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The existence of periodic solutions for nonautonomous second-order differential inclusion systems
with p(t)-Laplacian is considered. We get some existence results of periodic solutions for system,
(d/dt)(|u̇(t)|p(t)−2u̇(t)) ∈ ∂F(t, u(t)) a.e. t ∈ [0, T], u(0) − u(T) = u̇(0) − u̇(T) = 0, by using
nonsmooth critical point theory. Our results generalize and improve some theorems in the
literature.

1. Introduction

Consider the second-order system with p(t)-Laplacian

d

dt

(
|u̇(t)|p(t)−2u̇(t)

)
∈ ∂F(t, u(t)) a.e. t ∈ [0, T],

u(0) − u(T) = u̇(0) − u̇(T) = 0,
(1.1)

where T > 0, ∂ denotes the Clarke subdifferential, and p(t) ∈ C([0, T],R+) satisfies the
following assumption:

(A) p(0) = p(T) and p− := min0≤t≤T p(t) > 1, where q+ > 1 which satisfies
1/p− + 1/q+ = 1.
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Moreover, we suppose that F : [0, T] × R
N → R satisfies the following assumption:

(A’) F(t, x) is measurable in t for every x ∈ R
N and locally Lipschitz in x for a.e.

t ∈ [0, T], F(t, 0) ∈ L1(0, T) and there exist positive constants C, C0, and α ∈ [0,∞) such that

ζ ∈ ∂F(t, x) =⇒ |ζ| ≤ C|x|α + C0, (1.2)

for a.e. t ∈ [0, T] and all x ∈ R
N .

If F ∈ C1 and p(t) ≡ p > 1, system (1.1) reduces to the ordinary p-Laplacian system:

d

dt

(
|u̇(t)|p−2u̇(t)

)
= ∇F(t, u(t)) a.e. t ∈ [0, T],

u(0) − u(T) = u̇(0) − u̇(T) = 0.
(1.3)

Especially, when p = 2, then system (1.3) reduces to

ü(t) = ∇F(t, u(t)) a.e. t ∈ [0, T],

u(0) − u(T) = u̇(0) − u̇(T) = 0.
(1.4)

The corresponding functional ψ onH1
T given by

ψ(u) :=
1
2

∫T
0
|u̇(t)|2dt +

∫T
0
F(t, u(t))dt (1.5)

is continuously differentiable and weakly lower semicontinuous onH1
T (see [1]), where

H1
T :=

{
u : [0, T] → R

N, u is absolutely continuous, u(0) = u(T), u̇ ∈ L2
(
[0, T];RN

)}

(1.6)

is a Hilbert space with a norm defined by

‖u‖H1
T
:=

(∫T
0
|u(t)|2dt +

∫T
0
|u̇(t)|2dt

)1/2

, (1.7)

for u ∈ H1
T .

Since Mawhin and Willem studied the periodic solutions of Hamilton system and
obtained a series of results (see [2]). Considerable attention has been paid to the existence
of periodic and subharmonic solutions for system (1.3) and (1.4) by the use of critical point
theory in variational methods. Many solvability conditions are given, such as Ambrosetti-
Rabinowitz conditions, coercivity condition, the convexity condition, the boundedness
condition, the subadditive condition, the sublinear condition, and the periodicity condition,
see [3–7] and the references therein.
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The classical critical point theory was developed in the sixties and seventies for
C1 functionals. The needs of specific applications (such as nonsmooth mechanics and
nonsmooth gradient systems) and the impressive progress in nonsmooth analysis and
multivalued analysis led to extensions of the critical point theory to nondifferentiable
functions, in particular locally Lipschitz functions. The nonsmooth critical point theory for
locally Lipschitz functions started with the work of Chang (see [8]). He was able to construct
a substitute for the pseudogradient vector field of the smooth theory and use it to obtain
nonsmooth versions of the Mountain Pass Theorem of Ambrosetti and Rabinowitz (see [9])
and of the Saddle Point Theorem of Rabinowitz (see [10]). Chang used his theory to study
semilinear elliptic boundary value problemswith a discontinuous nonlinearity. Later, in 2000,
Kourogenis and Papageorgiou (see [11]) obtained some nonsmooth critical point theories
and applied these to nonlinear elliptic equations at resonance, involving the p-Laplacian
with discontinuous nonlinearities. Subsequently, many authors also studied the nonsmooth
critical point theory (see [2, 11–17]), then the nonsmooth critical point theory is also widely
used to deal with the nonlinear boundary value problems (see [11, 14, 15, 17–26]). A good
survey for nonsmooth critical point theory and nonlinear boundary value problems is the
book of Gasinski and Papageorgiou [22].

The operator (d/dt)(|u̇(t)|p(t)−2u̇(t)) is said to be p(t)-Laplacian and becomes p-
Laplacian when p(t) ≡ p (a constant). The p(t)-Laplacian possesses more complicated
nonlinearity than p-Laplacian, for example, it is inhomogeneous. The study of various
mathematical problems with variable exponent growth conditions has received considerable
attention in recent years. These problems are interesting in applications and raise many
mathematical problems. One of the most studied models leading to problem of this
type is the model of motion of electrorheological fluids, which are characterized by their
ability to drastically change the mechanical properties under the influence of an exterior
electromagnetic field. Another field of application of equations with variable exponent
growth conditions is image processing (see [12, 27]). The variable nonlinearity is used to
outline the borders of the true image and to eliminate possible noise. We refer the reader to
[12, 28–33] for an overview on this subject.

In 2003, X. L. Fan and X. Fan (see [34]) studied the ordinary p(t)-Laplacian system
and introduced a generalized Orlicz-Sobolev space W

1,p(t)
T , which is different from the

usual space W1,p
T , then Wang and Yuan (see [35]) obtained the existence and mulplicity of

periodic solutions for ordinary p(t)-Laplacian system (1.1) with a smooth potential F under
the generalized Ambrosetti-Rabinowitz conditions. In recent years, there are some papers
discussing existence and multiplicity of periodic solutions and subharmonic solutions for
problem (1.3) and (1.4) when the potential F is just locally Lipschitz in the second variable
x not continuously differentiable. Some results were obtained based on various hypotheses
on the potential F. Here we only mention [7, 20, 21, 25, 26], and it should be noted that the
abstract result of Clarke (see [1, Theorem 2.7.5]) plays an important role in the establishment
of corresponding variational structure. However, to the best of our knowledge, few papers
investigated the existence of solutions for problem (1.1), because the main difficulty is the
abstract result of Clarke cannot be applied to system (1.1) directly. So we have to find a new
approach to solve this problem, and our main idea of the new approach comes from the
inspiration of the Theorem 2.7.3 and Theorem 2.7.5 in [1].

The main purpose of this paper is to establish the corresponding variational structure
for system (1.1), and we get some existence results of periodic solutions for system (1.1)
by using nonsmooth critical point theory. Our results are extensions of the results presented
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in [4, 26], and our results are new even in the case F ∈ C1 for system (1.1). The paper is
divided into four sections. Basic definitions and preliminary results are collected in Section 2.
We give the main results and proofs in Section 3. In Section 4, three examples are presented
to illustrate our results.

In this paper, we denote by p+ := max0≤t≤T p(t) > 1 throughout this paper, and we use
〈·, ·〉 and | · | to denote the usual inner product and norm in R

N , respectively.

2. Basic Definitions and Preliminary Results

In this section, we recall some known results in nonsmooth critical point theory, and the
properties of spaceW1,p(t)

T are listed for the convenience of readers.

Definition 2.1 (see [35]). Let p(t) satisfy the condition (A), define

Lp(t)
(
[0, T],RN

)
=

{
u ∈ L1

(
[0, T],RN

)
;
∫T
0
|u|p(t)dt <∞

}
, (2.1)

with the norm

|u|p(t) := inf

{
λ > 0;

∫T
0

∣∣∣u
λ

∣∣∣
p(t)
dt ≤ 1

}
. (2.2)

For u ∈ L1
loc([0, T],R

N), let u′ denote the weak derivative of u, if u′ ∈ L1
loc([0, T],R

N)
and satisfies

∫T
0
u′φdt = −

∫T
0
uφ′dt, ∀φ ∈ C∞

0

(
[0, T],RN

)
. (2.3)

Define

W1,p(t)
(
[0, T],RN

)
=
{
u ∈ Lp(t)

(
[0, T],RN

)
; u′ ∈ Lp(t)

(
[0, T],RN

)}
, (2.4)

with the norm ‖u‖W1,p(t) := |u|p(t) + |u′|p(t).

Remark 2.2. If p(t) = p, where p ∈ [1,∞) is a constant, by the definition of |u|p(t), it is easy to
get |u|p = (

∫T
0 |u(t)|pdt)1/p, which is the same with the usual norm in space Lp.

The space Lp(t) is a generalized Lebesgue space, and the spaceW1,p(t) is a generalized
Sobolev space. Because most of the following Lemmas have appeared in [1, 7, 24, 34], we
omitted their proofs.

Lemma 2.3 (see [34]). Lp(t) andW1,p(t) are both Banach spaces with the norms defined above, when
p− > 1, they are reflexive.
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Lemma 2.4 (see [34]). The space Lp(t) is a separable, uniform convex Banach space, its conjugate
space is Lq(t), for any u ∈ Lp(t) and v ∈ Lq(t), we have

∣∣∣∣∣
∫T
0
uv dt

∣∣∣∣∣ ≤ 2|u|p(t)|v|q(t), (2.5)

where 1/p(t) + 1/q(t) = 1.

Lemma 2.5 (see [35]). If we denote ρ(u) =
∫T
0 |u|p(t)dt, for all u ∈ Lp(t), then

(i) |u|p(t) < 1 (=1;>1)⇔ ρ(u) < 1 (=1;>1)

(ii) |u|p(t) > 1 ⇒ |u|p
−

p(t) ≤ ρ(u) ≤ |u|p
+

p(t), |u|p(t) < 1 ⇒ |u|p
+

p(t) ≤ ρ(u) ≤ |u|p
−

p(t)

(iii) |u|p(t) → 0 ⇔ ρ(u) → 0; |u|p(t) → ∞ ⇔ ρ(u) → ∞
(iv) For u ∈ Lp(t) and u/= 0, |u|p(t) = λ⇔ ρ(u/λ) = 1.

Definition 2.6 (see [2]).

C∞
T = C∞

T

(
R,RN

)
:=
{
u ∈ C∞

(
R,RN

)
; u is T -periodic

}
, (2.6)

with the norm ‖u‖∞ := maxt∈[0,T]|u(t)|.

For a constant p ∈ [1,∞), using another conception of weak derivative which is called
T -weak derivative, Mawhin andWillem gave the definition of the spaceW1,p

T by the following
way.

Definition 2.7 (see [2]). Let u ∈ L1([0, T],RN) and v ∈ L1([0, T],RN), if

∫T
0
vφ dt = −

∫T
0
uφ′dt, ∀φ ∈ C∞

T , (2.7)

then v is called a T -weak derivative of u and is denoted by u̇.

Definition 2.8 (see [2]). Define

W
1,p
T

(
[0, T],RN

)
=
{
u ∈ Lp

(
[0, T],RN

)
; u̇ ∈ Lp

(
[0, T],RN

)}
, (2.8)

with the norm ‖u‖
W

1,p
T

= (|u|pp + |u̇|pp)1/p.

Definition 2.9 (see [34]). Define

W
1,p(t)
T

(
[0, T],RN

)
=
{
u ∈ Lp(t)

(
[0, T],RN

)
; u̇ ∈ Lp(t)

(
[0, T],RN

)}
, (2.9)

and letH1,p(t)
T ([0, T],RN) be the closure of C∞

T inW1,p(t)([0, T],RN).



6 Abstract and Applied Analysis

Remark 2.10. From Definition 2.8, if u ∈ W
1,p(t)
T ([0, T],RN), it is easy to conclude that u ∈

W
1,p−

T ([0, T],RN).

Lemma 2.11 (see [34]).

(i) C∞
T ([0, T],R

N) is dense inW1,p(t)
T ([0, T],RN),

(ii) W1,p(t)
T ([0, T],RN) = H1,p(t)

T ([0, T],RN) := {u ∈W1,p(t)([0, T],RN);u(0) = u(T)},
(iii) If u ∈ H1,1

T , then the derivative u′ is also the T -weak derivative u̇, that is, u′ = u̇.

Remark 2.12. In the following paper, we use ‖u‖ instead of ‖u‖
W

1,p(t)
T

for convenience without
clear indications.

Lemma 2.13 (see [24]). Assume that u ∈W1,1
T , then

(i)
∫T
0 u̇ dt = 0,

(ii) u has its continuous representation, which is still denoted by u(t) =
∫ t
0 u̇(s)ds + u(0),

u(0) = u(T),

(iii) u̇ is the classical derivative of u, if u̇ ∈ C([0, T],RN).

Since every closed linear subspace of a reflexive Banach space is also reflexive, we have

Lemma 2.14 (see [34]). H1,p(t)
T ([0, T],RN) is a reflexive Banach space if p− > 1.

Obviously, there are continuous embeddings Lp(t) ↪→ Lp
−
, W1,p(t) ↪→ W1,p− , and

H
1,p(t)
T ↪→ H

1,p−

T . By the classical Sobolev embedding theorem we obtain.

Lemma 2.15 (see [34]). There is a continuous embedding

W1,p(t)
(
or H1,p(t)

T

)
↪→ C

(
[0, T],RN

)
, (2.10)

when p− > 1, the embedding is compact.

In order to establish the variational structure for system (1.1), it is necessary to
construct some appropriate function spaces. The Cartesian product spaceW is defined by

W = Lp(t)
(
[0, T],RN

)
× Lp(t)

(
[0, T],RN

)
(2.11)

and is also a reflexive and separable Banach space with respect to the norm

‖v‖W = |v1|p(t) + |v2|p(t), (2.12)

where v = (v1, v2) ∈W .

Lemma 2.16. Define the operator A:W1,p(t)
T ([0, T],RN) → W as follows:

Au = (u, u̇), ∀u ∈W1,p(t)
T , (2.13)
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thenWp(t) := {(u, u̇) : ∀u ∈W1,p(t)
T } is also a reflexive and separable Banach space with respect to the

norm defined in (2.12).

Proof. Let (un, u̇n) be a Cauchy sequence in Wp(t), then there exists (u, v) in W such that
(un, u̇n) converge to (u, v) inW . We have

∫T
0
u̇nϕ dt = −

∫T
0
unϕ

′dt, ∀ϕ ∈ C∞
T , (2.14)

by Definition 2.7, then by Lemma 2.4, we conclude

∫T
0
vϕdt = −

∫T
0
uϕ′dt, ∀ϕ ∈ C∞

T , (2.15)

as n → ∞ in (2.14). In view of (2.15), v is the T -weak derivative of u, that is, (u, v) is also
in Wp(t), so Wp(t) is a complete subspace of W , which implies Wp(t) is also a reflexive and
separable Banach space.

Remark 2.17. We use ‖(u, u̇)‖Wp(t) to denote the norm inWp(t) defined by (2.12).

Definition 2.18. Let L∞([0, T],RN × R
N) denote the space of essentially bounded measurable

functions from [0, T] into R
N × R

N under the norm

‖(u, v)‖L∞ := ess sup{|u(t)| + |v(t)| : t ∈ [0, T]}, (2.16)

it is obvious that L∞([0, T],RN × R
N) is a Banach space under the norm defined above.

Remark 2.19. We use W∞ and ‖(u, v)‖W∞ to denote L∞([0, T],RN × R
N) and ‖(u, v)‖L∞ ,

respectively.

Lemma 2.20. Wp(t) ∩W∞ is a closed subspace ofW∞.

Proof. Let (un, u̇n) be a Cauchy sequence in Wp(t) ∩ W∞ with respect to the norm defined
in (2.16). Then there exists (u, v) in W∞ such that (un, u̇n) converge to (u, v) in W∞. By
Definition 2.7, we have

∫T
0
u̇nϕ dt = −

∫T
0
unϕ

′dt, ∀ϕ ∈ C∞
T , (2.17)

we conclude that

∫T
0
vϕdt = −

∫T
0
uϕ′dt, ∀ϕ ∈ C∞

T , (2.18)

by Lemma 2.4 as n → ∞ in (2.17). In view of (2.18), v is the T -weak derivative of u, that
is, (u, v) is also in Wp(t) ∩W∞, so Wp(t) ∩W∞ is a complete subspace of W∞, which implies
Wp(t) ∩W∞ is a closed subspace ofW∞.
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Lemma 2.21. Suppose f is a bounded linear functional onWp(t), if restricted to the spaceWp(t)∩W∞,
denoted by f ′, that is,

f ′(u, u̇) = f(u, u̇), ∀(u, u̇) ∈Wp(t) ∩W∞, (2.19)

then f ′ is a bounded linear functional onWp(t) ∩W∞.

Proof. It is obvious that f ′ is a linear functional on Wp(t) ∩W∞, so we only to show the f ′ is
continuous onWp(t) ∩W∞.

Let |u|p(t) = λ and |u̇|p(t) = μ, that is,

∫T
0

∣∣∣∣
u(t)
λ

∣∣∣∣
p(t)

dt = 1,
∫T
0

∣∣∣∣
u̇(t)
μ

∣∣∣∣
p(t)

dt = 1, (2.20)

where (u, u̇) ∈Wp(t) ∩W∞ and (u, u̇)/= (0, 0), then

∫T
0

∣∣∣∣∣
u(t)

C1‖(u, u̇)‖W∞

∣∣∣∣∣
p(t)

dt ≤ 1,
∫T
0

∣∣∣∣∣
u̇(t)

C1‖(u, u̇)‖W∞

∣∣∣∣∣
p(t)

dt ≤ 1, (2.21)

by Definition 2.1 and (2.16), where C1 := |1|p(t). Then we conclude

|u|p(t) ≤ C1‖(u, u̇)‖W∞
, |u̇|p(t) ≤ C1‖(u, u̇)‖W∞

, (2.22)

by (2.21) and Definition 2.1.
Furthermore, the norm of f inWp(t) is

∥∥f∥∥ = sup
Wp(t)\0

∣∣f(u, u̇)∣∣
‖(u, u̇)‖Wp(t)

= sup
Wp(t)\0

∣∣f(u, u̇)∣∣(
|u|p(t) + |u̇|p(t)

) , (2.23)

therefore, combining (2.22) and (2.23), we get the bound

∥∥f ′∥∥ ≤ 2C1
∥∥f∥∥, (2.24)

and this completes the proof.

Lemma 2.22. The spaceW1,p(t)
T = W̃1,p(t)

T ⊕ R
N , where

W̃
1,p(t)
T :=

{
u ∈W1,p(t)

T ;
∫T
0
u(t)dt = 0

}
, (2.25)
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there exists C2 > 0, if u ∈ W̃1,p(t)
T , such that

‖u‖∞ ≤ 2C2

(∫T
0
|u̇(t)|p(t)dt

)1/p−

+ 2C2T
1/p− . (2.26)

Proof. Let E = {t ∈ [0, T] | |u̇(t)| ≥ 1}, from Remark 2.10, u ∈ W
1,p−

T , from the inequality in
classical Sobolev space, there exists a positive constant C2 > 0, such that

‖u‖∞ ≤ C2

(∫T
0
|u̇(t)|p

−
dt

)1/p−

= C2

(∫

E

|u̇(t)|p
−
dt +

∫

[0,T]\E
|u̇(t)|p

−
dt

)1/p−

≤ C2

(∫

E

|u̇(t)|p(t)dt +meas[0, T] \ E
)1/p−

≤ C2

(∫T
0
|u̇(t)|p(t)dt + T

)1/p−

≤ 2C2

(∫T
0
|u̇(t)|p(t)dt

)1/p−

+ 2C2T
1/p− ,

(2.27)

and this completes the proof.

Lemma 2.23 (see [34]). Each of the following two norms is equivalent to the norm inW1,p(t)
T :

(i) |u̇|p(t) + |u|q, 1 ≤ q ≤ ∞,

(ii) |u̇|p(t) + |u|, where u = (1/T)
∫T
0 u(t)dt.

Proposition 2.24. In spaceW1,p(t)
T , ‖u‖ → ∞ ⇒

∫T
0 |u̇|p(t)dt + |u| → ∞.

Proof. From Lemma 2.23, there exists a positive constant C3, such that

‖u‖ ≤ C3

(
|u̇|p(t) + |u|

)
, (2.28)

if |u̇|p(t) < 1, it is easy to get

|u̇|p(t) <
∫T
0
|u̇|p(t)dt + 1. (2.29)
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When |u̇|p(t) ≥ 1, we conclude that

|u̇|p(t) ≤
(∫T

0
|u̇|p(t)dt

)1/p−

, (2.30)

by Lemma 2.5, it follows (2.29) and (2.30) that

‖u‖ ≤ C3

⎛
⎝
(∫T

0
|u̇|p(t)dt

)1/p−

+ 1 + |u|

⎞
⎠, (2.31)

which implies that

‖u‖ −→ ∞ =⇒
∫T
0
|u̇|p(t)dt + |u| −→ ∞. (2.32)

The proof is completed.

Lemma 2.25 (see [34]). If u, un ∈ Lp(t) (n = 1, 2, . . .), then the following statements are equivalent
to each other

(i) limn→∞|un − u|p(t) = 0,

(ii) limn→∞ ρ (un − u) = 0,

(iii) un → u in measure in [0, T] and limn→∞ ρ (un) = ρ(u).

Definition 2.26 (see [1]). Let f be Lipschitz near a given point x in a Banach space X, and let
v be any other vector in X. The generalized directional derivative of f at x in the direction v,
denoted by f0(x;v), is defined as follows:

f0(x;v) = lim sup
y→x, λ↓0

f
(
y + λυ

)
− f
(
y
)

λ
, (2.33)

where y is also a vector in X and λ is a positive scalar, and we denote by

∂f(x) :=
{
x∗ ∈ X∗ : f0(x;v) ≥ 〈x∗, v〉, ∀v in X

}
, (2.34)

the generalized gradient of f at x (the Clarke subdifferential).

Lemma 2.27 (see [1]). Let x and y be points in a Banach space X, and suppose that f is Lipschitz
on open set containing the line segment [x, y]. Then there exists a point u in (x, y) such that

f
(
y
)
− f(x) ∈

〈
∂f(u), y − x

〉
. (2.35)
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Definition 2.28 (see [8]). A point u ∈ X is said to be a critical point of a locally Lipschitz f if
θ ∈ ∂f(u), namely, f0(u;v) ≥ 0 for all every v ∈ X. A real number c is called a critical value
of f if there is a critical point u ∈ X such that f(u) = c.

Definition 2.29 (see [8]). If f is a locally Lipschitz function, we say that f satisfies the Palais-
Smale condition if each sequence (xn) in X such that (f(xn)) is bounded and limn→∞ λ(xn) =
0 has a convergent subsequence. We define λ(x) = minx∗∈∂f(x)‖x∗‖, where the minimum exists
from the fact that ∂f(x) is a w∗-weakly compact convex subset.

Lemma 2.30 (see [8]). Let X be a real Banach space, and let f be a locally Lipschitz function defined
on X satisfying the (PS) condition. Suppose X = X1 ⊕X2 with a finite dimensional subspace X1, and
there exist constants b1 < b2 and a bounded neighborhoodN of θ in X1 such that

f |X2 ≥ b2, f |∂N ≤ b1. (2.36)

Then f has a critical point.

Lemma 2.31. The functional given by

ϕ(u) =
∫T
0

1
p(t)

|u̇(t)|p(t)dt +
∫T
0
F(t, u(t))dt (2.37)

is weakly lower semicontinuous onW1,p(t)
T .

Proof. We divide ϕ into two parts, ϕ(u) := J(u) +H(u), where

J(u) :=
∫T
0

1
p(t)

|u̇(t)|p(t)dt, H(u) :=
∫T
0
F(t, u(t))dt, (2.38)

it is obvious that J is convex and continuous by Lemma 2.25, then J is weakly lower
semicontinuous by Theorem 1.2 in [2], and H is weakly continuous, that is, ϕ is the sum
of two weakly lower semicontinuous functionals, which implies that ϕ is weakly lower
semicontinuous.

Lemma 2.32 (see [35]). The functional J defined in Lemma 2.31 is continuously differentiable on
W

1,p(t)
T and J ′ is given by

〈
J ′(u), v

〉
=
∫T
0

(
|u̇(t)|p(t)−2u̇(t), v̇(t)

)
dt, (2.39)

and J ′ is a mapping of (S+), that is, if un ⇀ u weakly inW1,p(t)
T and

lim sup
n→∞

(
J ′(un) − J ′(u), un − u

))
≤ 0, (2.40)

then un has a convergent subsequence onW
1,p(t)
T .
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Clarke considered the following abstract framework in [1]:

(i) let (T,T, μ) be a σ-finite positive measure space, and let Y be a separable Banach
space,

(ii) letZ be a closed subspace of L∞(T, Y ), where L∞(T, Y ) denotes the space of measure
essentially bounded functions mapping T to Y , equipped with the usual supremum
norm,

(iii) define a functional f on Z via

f(x) =
∫

T

ft(x(t))μ(dt), (2.41)

where ft : Y → R (t ∈ T) is a given family of functions,

(iv) suppose that the mapping t → ft(v) is measurable for each v in Y , and that x is a
point at which f(x) is defined (finitely),

(v) suppose that there exist ε > 0 and a function k(t) in L1(T,R) such that

∣∣ft(v1) − ft(v2)
∣∣ ≤ k(t)‖v1 − v2‖Y , (2.42)

for all t ∈ T and all v1 and v2 in x(t) + εBY .

Under this conditions described above, f is Lipschitz in a neighborhood of x and one
has

∂f(x) ⊂
∫

T

∂ft(x(t))μ(dt). (2.43)

Further, if each ft is regular at x(t) for each t, then f is regular at x and equality holds.
We give an example to illustrate Clarke’s abstract framework with the following cast

of characters:

(i) (T,T, μ) := [0, T] with Lebesgue measure, and let Y := R
N , which is a separable

Banach space,

(ii) let Z := C([0, T],RN), which is a closed subspace of L∞([0, T],RN),

(iii) define a functional f on Z via

f(x) =
∫T
0
F(t, x(t))dt, (2.44)

(iv) F(t, x) satisfies the condition (A’).

Under the hypothesis above, we only need to justify the condition (2.42), in fact, by
Lebourg’s mean value theorem,

|F(t, x1) − F(t, x2)| = |〈ζt, x1 − x2〉|, (2.45)
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where λt ∈ (x1, x2) and ζt ∈ ∂F(t, λt) for a.e. t ∈ [0, T] and all x1 and x2 in x(t) + εBY , where
x(t) ∈ Z and ε is a positive constant.

In view of (A’), we get

|F(t, x1) − F(t, x2)| ≤
[
2αC
(
|x1|α + |x2|α

)
+ C0
]
|x1 − x2|

≤
[
22α+1C

(
|x(t)|α + εα

)
+ C0

]
|x1 − x2|,

(2.46)

for a.e. t ∈ [0, T] and all x1, x2 in x(t) + εBY .
We can apply Clarke’s abstract framework to our example, that is, for any ζ ∈ ∂f(u)

such that

〈ζ, v〉 =
∫T
0

(
q(t), v(t)

)
dt, (2.47)

for all v ∈ Z, where q(t) is a measurable selection of ∂F(t, x(t)).
Now we can prove the following result which is fundamental in our paper.

Lemma 2.33. Suppose L : [0, T] × R
N × R

N → R is given by

L
(
t, x, y

)
= L1
(
t, x, y

)
+ L2
(
t, x, y

)
, (2.48)

where

L1
(
t, x, y

)
=

1
p(t)

∣∣y∣∣p(t), L2
(
t, x, y

)
= F(t, x), (2.49)

and F(t, x) satisfies the condition (A’). The corresponding functionals f1 and f2 onWp(t) are given by

f1(u, u̇) =
∫T
0
L1(t, u(t), u̇(t))dt =

∫T
0

1
p(t)

|u̇(t)|p(t)dt,

f2(u, u̇) =
∫T
0
L2(t, u(t), u̇(t))dt =

∫T
0
F(t, u(t))dt.

(2.50)

Then f = f1 + f2 is Lipschitz onWp(t) and one has

∂f(u, u̇) ⊂
∫T
0

{
|u̇(t)|p(t)−2u̇(t)

}
× {∂F(t, u(t))}dt. (2.51)

Proof. Take an arbitrary element (u0, u̇0) in Wp(t), and it suffices to prove f is Lipschitz on
(u0, u̇0) and (2.51) holds for (u0, u̇0).

f1 is continuously differentiable on (u0, u̇0), that is,

〈
f ′
1(u0, u̇0), (v, v̇)

〉
=
∫T
0

(
|u̇0(t)|p(t)−2u̇0(t), v̇(t)

)
dt, (2.52)

for any (v, v̇) inWp(t), so f1 is Lipschitz on (u0, u̇0).
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When ‖(ui, u̇i) − (u0, u̇0)‖Wp(t) ≤ ε (i = 1, 2), we conclude

‖ui(t) − u0(t)‖∞ ≤ C4ε, (2.53)

by Lemma 2.15, where C4 is a positive constant. Arguing as in (2.46),

|F(t, u1(t)) − F(t, u2(t))| ≤ k′(t)|u1(t) − u2(t)|, (2.54)

for a.e. t ∈ [0, T], where k′(t) ∈ L1([0, T];R+).
By Lemma 2.15 and (2.54), we have

∣∣f2(u1, u̇1) − f2(u2, u̇2)
∣∣ =
∣∣∣∣∣
∫T
0
F(t, u1(t)) − F(t, u2(t))dt

∣∣∣∣∣

≤
∫T
0
k′(t)dt‖u1(t) − u2(t)‖∞

≤ C4

∫T
0
k′(t)dt‖(u1, u̇1) − (u2, u̇2)‖Wp(t)

,

(2.55)

so f2 is also Lipschitz on (u0, u̇0), which implies that f as the sum of two Lipschitz functionals
is also Lipschitz on (u0, u̇0).

For any ζ in ∂f2(u0, u̇0), one has

∫T
0
F0(t, u0(t);v(t))dt ≥ f0

2 ((u0, u̇0); (v, v̇)) ≥ 〈ζ, (v, v̇)〉, (2.56)

for any (v, v̇) inWp(t) by Fatou Lemma and it is obvious that

L0
2(t, u0(t), u̇0(t);v1, v2) = F

0(t, u0(t);v1), (2.57)

for a.e. t ∈ [0, T] and all (v1, v2) in R
N × R

N , then we conclude

∫T
0
L0
2(t, u0(t), u̇0(t);v(t), v̇(t))dt ≥ f

0
2 ((u0, u̇0); (v, v̇)) ≥ 〈ζ, (v, v̇)〉, (2.58)

by (2.56) for any (v, v̇) in Wp(t) and (2.58) remains true if we restrict (v, v̇) to Wp(t) ∩ W∞,
which is a closed subspace ofW∞ by Lemma 2.20.

By Lemma 2.21, we conclude the bounded linear functional ζ on Wp(t) restricted to
Wp(t)∩W∞ is also a bounded linear functional, andwe use ζ′ to denote the functional restricted
onWp(t) ∩W∞.

We interpret (2.58) as saying that ζ′ belongs to the subgradient at (0, 0) of the convex
functional

f̂2(v, v̇) :=
∫T
0
f̂t(v(t), v̇(t))dt, (2.59)
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which is defined in Wp(t) ∩ W∞, where f̂t(v1, v2) := L0
2(t, u0(t), u̇0(t);v1, v2) for all (v1, v2) in

R
N × R

N .
In view of condition (A’) and (2.57), we have

∣∣∣L0
2(t, u0(t), u̇0(t);v1, v2) − L

0
2(t, u0(t), u̇0(t);v3, v4)

∣∣∣

=
∣∣∣F0(t, u0(t);v1) − F0(t, u0(t);v3)

∣∣∣

≤
(
C
(
|u0(t)|α + C0

)
|v1 − v3|

≤
(
C
(
|u0(t)|α + C0

)
(|v1 − v3| + |v2 − v4|) ,

(2.60)

for a.e. t ∈ [0, T] and all (v1, v2), (v3, v4) in R
N × R

N .
Now we can apply Clarke’s abstract framework to f̂2 with the following cast of

characters:

(i) (T,T, μ) := [0, T]with Lebesguemeasure, and let Y := R
N×R

N , which is a separable
Banach space with the norm | · | + | · |,

(ii) letZ :=Wp(t)∩W∞, which is a closed subspace ofW∞, andW∞ denotes the space of
measure essentially bounded functions mapping T to Y , equipped with the usual
supremum norm by Definition 2.18,

(iii) define a functional f̂2 on Z by (2.59),

(iv) the mapping t → L0
2(t, u0(t), u̇0(t);v1, v2) is measurable for each (v1, v2) in R

N ×R
N

by (2.57), see details in [1], and that (0, 0) is a point at which f̂2 is defined (finitely),

(v) the condition (2.42) in Clarke’s abstract framework is satisfied by (2.60).

By (2.57), We get

∂f̂t(0, 0) = ∂L2(t, u0(t), u̇0(t)) ⊂ ∂F(t, u0(t)) × {0}, (2.61)

thus, every ζ′ ∈ ∂f̂2(0, 0) can be written as

〈
ζ′, (v, v̇)

〉
=
∫T
0

(
q(t), v(t)

)
+ (0, v̇(t))dt

=
∫T
0

(
q(t), v(t)

)
dt,

(2.62)

for any (v, v̇) inWp(t) ∩W∞, where q(t) ∈ ∂F(t, u0(t)) for a.e. t ∈ [0, T].
When v ∈ C∞

T ([0, T],R
N), it is obvious that (v, v̇) ∈ Wp(t) ∩W∞ and (v, v̇) is dense in

Wp(t) by Lemma 2.11. So for each (v, v̇) ∈ Wp(t), we can choose (vn, v̇n) ∈ Wp(t) ∩W∞ such
that

‖(vn, v̇n) − (v, v̇)‖Wp(t)
−→ 0, 〈ζ, (vn, v̇n)〉 −→ 〈ζ, (v, v̇)〉. (2.63)
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Combining (2.62) and (2.63), we have

〈ζ, (v, v̇)〉 =
∫T
0

(
q(t), v(t)

)
dt, (2.64)

for all (v, v̇) ∈Wp(t).
We conclude

∂f(u0, u̇0) ⊂ ∂f1(u0, u̇0) + ∂f2(u0, u̇0) =
∫T
0

{
|u̇0(t)|p(t)−2u̇0(t)

}
× {∂F(t, u0(t))}dt, (2.65)

and this completes the proof.

3. Main Results and Proofs of Theorems

Theorem 3.1. Let F(t, x) satisfy the condition (A’) with α ∈ [0, p−−1), and we suppose the following
condition holds

|x|−q
+α

∫T
0
F(t, x)dt −→ +∞ as |x| −→ ∞, (A1)

where q+ is the same in condition (A).

Then system (1.1) has at least one solution which minimizes ϕ inW1,p(t)
T .

If we replace the (A1) in Theorem 3.1 by the following condition:

|x|−q
+α

∫T
0
F(t, x)dt −→ −∞ as |x| −→ ∞, (A2)

we obtain the following theorem.

Theorem 3.2. Let F(t, x) satisfy the condition (A’) with α ∈ [0, p− − 1) and (A2). Then system (1.1)
has at least one solution inW1,p(t)

T .

Remark 3.3. Theorems 3.1 and 3.2 generalize Theorems 1 and 2, respectively in [3].

Proof of Theorem 3.1. For u ∈ W1,p(t)
T , let u = (1/T)

∫T
0 u(t)dt and ũ = u − u. From Lemma 2.27,

it follows that there exist z(t) in (u, u(t)) such that

F(t, u(t)) − F(t, u) = 〈ζt, ũ(t)〉, (3.1)

for a.e. t ∈ [0, T], where ζt ∈ ∂F(t, z(t)).
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It follows from (A’), Young inequality and Lemma 2.22 that

∣∣∣∣∣
∫T
0
[F(t, u(t)) − F(t, u)]dt

∣∣∣∣∣ ≤
∫T
0
|F(t, u(t)) − F(t, u)|dt

≤
∫T
0
|ζt||ũ(t)|dt ≤

∫T
0

[
2αC
(
|u|α + |ũ(t)|α

)
+ C0
]
|ũ(t)|dt

≤ 2αCT‖ũ‖α+1∞ + 2αCT‖ũ‖∞|u|
α + C0T‖ũ‖∞

≤ 1
2p+

∫T
0
|u̇(t)|p(t)dt + C5

(∫T
0
|u̇(t)|p(t)dt

)(α+1)/p−

+ C6

(∫T
0
|u̇(t)|p(t)dt

)1/p−

+ C7|u|q
+α + C8,

(3.2)

for all u ∈W1,p(t)
T , and some positive constants C5, C6, C7, and C8.

Hence we have

ϕ(u) ≥ 1
p+

∫T
0
|u̇(t)|p(t)dt +

∫T
0
F(t, u)dt +

∫T
0
[F(t, u(t)) − F(t, u)]dt

≥ 1
2p+

∫T
0
|u̇(t)|p(t)dt − C5

(∫T
0
|u̇(t)|p(t)dt

)(α+1)/p−

− C6

(∫T
0
|u̇(t)|p(t)dt

)1/p−

− C7|u|q
+α − C8 +

∫T
0
F(t, u)dt

≥ 1
2p+

∫T
0
|u̇(t)|p(t)dt − C5

(∫T
0
|u̇(t)|p(t)dt

)(α+1)/p−

− C6

(∫T
0
|u̇(t)|p(t)dt

)1/p−

+ |u|q
+α

(
|u|−q

+α

∫T
0
F(t, u)dt − C7

)
− C8,

(3.3)

for all u ∈W1,p(t)
T , which implies that

ϕ(u) −→ ∞ as ‖u‖ −→ ∞, (3.4)

because of α < p− − 1 and the Proposition 2.24.
By Lemma 2.31, the functional ϕ is weakly lower semicontinuous on W

1,p(t)
T , and it

follows that ϕ has a minimum u0 on W
1,p(t)
T by Theorem 1.1 in [2]. Proposition 2.3.2 in [1]

implies that 0 ∈ ∂ϕ(u0), that is, u0 is a critical point for ϕ. So, problem (1.1) has at least one
solution u0 ∈W

1,p(t)
T .
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Proof of Theorem 3.2. We will show that ϕ defined in Lemma 2.31 satisfies the (PS) condition.
Let {un} be a sequence inW

1,p(t)
T such that ϕ(un) is bounded and λ(un) → 0 as n → ∞. Using

the definition of λ(un), it results that for each n ≥ n0 there exists u∗n ∈ ∂ϕ(un) with

|〈u∗n, h〉| ≤ ‖h‖, ∀h ∈W1,p(t)
T . (3.5)

In view of Lemma 2.33, if u∗n ∈ ∂ϕ(un), it results that there exist qn(t) ∈ ∂F(t, un(t))
such that

|〈u∗n, ũn〉| =
∣∣∣∣∣
∫T
0
|u̇n(t)|p(t)dt +

∫T
0

(
qn(t), ũn(t)

)
dt

∣∣∣∣∣ ≤ ‖ũn‖, ∀n ≥ n0. (3.6)

It follows Lemma 2.22 and Young inequality that

∣∣∣∣∣
∫T
0

(
qn(t), ũn(t)

)
∣∣∣∣∣ ≤ C

∫T
0
|un + ũn(t)|α|ũn(t)|dt + C0

∫T
0
|ũn(t)|dt

≤ 2p
−−1C

∫T
0

(
|un|α + |ũn(t)|α

)
|ũn(t)|dt + C0

∫T
0
|ũn(t)|dt

≤ 2p
−−1CT

(
|un|α + ‖ũn‖α∞

)
‖ũn‖∞ + C0T‖ũn‖∞

=

((
1
2

)1/p− ‖ũn‖∞
4C2

)((
2p

−+1
)
(2)1/p

−
CC2T |un|α

)

+ 2p
−−1CT‖ũn‖1+α∞ + C0T‖ũn‖∞

≤ 1
2

∫T
0
|u̇n(t)|p(t)dt + C9|un|q

+α + C10

(∫T
0
|u̇n(t)|p(t)dt

)(α+1)/p−

+ C11

(∫T
0
|u̇n(t)|p(t)dt

)1/p−

+ C12,

(3.7)

for all n and some positive constants C9, C10, C11, and C12, where C2 is the same as in
Lemma 2.22.
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Hence, we have

‖ũn‖ ≥ |〈u∗n, ũn〉|

≥
∫T
0
|u̇n(t)|p(t)dt +

∫T
0

(
qn(t), ũn(t)

)
dt

≥ 1
2

∫T
0
|u̇n(t)|p(t)dt − C9|un|q

+α − C10

(∫T
0
|u̇n(t)|p(t)dt

)(α+1)/p−

− C11

(∫T
0
|u̇n(t)|p(t)dt

)1/p−

− C12,

(3.8)

for all n ≥ n0.
It follows from (2.31) that

‖ũn‖ ≤ C3

⎛
⎝
(∫T

0
|u̇n(t)|p(t)dt

)1/p−

+ 1

⎞
⎠, (3.9)

by (3.8) and (3.9), we have

(∫T
0
|u̇n(t)|p(t)dt

)1/q+

≤ C13|un|α + C14, (3.10)

for some positive constants C13, C14, and all n ≥ n0.
By the proof of (3.2) we have

∫T
0
[F(t, un(t)) − F(t, un)]dt ≤

1
2p+

∫T
0
|u̇n(t)|p(t)dt + C5

(∫T
0
|u̇(t)|p(t)n dt

)(α+1)/p−

+ C6

(∫T
0
|u̇n(t)|p(t)dt

)1/p−

+ C7|un|q
+α + C8,

(3.11)

for all n.
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It follows from the boundness of {ϕ(un)}, (3.10) and (3.11) that

C9 ≤ ϕ(un)

=
∫T
0

1
p(t)

|u̇n(t)|p(t)dt +
∫T
0
[F(t, un(t)) − F(t, un)]dt +

∫T
0
F(t, un)dt

≤
(

1
p−

+
1

2p+

)∫T
0
|u̇n(t)|p(t)dt + C7|un|q

+α + C5

(∫T
0
|u̇n(t)|p(t)dt

)(α+1)/p−

+ C6

(∫T
0
|u̇n(t)|p(t)dt

)1/p−

+
∫T
0
F(t, un)dt + C8

≤ |un|q
+α

(
|un|−q

+α

∫T
0
F(t, un)dt + C7

)
+ C15,

(3.12)

for all n ≥ n0 and some positive constant C15.
It follows (A2) and (3.12) that (|un|) is bounded, hence {‖un‖} is bounded by (2.31)

and (3.10).
The sequence {un} has a subsequence, also denoted by {un}, such that

un ⇀ u weakly in W
1,p(t)
T , un −→ u strongly in C

(
[0, T];RN

)
, (3.13)

and ‖un‖∞ ≤ C16 is bounded by Lemma 2.15, where C16 is a positive constant.
Therefore we have u∗n ∈ ∂ϕ(un), where u∗n is the function from the Palais-Smale

condition, and u∗ ∈ ∂ϕ(u) such that

〈u∗n − u∗, un − u〉 −→ 0, (3.14)

as n → ∞, so

〈u∗n − u∗, un − u〉 =
∫T
0

(
qn(t) − q(t), un(t) − u(t)

)
dt

+
∫T
0

(
|u̇n(t)|p(t)−2u̇n(t) − |u̇(t)|p(t)−2u̇(t), u̇n(t) − u̇(t)

)
dt,

(3.15)

where qn(t) ∈ ∂(F(t, un(t)) and q(t) ∈ ∂(F(t, u(t)).
By (3.14) and (3.15), we get 〈J ′(u) − J ′(un), u − un〉 → 0, that is,

∫T
0

(
|u̇n(t)|p(t)−2u̇n(t) − |u̇(t)|p(t)−2u̇(t), u̇n(t) − u̇(t)

)
dt −→ 0, (3.16)

so it follows from Lemma 2.32 that {un} admits a convergent subsequence.
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We now prove ϕ satisfies the other conditions of Lemma 2.30. Let W̃1,p(t)
T be the

subspace ofW1,p(t)
T defined in Lemma 2.22, then we have

ϕ(u) −→ +∞, (3.17)

as ‖u‖ → ∞ in W̃1,p(t)
T . In fact it follows from (3.2) that

∣∣∣∣∣
∫T
0
[F(t, u(t)) − F(t, 0)]dt

∣∣∣∣∣ ≤
∫T
0
|ζ||u(t)|dt ≤ C17

(∫T
0
|u̇(t)|p(t)dt

)(α+1)/p−

+ C18

(∫T
0
|u̇(t)|p(t)dt

)1/p−

+ C19,

(3.18)

for all u ∈ W̃1,p(t)
T and some positive constants C17, C18, and C19.

ϕ(u) −
∫T
0
F(t, 0)dt =

∫T
0

1
p(t)

|u̇(t)|p(t)dt +
∫T
0
[F(t, u(t)) − F(t, 0)]dt

≥ 1
p+

∫T
0
|u̇(t)|p(t)dt − C17

(∫T
0
|u̇(t)|p(t)dt

)(α+1)/p−

− C18

(∫T
0
|u̇(t)|p(t)dt

)1/p−

− C19,

(3.19)

for all u ∈ W̃1,p(t)
T , which implies (3.17) by Proposition 2.24.

Moreover, we have

ϕ(x) −→ −∞, (3.20)

as |x| → ∞ in R
N , which follows (A2).

We have proved the functional ϕ satisfies all the conditions of Lemma 2.30, sowe know
that ϕ has at least one critical point by Lemma 2.30, which is a periodic solution for system
(1.1). The proof is complete.

4. Example

In this section, we give three examples to illustrate our results.

Example 4.1. In system (1.1), let F(t, x) = |x| and

p(t) =

⎧
⎪⎨
⎪⎩
3 + t, 0 ≤ t ≤ T

2
,

3 − t + T, T

2
< t ≤ T,

(4.1)

it is easy to verify that |ζ| ≤ 1, where ζ ∈ ∂F(t, x) for every t ∈ [0, T] and all x ∈ R
N .
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By Theorem 3.1, system (1.1) has at least one solution u ∈W1,p(t)
T , but it is obvious that

the results in the reference cannot be applied to our example.

Example 4.2. In system (1.1), let

p(t) =

⎧
⎪⎪⎨
⎪⎪⎩

2t + 1, 0 ≤ t ≤ T

2
,

2
(
1 − 2T/2

)

T

(
t − T

2

)
+ 2T/2 + 1

T

2
< t ≤ T,

(4.2)

and F(t, x) = −|x|, it is easy to verify that |ζ| ≤ 1, where ζ ∈ ∂F(t, x) for every t ∈ [0, T] and all
x ∈ R

N .
By Theorem 3.2, system (1.1) has at least one solution u ∈W1,p(t)

T , but it is obvious that
the results in the reference cannot be applied to our example.

Example 4.3. In system (1.1), let p(t) = sinωt + 5, and

F(t, x) =
(
sinωt − 1

2

)
|x|3 + x1, (4.3)

where ω denotes the positive constant 2π/T .
It is obvious that F is continuously differentiable, then the the Clarke subdifferential

set ∂F(t, x) reduces to one element ∇F(t, x), then

|∇F(t, x)| ≤ 6
(
|x|2 + 1

)
, |x|−8/3

∫T
0
F(t, x)dt −→ −∞ as |x| −→ +∞. (4.4)

These show that all conditions of Theorem 3.2 are satisfied, where

α = 2, p− = 4, q+ =
4
3
, (4.5)

and by Theorem 3.2, system (1.1) has at least one periodic solution onW1,p(t)
T . But the results

in [35] cannot be applied to our example, so our results are new even in the case F ∈ C1 for
system (1.1).
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