
1p > 0, that is

pi

(
bi +

γ
ii

ai

)
−

n∑
j=1

pj

(
uji +

vji

1 − τ̇+ji
+wji

)
Li −

n∑
j=1,j /= i

pj
γ ji

aj
> 0 (3.2)

for 1 ≤ i ≤ n.
Denote

Fi(θ) = pi

(
− θ
ai

+ bi +
γ
ii

ai

)
−

n∑
j=1

pj

(
ujiLi + vji

eθτji

1 − τ̇+ji
Li +wjiLi

∫+∞
0

kji(s)eθsds

)

−
n∑

j=1,j /= i

pj
γ ji

aj
,

(3.3)

for 1 ≤ i ≤ n, which indicates Fi(0) > 0. Since Fi(θ) are continuous and differential on
[0, rji) on [0, rji) in which rji are some positive constants, and limθ→ r−jiFi(θ) = −∞ according
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to condition (H4), furthermore, F ′
i(θ) < 0 for θ ∈ [0, rji). There exist constants θi such that

Fi(θi) = 0 for i = 1, 2, . . . , n. So we can choose

0 < λ ≤ min
1≤i≤n

{θi} (3.4)

such that

Fi(λ) ≥ 0. (3.5)

Let

Vi(t) = eλt sign(ei(t))
∫yi(t)
xi(t)

1
ai(s)

ds for i = 1, 2, . . . , n, (3.6)

where ei(t) = yi(t) − xi(t).
Calculating the upper right derivative of Vi(t) along solutions of (2.1) and (2.2), we

get

D+Vi(t) ≤ eλt
⎧
⎨
⎩
λ

ai
|ei(t)| − sign(ei(t))

(
bi
(
t, yi(t)

) − bi(t, xi(t))
)

+

∣∣∣∣∣∣
n∑
j=1

uij(t)
(
fj
(
yj(t)
) − fj

(
xj(t)
))
∣∣∣∣∣∣

+

∣∣∣∣∣∣
n∑
j=1

vij(t)
(
fj
(
yj
(
t − τij(t)

)) − fj
(
xj
(
t − τij(t)

)))
∣∣∣∣∣∣

+

∣∣∣∣∣∣
n∑
j=1

wij(t)
(∫+∞

0
kij(s)fj

(
yj(t − s)

)
ds −
∫+∞
0

kij(s)fj
(
xj(t − s)

)
ds

)∣∣∣∣∣∣

−
γ
ii

ai
|ei(t)| +

n∑
j=1,j/=i

γ ij

ai

∣∣ej(t)
∣∣
⎫
⎬
⎭

≤ eλt

⎧
⎨
⎩

(
λ

ai
− bi −

γ
ii

ai

)
|ei(t)| +

n∑
j=1

uijLj
∣∣ej(t)

∣∣ +
n∑
j=1

vijLj
∣∣ej
(
t − τij(t)

)∣∣

+
n∑
j=1

wijLj

∫+∞
0

kij(s)
∣∣ej(t − s)

∣∣ds +
n∑

j=1,j/=i

γ ij

ai

∣∣ej(t)
∣∣
⎫
⎬
⎭,

(3.7)

where γij(t) = αij(t) + βij(t).
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Now we define a Lyapunov function V (t) by

V (t) =
n∑
i=1

pi

⎧
⎨
⎩Vi(t) +

n∑
j=1

vijLj
eλτij

1 − τ̇+ij

∫ t
t−τij (t)

∣∣ej(s)
∣∣eλsds

+
n∑
j=1

wijLj

∫+∞
0

kij(s)
∫ t
t−s

∣∣ej
(
μ
)∣∣eλ(s+μ)dμds

⎫
⎬
⎭.

(3.8)

We can obtain that

D+V (t) ≤ eλt
n∑
i=1

pi

⎧
⎨
⎩

(
λ

ai
− bi −

γ
ii

ai

)
|ei(t)|

+
n∑
j=1

(
uij + vij

eλτij

1 − τ̇+ij
+wij

∫+∞
0

kij(s)eλsds

)

× Lj
∣∣ej(t)

∣∣ +
n∑

j=1,j/=i

γ ij

ai

∣∣ej(t)
∣∣
⎫
⎬
⎭

= − eλt
n∑
i=1

Fi(λ)|ei(t)| ≤ 0,

(3.9)

which together with (3.6) and (3.8) leads to

m0e
λt

n∑
i=1

|ei(t)| ≤ V (t) ≤ V (0) ≤M0
∥∥ψ2(l) − ψ1(l)

∥∥, (3.10)

where

m0 = min
1≤i≤n

{
pi
ai

}
, M0 = max{M1,M2,M3},

M1 = max
1≤i≤n

(
pi
ai

)
,

M2 = max
1≤i≤n

⎛
⎝
(
eλτ − 1

)

λ

n∑
j=1

pjvji
Li

1 − τ̇+ji

⎞
⎠,

M3 =
n∑
j=1

pjmax
1≤i≤n
(
wjiLi

) ∫+∞
0

seλsmax
1≤i≤n

kji(s)ds.

(3.11)
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Hence, we obtain that the following inequality holds:

n∑
i=1

|ei(t)| ≤ M0

m0

∥∥ψ2(l) − ψ1(l)
∥∥e−λt, t ≥ 0, (3.12)

that is,

∥∥y(t) − x(t)∥∥1 ≤
M0

m0

∥∥ψ2(l) − ψ1(l)
∥∥e−λt, t ≥ 0. (3.13)

This completes the proof.

Theorem 3.2. Under assumptions (H1)–(H4), system (2.2) and system (2.1) will achieve global
exponential synchronization, if the following conditions hold:

(H6) M2 = A2 − C2 is a nonsingularM-matrix, where

A2 = diag

(
a1

(
b1 +

γ
11

a1

)
, a2

(
b2 +

γ
22

a2

)
, . . . , an

(
bn +

γ
nn

an

))
,

C2 =
(
cij
)
n×n, cij = aj

[(
uij + vij +wij

)
Lj + qij

]
,

(3.14)

in which qij = γij/ai, j /= i, qii = 0 and γij(t) = αij(t) + βij(t), i, j = 1, 2, . . . , n.

Proof. Let x(t), y(t) be two solutions of system (2.1) with initial value ψ1 = (ϕ1, ϕ2, . . . , ϕn)
and system (2.2) with ψ2 = (ς1, ς2, . . . , ςn) ∈ C((−∞, 0], Rn), respectively.

Denote ei(t) = yi(t) − xi(t).
Let

Vi(t) = sign(ei(t))
∫yi(t)
xi(t)

1
ai(s)

ds for i = 1, 2, . . . , n (3.15)

and note that

1
ai
|ei(t)| ≤ Vi(t) ≤ 1

ai
|ei(t)|. (3.16)
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Calculating the upper right derivative of Vi(t) along solutions of (2.1) and (2.2), we can get

D+Vi(t) ≤ − bi|ei(t)| +
n∑
j=1

uijLj
∣∣ej(t)

∣∣ +
n∑
j=1

vijLj
∣∣ej
(
t − τij(t)

)∣∣

+
n∑
j=1

wijLj

∫+∞
0

kij(s)
∣∣ej(t − s)

∣∣ds − γii(t)
ai

|ei(t)| +
n∑

j=1,j/=i

γ ij

ai

∣∣ej(t)
∣∣

≤ − biaiVi(t) +
n∑
j=1

uijLjajVj(t) +
n∑
j=1

vijLjajVj
(
t − τij(t)

)

+
n∑
j=1

wijLjaj

∫+∞
0

kij(s)Vj(t − s)ds −
γ
ii
ai

ai
Vi(t) +

n∑
j=1,j/=i

γ ijaj

ai
Vj(t),

(3.17)

that is,

D+V (t) ≤ AV (t) +
(
C ⊗ Ṽ (t)

)
En +

∫+∞
0

(D ⊗K(s))V (t − s)ds, (3.18)

where

V (t) = (V1(t), V2(t), . . . , Vn(t))T , Ṽ (t) = (Vj
(
t − τij(t)

)
n×n,

A = diag

(
−a1
(
b1 +

γ
11

a1

)
,−a2
(
b2 +

γ
22

a2

)
, . . . ,−an

(
bn +

γ
nn

an

))
+H,

H =
(
hij
)
n×n, hij = ajuijLj + q̃ij , q̃ij =

ajγ ij

ai
, j /= i, q̃ii = 0, i, j = 1, 2, . . . , n,

C =
(
c̃ij
)
n×n, c̃ij = ajvijLj , D =

(
dij
)
n×n, dij = ajwijLj ,

En = (1, 1, . . . , 1)T ∈ Rn, K(s) =
(
kij(s)

)
n×n.

(3.19)

We know from (H6) that M2 is nonsingular M-matrix, which implies −(A + D + C) is also
a nonsingular M-matrix. From Lemma 2.4, there exists a vector ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such
that −(A +D + C)ξ > 0, consequently,

−ξiai
(
bi +

γ
ii
ai

ai

)
+

n∑
j=1

ξjaj
(
uij + vij +wij

)
Lj +

n∑
j=1,j/=i

ξj
ajγ ij

ai
> 0. (3.20)
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Consider the function

Fi(θ) = ξi

(
θ − ai

(
bi +

γ
ii
ai

ai

))
+

n∑
j=1

ξjaj
(
uij + vijeθτij +wijKij(θ)

)
Lj

+
n∑

j=1,j/=i

ξj
ajγ ij

ai
,

(3.21)

in which Kij(θ) =
∫+∞
0 eθτij kij(s)ds.

We obtain from condition (H4) that Kij(0) = 1, which, together with (3.20), leads to
Fi(0) < 0, and similar to proof of Theorem 3.1 above, there exist

0 < λ < min
1≤i≤n

{θi} (3.22)

such that

Fi(λ) < 0, (3.23)

that is,

[
λE +A + C ⊗

(
eλτij
)
n×n

+D ⊗K(λ)
]
ξ < 0, (3.24)

where K(λ) = (Kij(λ))n×n in which Kij(λ) shown in (3.21).
Note that Vi(s) ≤ 1/ai‖ψ2 − ψ1‖ and denote κ = ‖ψ2 − ψ1‖/min1≤i≤n{aiξi}, we have

V (t) ≤ κξe−λt, t ∈ (−∞, 0]. (3.25)

We have from Lemma 2.5, (3.18), (3.24), and (3.25) that

V (t) ≤ κξe−λt, t ≥ 0. (3.26)

It follows from (3.16) that

|ei(t)| ≤ aiVi(t) ≤ aiκ̃ξi
∥∥ψ2 − ψ1

∥∥e−λt (3.27)

in which κ̃ = 1/min1≤i≤n{aiξi}.
Hence

∥∥y(t) − x(t)∥∥1 ≤M
∥∥ψ2 − ψ1

∥∥e−λt, t ≥ 0, (3.28)

whereM = (
∑n

i=1 aiξi)/min1≤i≤n{aiξi}. This completes the proof.
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Corollary 3.3. Under assumptions (H1)–(H4), response system (2.2) will be globally exponentially
synchronized with master system (2.1) with αij = 0, i, j = 1, 2, . . . , n, ifM1 in Theorem 3.1 andM2

in Theorem 3.2 are nonsingularM-matrices with γij(t) = βij(t).

Remark 3.4. If ai(·) = 1, bi(t, xi(t)) = bi(t)xi(t) and bi(t, yi(t)) = bi(t)yi(t), system (2.1) and
(2.2) reduce to coupled Hopfield neural networks. Both Theorems 3.1 and 3.2 reduce to the
simpler cases in which ai = ai = 1.

Remark 3.5. If αij(t) = βij(t) = 0, M1 in Theorem 3.1 and M2 in Theorem 3.2 still be
nonsingular M-matrix, both theorems imply the global asymptotical stability of solutions
of system (2.1), consequently, system (2.2) and (2.1) achieve complete synchronization for
sure. In addition, if system (2.1) and (2.2) reduce to autonomous systems, the results in both
theorems above still hold.

4. Two Simple Examples

Example 4.1. Consider the following coupled CGNNs:

ẋ(t) = − a(x(t))
[
Ax(t) − B

∫+∞
0

K(s)tanh(x(t − s))ds − I(t)
]

+K1(t)
(
y(t) − x(t)),

(4.1)

ẏ(t) = − a(y(t))
[
Ay(t) − B

∫+∞
0

K(s)tanh
(
y(t − s))ds − I(t)

]

+K2(t)
(
x(t) − y(t)),

(4.2)

where we write system (4.1) and (4.2) in the vector-matrix form and

x(t) = (x1(t), x2(t))T , y(t) =
(
y1(t), y2(t)

)T
, I(t) = (2, 2)T ,

tanh(x(t)) = (tanh(x1(t)), tanh(x2(t)))
T ,

tanh
(
y(t)
)
=
(
tanh
(
y1(t)
)
, tanh

(
y2(t)
))T

,

a(x(t)) = diag(2 + sin(x1(t)), 2 + sin(x2(t))),

a
(
y(t)
)
= diag

(
2 + sin

(
y1(t)
)
, 2 + sin

(
y2(t)
))
,

A =
(
1 0
0 2

)
, B =

(
0 −2 cos(t)
2 −0

)
, K(s) =

(
0 e−t

e−t, 0

)
,

K1(t) =
(
α1(t) 0
0 α2(t)

)
,

K2(t) =
(
β1(t) 0
0 β2(t)

)
.

(4.3)

Let K1(t) = 0. Figure 1 shows the dynamical behaviors of (4.1) with K1(t) = 0.
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Figure 1: Time response of state x1, x2 of system (4.1)with initial value (0.1, 0.1) and K1 = 0.

Let K1(t) = diag(1, 1) and K2(t) = diag(5, 0), it is easy to know M1 =
( 5 −2
−2 1

)
is still a M-matrix. From Theorem 3.1, we know coupled system (4.1) and system (4.2)
achieve complete synchronization, and Figure 2 shows the dynamical behaviors of complete
synchronization with initial conditions (y1(s), y2(s)) = (2, 2) and (x1(s), x2(s)) = (0.1, 0.1).

Example 4.2. Consider the following Cohen-Grossberg neural network with discrete delay:

ẋ1(t) = −3[x1(t) − 3.5 sin(x2(t − 0.4))],

ẋ2(t) = −2[2x2(t) − 3 sin(x1(t − 0.4))].
(4.4)

System (4.4) is chaotic system. Figure 3 shows the chaotic behaviors of system (4.4) with
initial condition (0.2, 0.2).

For driving system (4.4), we construct the response system as follows:

ẏ1(t) = −3[y1(t) − 3.5 sin
(
y2(t − 0.4)

)]
+ α11

(
x1(t) − y1(t)

)
,

ẏ2(t) = −2[2y2(t) − 3 sin
(
y1(t − 0.4)

)]
+ α22

(
x2(t) − y2(t)

)
,

(4.5)

where α11 > 0, α22 > 0.
Let α11 = 9, α22 = 0. It is easy to know

M1 =
(

3 −3.5
−3 4

)
(4.6)

is a M-matrix. From Corollary 3.3, we know the response system (4.5) achieves complete
synchronization with system (4.4), and Figure 4 shows the dynamical behaviors of complete
synchronization with initial conditions (y1(s), y2(s)) = (2, 2) and (x1(s), x2(s)) = (0.2, 0.2).
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Figure 2: Complete synchronization of coupled systems (4.1) and (4.2).
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Figure 3: (a) Phase plot of system (4.4) with initial condition (0.2, 0.2). (b) Power spectrums of time series
of x1 and x2 for system (4.4).
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Figure 4: Complete synchronization of the response system (4.5) and the driving system (4.4).

5. Conclusions

Based on using suitable Lyapunov function and the properties of M-matrix, sufficient
conditions for complete synchronization of bidirectional coupled CGNNs are directly
obtained without writing the explicit error system. Two examples show the effectiveness of
the proposed method. Note thatM1 andM2 must beM-matrix if we let αii(t) + βii(t), that is,
γii(t) be big enough to a certain extent such thatM1 andM2 are strongly diagonally dominant
matrix, this shows that our criteria are easy to verify and are useful for synchronization of
CGNNs.
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