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Fixed point (especially, the minimum norm fixed point) computation is an interesting topic due
to its practical applications in natural science. The purpose of the paper is devoted to finding the
common fixed points of an infinite family of nonexpansive mappings. We introduce an iterative
algorithm and prove that suggested scheme converges strongly to the common fixed points of an
infinite family of nonexpansive mappings under some mild conditions. As a special case, we can
find the minimum norm common fixed point of an infinite family of nonexpansive mappings.

1. Introduction

In many problems, it is needed to find a solution with minimum norm. In an abstract way,
we may formulate such problems as finding a point x† with the property

x† ∈ C,
∥
∥
∥x†

∥
∥
∥

2
= min

x∈C
‖x‖2, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H. In other words, x† is
the (nearest point or metric) projection of the origin onto C,

x† = PC(0), (1.2)

where PC is the metric (or nearest point) projection from H onto C.
A typical example is the least-squares solution to the constrained linear inverse prob-

lem [1]

Ax = b, x ∈ C, (1.3)
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whereA is a bounded linear operator fromH to another real Hilbert spaceH1 and b is a given
point in H1. The least-squares solution to (1.3) is the least-norm minimizer of the minimiza-
tion problem

min
x∈C

‖Ax − b‖2. (1.4)

Recently, some authors consider the minimum norm solution problem by using the iterative
algorithm. For some related works, please refer to [2–4]. Yao and Xu [3] introduced the
following algorithm:

xn+1 = PC

(

αnf(xn) + (1 − αn)Txn

)

, n ≥ 0. (1.5)

They proved that the sequence {xn} converges in norm to the unique solution x̃ of VI 〈(I −
f)x̃, x − x̃〉 ≥ 0, x ∈ Fix(T). Particularly, the sequence {xn} defined by

xn+1 = PC((1 − αn)Txn), n ≥ 0, (1.6)

converges to theminimumnorm fixed point of T . We note that the authors added an addition-
al assumption, that is, limn→∞αn+1/αn = 1. Iterative algorithm for finding the fixed points of
nonexpansive mappings has been considered by many authors, see [5–20].

The purpose of this paper is to extend Yao and Xu’s result to an infinite family of non-
expansive mappings {Tn}∞n=0. We suggest a new algorithm. Particularly, we drop the above
additional assumption and prove the suggested algorithm converges strongly to the common
fixed points of {Tn}∞n=0. As a special case, we can find the minimum norm fixed point of
{Tn}∞n=0.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let C
be a nonempty closed convex subset of H. We call f : C → H a κ-contraction if there exists
a constant κ ∈ [0, 1) such that ‖f(x) − f(y)‖ ≤ κ‖x − y‖ for all x, y ∈ C. A bounded linear
operator B is said to be strongly positive on H if there exists a constant α > 0 such that

〈Bx, x〉 ≥ α‖x‖2, ∀x ∈ H. (2.1)

Recall that the (nearest point or metric) projection from H onto C, denoted by PC, is defined
in such a way that, for each x ∈ H, PCx is the unique point in C with the property

‖x − PCx‖ = min
{∥
∥x − y

∥
∥ : y ∈ C

}

. (2.2)

It is known that PC satisfies

〈

x − y, PCx − PCy
〉 ≥ ∥

∥PCx − PCy
∥
∥
2
, ∀x, y ∈ H. (2.3)
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Moreover, PC is characterized by the following properties:

〈

x − PCx, y − PCx
〉 ≤ 0,

∥
∥x − y

∥
∥
2 ≥ ‖x − PCx‖2 +

∥
∥y − PCx

∥
∥
2
,

(2.4)

for all x ∈ H and y ∈ C.
We also need other sorts of nonlinear operators which are introduced below. Let T :

H → H be a nonlinear operator.

(a) T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H.

(b) T is firmly nonexpansive if 2T − I is nonexpansive. Equivalently, T = (I + S)/2,
where S : H → H is nonexpansive. Alternatively, T is firmly nonexpansive if and
only if

∥
∥Tx − Ty

∥
∥
2 ≤ 〈

Tx − Ty, x − y
〉

, x, y ∈ H. (2.5)

(c) T is averaged if T = (1− τ)I + τS, where τ ∈ (0, 1) and S : H → H is nonexpansive.
In this case, we also say that T is τ-averaged. A firmly nonexpansive mapping is
1/2-averaged.

It is well known that both PC and I − PC are firmly nonexpansive. We will need to use the
following notation:

(i) Fix(T) stands for the set of fixed points of T ;

(ii) xn ⇀ x stands for the weak convergence of {xn} to x;

(iii) xn → x stands for the strong convergence of {xn} to x.

Let T1, T2, . . . be infinite mappings of C into itself, and let ξ1, ξ2, . . . be real numbers such
that 0 ≤ ξi ≤ 1 for every i ∈ N. For any n ∈ N, define a mappingWn of C into itself as follows:

Un,n+1 = I,

Un,n = ξnTnUn,n+1 + (1 − ξn)I,

Un,n−1 = ξn−1Tn−1Un,n + (1 − ξn−1)I,

...

Un,k = ξkTkUn,k+1 + (1 − ξk)I,

Un,k−1 = ξk−1Tk−1Un,k + (1 − ξk−1)I,

...

Un,2 = ξ2T2Un,3 + (1 − ξ2)I,

Wn = Un,1 = ξ1T1Un,2 + (1 − ξ1)I.

(2.6)
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Such Wn is called the W-mapping generated by Tn, Tn−1, . . . , T2, T1 and ξn, ξn−1, . . . , ξ2, ξ1. For
the iterative algorithm for a finite family of nonexpansive mappings, we refer the reader to
[21].

We have the following crucial lemmas concerning Wn which can be found in [22].

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, . . . be
nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) is nonempty, and let ξ1, ξ2, . . . be real

numbers such that 0 < ξi ≤ b < 1 for any i ∈ N. Then, for every x ∈ C and k ∈ N, the limit
limn→∞Un,kx exists.

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1, T2, . . . be
nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) is nonempty, and let ξ1, ξ2, . . . be real

numbers such that 0 < ξi ≤ b < 1 for any i ∈ N. Then, F(W) =
⋂∞

n=1 F(Tn).

The following remark [23] is important to prove our main results.

Remark 2.3. Using Lemma 2.1, one can define a mapping W of C into itself as Wx =
limn→∞Wnx = limn→∞Un,1x, for every x ∈ C. If {xn} is a bounded sequence in C, then
one has

lim
n→∞

‖Wxn −Wnxn‖ = 0. (2.7)

Throughout this paper, we will assume that 0 < ξi ≤ b < 1 for every i ∈ N.

Lemma 2.4 (see [24]). Let K be a nonempty closed convex subset of a real Hilbert space H. Let
T : K → K be a nonexpansive mapping with Fix(T)/= ∅. Then T is demiclosed on K, that is, if
xn ⇀ x ∈ K weakly and xn − Txn → 0, then x = Tx.

Lemma 2.5 (see [25]). Let {xn} and {zn} be bounded sequences in a Banach spaceX, and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1−βn)zn +βnxn

for all integers n ≥ 0 and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 −xn‖) ≤ 0. Then, limn→∞‖zn −xn‖ = 0.

Lemma 2.6 (see [26]). Assume {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1 − γn)an + δn where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

3. Main Result

In this section, we introduce our algorithm and prove its strong convergence.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=1
be a sequence of nonexpansive mappings from C to C such that the common fixed point set F :=
⋂∞

n=1 F(Tn)/= ∅. Let f : C → H be a κ-contraction and B : H → H be a self-adjoint, strongly
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positive bounded linear operator with coefficient α > 0. Let σ be a constant such that 0 < σκ < α. For
an arbitrary initial point x0 belonging to C, one defines a sequence {xn}n≥0 iteratively

xn+1 = PC

[

αnσf(xn) + (I − αnB)Wnxn

]

, ∀n ≥ 0, (3.1)

where {αn} is a real sequence in [0, 1]. Assume the sequence {αn} satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} generated by (3.1) converges in norm to the unique solution x∗ which solves
the following variational inequality:

x∗ ∈ F such that
〈

σf(x∗) − Bx∗, x̃ − x∗〉 ≤ 0, ∀x̃ ∈ F. (3.2)

Proof. Let x̃ ∈ F. From (3.1), we have

‖xn+1 − x̃‖ =
∥
∥PC

[

αnσf(xn) + (I − αnB)Wnxn

] − x̃
∥
∥

≤ ∥
∥αnσf(xn) + (I − αnB)Wnxn − x̃

∥
∥

≤ αnσ
∥
∥f(xn) − f(x̃)

∥
∥ + ‖I − αnB‖‖Wnxn − x̃‖ + αn

∥
∥σf(x̃) − Bx̃

∥
∥

≤ αnσκ‖xn − x̃‖ + (1 − αnα) ‖xn − x̃‖ + αn

∥
∥σf(x̃) − Bx̃

∥
∥

= [1 − (α − σκ)αn]‖xn − x̃‖ + (α − σκ)αn

∥
∥f(x̃) − Bx̃

∥
∥

(α − σκ)
.

(3.3)

It follows by induction that

‖xn+1 − x̃‖ ≤ max

{

‖xn − x̃‖,
∥
∥f(x̃) − Bx̃

∥
∥

(α − σκ)

}

≤ max

{

‖x0 − x̃‖,
∥
∥f(x̃) − Bx̃

∥
∥

(α − σκ)

}

.

(3.4)

This indicates that {xn} is bounded. It is easy to deduce that {f(xn)}, {Wnxn}, and {BWnxn}
are also bounded.
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Set S = 2PC − I. It is known that S is nonexpansive. Note that Wn = ξ1T1Un,2xn + (1 −
ξ1)xn. Then, we can rewrite (3.1) as

xn+1 =
I + S

2
[

αnσf(xn) + (I − αnB)Wnxn

]

=
1 − αn

2
Wnxn +

αn

2
(

σf(xn) − BWnxn +Wnxn

)

+
1
2
S
[

αnσf(xn) + (I − αnB)Wnxn

]

=
1 − αn

2
[(1 − ξ)I + ξT1Un,2]xn +

αn

2
(

σf(xn) − BWnxn +Wnxn

)

+
1
2
S
[

αnσf(xn) + (I − αnB)Wnxn

]

=
(1 − ξ)(1 − αn)

2
xn +

ξ(1 − αn)
2

T1Un,2xn +
αn

2
(

σf(xn) − BWnxn +Wnxn

)

+
1
2
S
[

αnσf(xn) + (I − αnB)Wnxn

]

.

(3.5)

Note that

0 < lim
n→∞

(1 − ξ)(1 − αn)
2

=
1 − ξ

2
< 1,

ξ(1 − αn)
2

+
1
2
=

1 + ξ

2
− ξ

2
αn.

(3.6)

From (3.5), we have

xn+1 =
[

1 −
(
1 + ξ

2
+
1 − ξ

2
αn

)]

xn +
(
1 + ξ

2
+
1 − ξ

2
αn

)

× (ξ(1 − αn)/2)T1Un,2xn + (αn/2)
(

σf(xn) − BWnxn +Wnxn

)

((1 + ξ)/2) + ((1 − ξ)/2)αn

+
(1/2)S

[

αnσf(xn) + (I − αnB)Wnxn

]

((1 + ξ)/2) + ((1 − ξ)/2)αn

=
[

1 −
(
1 + ξ

2
+
1 − ξ

2
αn

)]

xn +
(
1 + ξ

2
+
1 − ξ

2
αn

)

yn,

(3.7)
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where

yn =
(ξ(1 − αn)/2)T1Un,2xn + (αn/2)

(

σf(xn) − BWnxn +Wnxn

)

((1 + ξ)/2) + ((1 − ξ)/2)αn

+
(1/2)S

[

αnσf(xn) + (I − αnB)Wnxn

]

((1 + ξ)/2) + ((1 − ξ)/2)αn

=
ξ(1 − αn)T1Un,2xn + αn

(

σf(xn) − BWnxn +Wnxn

)

+ S
[

αnσf(xn) + (I − αnB)Wnxn

]

1 + ξ + (1 − ξ)αn
.

(3.8)

Set zn = σf(xn) − BWnxn +Wnxn and z̃n = αnσf(xn) + (I − αnB)Wnxn for all n. Then

yn =
ξ(1 − αn)T1Un,2xn + αnzn + Sz̃n

1 + ξ + (1 − ξ)αn
, ∀n ≥ 0. (3.9)

It follows that

yn+1 − yn =
ξ(1 − αn+1)T1Un+1,2xn+1 + αn+1zn+1 + Sz̃n+1

1 + ξ + (1 − ξ)αn+1

− ξ(1 − αn)T1Un,2xn + αnzn + Sz̃n
1 + ξ + (1 − ξ)αn

=
ξ(1 − αn+1)

1 + ξ + (1 − ξ)αn+1
(T1Un+1,2xn+1 − T1Un,2xn)

+
(

ξ(1 − αn+1)
1 + ξ + (1 − ξ)αn+1

− ξ(1 − αn)
1 + ξ + (1 − ξ)αn

)

T1Un,2xn

+
αn+1zn+1

1 + ξ + (1 − ξ)αn+1
− αnzn
1 + ξ + (1 − ξ)αn

+
Sz̃n+1 − Sz̃n

1 + ξ + (1 − ξ)αn+1
+
(

1
1 + ξ + (1 − ξ)αn+1

− 1
1 + ξ + (1 − ξ)αn

)

Sz̃n.

(3.10)

Thus,

∥
∥yn+1 − yn

∥
∥ ≤ ξ(1 − αn+1)

1 + ξ + (1 − ξ)αn+1
‖T1Un+1,2xn+1 − T1Un,2xn‖

+
∣
∣
∣
∣

ξ(1 − αn+1)
1 + ξ + (1 − ξ)αn+1

− ξ(1 − αn)
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖T1Un,2xn‖
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+
αn+1

1 + ξ + (1 − ξ)αn+1
‖zn+1‖ + αn

1 + ξ + (1 − ξ)αn
‖zn‖

+
1

1 + ξ + (1 − ξ)αn+1
‖Sz̃n+1 − Sz̃n‖

+
∣
∣
∣
∣

1
1 + ξ + (1 − ξ)αn+1

− 1
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖Sz̃n‖.

(3.11)

From the nonexpansivity of S, we get

‖Sz̃n+1 − Sz̃n‖ ≤ ‖z̃n+1 − z̃n‖
=
∥
∥αn+1σf(xn+1) + (I − αn+1B)Wn+1xn+1 −

(

αnσf(xn) + (I − αnB)Wnxn

)∥
∥

≤ αn+1
∥
∥σf(xn+1) − BWn+1xn+1

∥
∥ + αn

∥
∥σf(xn) − BWnxn

∥
∥ + ‖Wn+1xn+1 −Wnxn‖

≤ αn+1
∥
∥σf(xn+1) − BWn+1xn+1

∥
∥ + αn

∥
∥σf(xn) − BWnxn

∥
∥

+ ‖Wn+1xn+1 −Wn+1xn‖ + ‖Wn+1xn −Wnxn‖
≤ αn+1

∥
∥σf(xn+1) − BWn+1xn+1

∥
∥ + αn

∥
∥σf(xn) − BWnxn

∥
∥ + ‖xn+1 − xn‖

+ ‖Wn+1xn −Wnxn‖.
(3.12)

Since Ti andUn,i are nonexpansive, we have

‖T1Un+1,2xn − T1Un,2xn‖ ≤ ‖Un+1,2xn −Un,2xn‖
= ‖ξ2T2Un+1,3xn − ξ2T2Un,3xn‖
≤ ξ2‖Un+1,3xn −Un,3xn‖
≤ · · ·
≤ ξ2 · · · ξn‖Un+1,n+1xn −Un,n+1xn‖

≤ M
n∏

i=2

ξi,

(3.13)

where M > 0 is a constant such that ‖Un+1,n+1xn −Un,n+1xn‖ ≤ M for all n ≥ 0. So,

‖T1Un+1,2xn+1 − T1Un,2xn‖ ≤ ‖T1Un+1,2xn+1 − T1Un+1,2xn‖ + ‖T1Un+1,2xn − T1Un,2xn‖

≤ ‖xn+1 − xn‖ +M
n∏

i=2

ξi.
(3.14)
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Hence,

∥
∥yn+1 − yn

∥
∥ ≤ ξ(1 − αn+1)

1 + ξ + (1 − ξ)αn+1
‖xn+1 − xn‖ +M

n∏

i=2

ξi

+
∣
∣
∣
∣

ξ(1 − αn+1)
1 + ξ + (1 − ξ)αn+1

− ξ(1 − αn)
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖T1Un,2xn‖

+
αn+1

1 + ξ + (1 − ξ)αn+1
‖zn+1‖ + αn

1 + ξ + (1 − ξ)αn
‖zn‖

+
1

1 + ξ + (1 − ξ)αn+1

× (

αn+1
∥
∥σf(xn+1) − BWn+1xn+1

∥
∥ + αn

∥
∥σf(xn) − BWnxn

∥
∥ + ‖xn+1 − xn‖

)

+ ‖Wn+1xn −Wnxn‖ +
∣
∣
∣
∣

1
1 + ξ + (1 − ξ)αn+1

− 1
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖Sz̃n‖

=
1 + ξ − ξαn+1

1 + ξ + (1 − ξ)αn+1
‖xn+1 − xn‖

+
∣
∣
∣
∣

ξ(1 − αn+1)
1 + ξ + (1 − ξ)αn+1

− ξ(1 − αn)
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖T1Un,2xn‖

+
αn+1

1 + ξ + (1 − ξ)αn+1
‖zn+1‖ + αn

1 + ξ + (1 − ξ)αn
‖zn‖

+
1

1 + ξ + (1 − ξ)αn+1

× (

αn+1
∥
∥σf(xn+1) − BWn+1xn+1

∥
∥ + αn

∥
∥σf(xn) − BWnxn

∥
∥
)

+ ‖Wn+1xn −Wnxn‖ +
∣
∣
∣
∣

1
1 + ξ + (1 − ξ)αn+1

− 1
1 + ξ + (1 − ξ)αn

∣
∣
∣
∣
‖Sz̃n‖.

(3.15)

Since αn → 0, we have ξ(1 − αn+1)/(1 + ξ + (1 − ξ)αn+1) − ξ(1 − αn)/(1 + ξ + (1 − ξ)αn) → 0,
‖Wn+1xn −Wnxn‖ → 0, and 1/(1 + ξ + (1 − ξ)αn+1) − 1/(1 + ξ + (1 − ξ)αn) → 0. Therefore,

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (3.16)

By Lemma 2.5, we get

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.17)

Hence, from (3.7), we deduce

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 + ξ

2
+
1 − ξ

2
αn

)
∥
∥yn − xn

∥
∥ = 0. (3.18)
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Observe that

‖xn+1 − xn‖ =
∥
∥PC

[

αnσf(xn) + (I − αnB)Wn

]

xn −Wxn

∥
∥

≤ αk

∥
∥σf(xn) − BWnxn

∥
∥ + ‖Wnxn −Wxn‖ → 0.

(3.19)

From (3.18) and (3.19), we deduce

lim
k→∞

‖Wxn − xn‖ = 0. (3.20)

Next we prove

lim sup
k→∞

〈

σf(x∗) − Bx∗, xk − x∗
〉

≤ 0, (3.21)

where x∗ is the unique solution of VI (3.2).
Indeed, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈

σf(x∗) − Bx∗, xn − x∗〉 = lim
i→∞

〈

σf(x∗) − Bx∗, xni − x∗〉. (3.22)

Since {xni} is bounded, there exists a subsequence of {xni}which converges weakly to a point
x̃. Without loss of generality, we may assume that {xni} converges weakly to x̃. Therefore,
from (3.20) and Lemma 2.4, we have xni ⇀ x̃ ∈ Fix(W) = F. Therefore,

lim sup
n→∞

〈

σf(x∗) − Bx∗, xn − x∗〉 = lim
i→∞

〈

σf(x∗) − Bx∗, xni − x∗〉

=
〈

σf(x∗) − Bx∗, x̃ − x∗〉 ≤ 0.
(3.23)

Finally, we show that xn → x∗. We observe that

‖xn+1 − x∗‖2 = 〈xn+1 − z̃n, xn+1 − x∗〉 + 〈z̃n − x∗, xn+1 − x∗〉. (3.24)
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Since 〈xn+1 − z̃n, xn+1 − x∗〉 ≤ 0, we get

‖xn+1 − x∗‖2 ≤ 〈z̃n − x∗, xn+1 − x∗〉
=
〈

αnσ
(

f(xn) − f(x∗)
)

+ (I − αnB)(Wnxn − x∗), xn+1 − x∗〉

+ αn

〈

σf(x∗) − Bx∗, xn+1 − x∗〉

≤ (

αnσ
∥
∥f(xn) − f(x∗)

∥
∥ + ‖I − αnB‖‖Wnxn − x∗‖)‖xn+1 − x∗‖

+ αn

〈

σf(x∗) − Bx∗, xn+1 − x∗〉

≤ (1 − αn(α − σκ))‖xn − x∗‖‖xn+1 − x∗‖
+ αn

〈

σf(x∗) − Bx∗, xn+1 − x∗〉

≤ [1 − αn(α − σκ)]2

2
‖xn − x∗‖2 + 1

2
‖xn+1 − x∗‖2

+ αn

〈

σf(x∗) − Bx∗, xn+1 − x∗〉.

(3.25)

It follows that

‖xn+1 − x∗‖2 ≤ [1 − αn(α − σκ)]‖xn − x∗‖2

+ 2αn

〈

σf(x∗) − Bx∗, xn+1 − x∗〉.
(3.26)

Hence, all conditions of Lemma 2.6 are satisfied. Therefore, we immediately deduce that
xk → x∗. This completes the proof.

From (3.1) and Theorem 3.1, we can deduce easily the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=1
be a sequence of nonexpansive mappings from C to C such that the common fixed point set F :=
⋂∞

n=1 F(Tn)/= ∅. For an arbitrary initial point x0, one defines a sequence {xn}n≥0 iteratively

xn+1 = PC[(1 − αn)Wnxn], n ≥ 0, (3.27)

where {αn} is a real sequence in [0, 1]. Assume the sequence {αn} satisfies the following conditions:

(C1) limn→∞αn = 0;

(C2)
∑∞

n=0 αn = ∞.

Then the sequence {xn} generated by (3.27) converges to the minimum norm common fixed point x∗

of {Tn}.
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