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We study a simple motion pursuit differential game of many pursuers and many evaders on a
nonempty convex subset of R

n. In process of the game, all players must not leave the given set.
Control functions of players are subjected to integral constraints. Pursuit is said to be completed
if the position of each evader yj , j ∈ {1, 2, ...k}, coincides with the position of a pursuer xi,
i ∈ {1, ...,m}, at some time tj , that is, xi(tj) = yj(tj). We show that if the total resource of
the pursuers is greater than that of the evaders, then pursuit can be completed. Moreover, we
construct strategies for the pursuers. According to these strategies, we define a finite number of
time intervals [θi−1, θi] and on each interval only one of the pursuers pursues an evader, and other
pursuers do not move. We derive inequalities for the resources of these pursuer and evader and,
moreover, show that the total resource of the pursuers remains greater than that of the evaders.

1. Related Work

Linear differential gameswith integral constraints on controls were examined inmanyworks,
for example, [1–16].

Satimov et al. [10] studied a linear pursuit differential game of many pursuers and
one evader with integral constraints on controls of players in R

n. Game is described by the
following equations:

żi = Cizi + ui − v, zi(t0) = z0i , i = 1, . . . , m, (1.1)

where ui is the control parameter of the ith pursuer and v is that of the evader. The
eigenvalues of the matrices Ci are assumed to be real numbers. They proved that if the total
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resource of controls of the pursuers is greater than that of the evader, then under certain
conditions pursuit can be completed.

Ibragimov [15] examined a pursuit differential game ofm pursuers and k evaders with
integral constraints described by the following systems of differential equations

żij = Cijzij + ui − vj , zij(t0) = z0ij , i = 1, . . . , m, j = 1, . . . , k,
∫∞

0
|ui(s)|2ds ≤ ρi

2, i = 1, . . . , m,

∫∞

0

∣∣vj(s)
∣∣2ds ≤ σj

2, j = 1, . . . , k,
(1.2)

where ui is the control parameter of the ith pursuer and vj is that of the jth evader. Different
from the previous work, here eigenvalues of matrices Cij are not necessarily real, and,
moreover, the number of evaders can be any. If the total resource of controls of the pursuers
is greater than that of the evaders, that is,

ρ21 + ρ22 + · · · + ρ2m > σ2
1 + σ2

2 + · · · + σ2
k, (1.3)

and real parts of all eigenvalues of the matrices Cij are nonpositive, then it was proved that
pursuit can be completed from any initial position. Here, game was considered in R

n without
any state constraint.

Ivanov [17] considered generalized Lion and Man problem in the case of geometric
constraints. All players have equal dynamic possibilities. Motions of the players are described
by the following equations:

ẋi = ui, xi(0) = xi0, |ui| ≤ 1, i = 0, 1, . . . , m, (1.4)

where xi ∈ R
n, ui, i = 1, . . . , m, are control parameters of the pursuers and u0 is control

parameter of the evader. During the game, all players may not leave a given compact subset
N of R

n. It was shown that if the number of pursuers m does not exceed the dimension of
the space n, then evasion is possible; otherwise pursuit can be completed. In other words,
Ivanov [17] derived necessary and sufficient condition of evasion for the multiple Lion and
Man game in R

n.
Ibragimov [16] studied a differential game problem of one pursuer and one evader

with integral constraints. Game occurs on a closed convex subset S of R
n, and movements of

the players are described by the following equations:

ẋ = α(t)u, x(0) = x0,

∫∞

0
|u(s)|2ds ≤ ρ2,

ẏ = α(t)v, y(0) = y0,

∫∞

0
|v(s)|2ds ≤ σ2.

(1.5)

Evasion and pursuit problems were investigated. In the latter case, a formula for optimal
pursuit time was found.

Leong and Ibragimov [14] studied simple motion pursuit differential game of m pur-
suers and one evader on a closed convex subset of the Hilbert space l2. Control functions of
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Table 1: Brief summary of obtained results.

Author(s) Number of
pursuers

Number of
evaders The set where the pursuit occurs Constraint on

controls

Satimov et al. (1983) [10] m 1 R
n Integral

Ibragimov (2004) [15] m k R
n Integral

Ivanov (1980) [17] m 1 Closed convex subsetN of R
n Geometric

Ibragimov (2002) [16] 1 1 Closed convex subsetN of R
n Integral

Leong and Ibragimov
(2008) [14] m 1 Closed convex subsetN of l2 Integral

Present paper m k Closed convex subsetN of R
n Integral

the players are subjected to integral constraints. The total resource of the pursuers is assumed
to be greater than that of the evader. Strategies of pursuers were constructed to complete the
pursuit from any initial position.

In the present paper, we study a pursuit differential game of many pursuers and many
evaders on a nonempty convex subsetN of R

n, n ≥ 2. In process of the game, all players must
not leave the set N. Control functions of the players are subjected to integral constraints. We
will show that if the total resource of the pursuers is greater than that of the evaders, then
pursuit can be completed. In Table 1, we can compare the cases studied in the works of the
previous researches and the present paper.

2. Statement of the Problem

We consider a differential game described by the following equations:

ẋi = ϕ(t)ui, xi(0) = xi0, i = 1, . . . , m,

ẏj = ϕ(t)vi, yj(0) = yj0, j = 1, . . . , k,
(2.1)

where xi, ui, yj , vj ∈ R
n, ui is control parameter of the pursuer xi, i = 1, . . . , m, vj is that of

the evader yj , j = 1, . . . , k, and ϕ(t) is a scalar measurable function that satisfies the following
conditions:

a(τ) �
(∫ τ

0
ϕ2(t)dt

)1/2

< ∞, τ > 0, lim
τ →∞

a(τ) = ∞. (2.2)

Definition 2.1. A measurable function ui(t) = (ui1(t), . . . , uin(t)), t ≥ 0, is called admissible
control of the pursuer xi if

∫∞

0
|ui(s)|2ds ≤ ρ2i , (2.3)

where ρi, i = 1, . . . , m, are given positive numbers. We denote the set of all admissible controls
of the pursuer xi by S(ρi).
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Definition 2.2. A measurable function vj(t) = (vj1(t), . . . , vjk(t)), t ≥ 0, is called an admissible
control of the evader if

∫∞

0

∣∣vj(s)
∣∣2ds ≤ σ2

j , (2.4)

where σj , j = 1, . . . , k, are given positive numbers.

Definition 2.3. A Borel measurable functionUi(xi, y1, . . . , yk, v1, . . . , vk),Ui : R
(2k+1)n → R

n, is
called a strategy of the pursuer xi if for any control of the evader v(t), t ≥ 0, the initial value
problem

ẋi = ϕ(t)Ui

(
xi, y1, . . . , yk, v1(t), . . . , vk(t)

)
, xi(0) = xi0,

ẏj = ϕ(t)vi(t), yj(0) = yj0, j = 1, . . . , k,
(2.5)

has a unique solution (xi(t), y1(t), . . . , yk(t)) and the inequality

∫∞

0

∣∣Ui

(
xi(s), y1(s), . . . , yk(s), v1(s), . . . , vk(s)

)∣∣2ds ≤ ρ2i (2.6)

holds.

Definition 2.4. We say that pursuit can be completed from the initial position
{x10, . . . , xm0, y10, . . . , yk0} for the time T in the game (2.1)–(2.4), if there exist strategies
Ui, i = 1, . . . , m, of the pursuers such that for any controls v1 = v1(·), . . . , vk = vk(·) of the
evaders and numbers j = 1, 2, . . . k, the equality xi(tj) = yj(tj) holds for some i ∈ {1, . . . , k} at
some time tj ∈ [0, T].

Given nonempty convex subset N of R
n, according to the rule of the game all players

must not leave the set N, that is, xi0, xi(t), yj0, yj(t) ∈ N, t ≥ 0, i = 1, . . . , m, j = 1, . . . , k.
This information describes a differential game of many players with integral constraints on
control functions of players.

Problem 1. Find a sufficient condition of completing pursuit in the game (2.1)–(2.4).

3. The Main Result

Since the control parameters of the players can take the values of opposite signs, without
loss of generality, we may assume that ϕ(t) ≥ 0. Moreover, without loss of generality, we
may assume that ϕ(t) is not identically zero on every open interval. Otherwise, if for instance
ϕ(t) = 0, t ∈ (t1, t2), then instead of ϕ(t) we consider

ϕ1(t) =

{
ϕ(t), 0 ≤ t ≤ t1,

ϕ(t + t2 − t1), t > t1.
(3.1)
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We now formulate the main result of the paper.

Theorem 3.1. If

ρ21 + ρ22 + · · · + ρ2m > σ2
1 + σ2

2 + · · · + σ2
k, (3.2)

then pursuit can be completed for a finite time T in the game (2.1)–(2.4) from any initial position.

Proof. (10) An auxiliary differential game: To prove this theorem, we first study an auxiliary
differential game of one pursuer x and one evader y, which is described by the following
equations:

ẋ = ϕ(t)u, x(0) = x0,

ẏ = ϕ(t)v, y(0) = y0,
(3.3)

where x, y ∈ R
n, u is control parameter of the pursuer x, and v is that of the evader y. Assume

that u = u(·) ∈ S(ρ), v = v(·) ∈ S(σ). Pursuit is completed if x(t′) = y(t′) at some time t′ ≥ 0.
Here the players move in R

n without any state constraint.
Set

u(t) =
ϕ(t)
a2(θ)

(
y0 − x0

)
+ v(t), t ≥ 0, (3.4)

where θ is an arbitrary fixed number satisfying

a2(θ) ≥
∣∣y0 − x0

∣∣2
(
ρ − σ

)2 . (3.5)

Let

ρ2(t) = ρ2 −
∫ t

o

|u(s)|2ds, σ2(t) = σ2 −
∫ t

o

|v(s)|2ds,

K
(
θ, x0, y0

)
=

1
a(θ)

∣∣y0 − x0
∣∣2 + 2σ

∣∣y0 − x0
∣∣.

(3.6)

We will now prove the following statement.

Lemma 3.2. Let the pursuer use the strategy (3.4). (i) If ρ > σ then pursuit can be completed in the
game (3.3) for the time θ, and, moreover,

ρ2(θ) ≥ ρ2 − σ2 − K
(
θ, x0, y0

)
a(θ)

. (3.7)
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(ii) If ρ ≤ σ, then either x(θ) = y(θ) or

σ2(θ) ≤ σ2 − ρ2 +
K
(
θ, x0, y0

)
a(θ)

. (3.8)

Proof of the Lemma. Let ρ > σ. In this case, we show that the control (3.4) is admissible and
ensures the equality x(θ) = y(θ). Indeed, clearly

x(θ) = x0 +
∫θ

0
ϕ(t)

(
ϕ(t)
a2(θ)

(
y0 − x0

)
+ v(t)

)
dt = y0 +

∫θ

0
ϕ(t)v(t)dt = y(θ). (3.9)

To show the admissibility of the strategy (3.4), we use the Cauchy-Schwartz inequality
as follows:

(
y0 − x0

) ∫θ

0
ϕ(t)v(t)dt ≤ ∣∣y0 − x0

∣∣
∫θ

0
ϕ(t)|v(t)| dt ≤ ∣∣y0 − x0

∣∣a(θ)σ. (3.10)

Then by this inequality we have

∫θ

0
|u(t)|2dt = 1

a2(θ)

∣∣y0 − x0
∣∣2 + 2

1
a2(θ)

(
y0 − x0

) ∫θ

0
ϕ(t)v(t)dt +

∫θ

0
|v(t)|2dt

≤ 1
a2(θ)

∣∣y0 − x0
∣∣2 + 2

a(θ)

∣∣y0 − x0
∣∣σ +

∫θ

0
|v(t)|2dt

=
K
(
θ, x0, y0

)
a(θ)

+
∫θ

0
|v(t)|2dt.

(3.11)

According to (3.5) and the condition v(·) ∈ S(σ), the right-hand side of (3.11) is less
than or equal to

(
σ − ρ

)2 + 2
(
ρ − σ

)
σ + σ2 = ρ2. (3.12)

At this point, we have proved admissibility of the control (3.4).
In particular, using (3.11) we obtain

ρ2(θ) = ρ2 −
∫θ

0
|u(t)|2dt ≥ ρ2 − σ2 − K

(
θ, x0, y0

)
a(θ)

. (3.13)

Thus, (3.7) holds. We now turn to the part (ii) of the Lemma 3.2. Let ρ ≤ σ and the
pursuer use the strategy (3.4) on the interval [0, θ]. If for a control of the evader v(t), t ∈
[0, θ], the following inequality is satisfied:

∫θ

0
|u(t)|2dt =

∫θ

0

∣∣∣∣ ϕ(t)
a2(θ)

(
y0 − x0

)
+ v(t)

∣∣∣∣
2

dt ≤ ρ2, (3.14)
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then, clearly, the control (3.4) is admissible, and similar to (3.9) we obtain that x(θ) = y(θ)
and the proof of the lemma follows. Hence, if x(θ)/=y(θ), then for the control (3.4) we must
have

∫θ

0

∣∣∣∣ ϕ(t)
a2(θ)

(
y0 − x0

)
+ v(t)

∣∣∣∣
2

dt > ρ2. (3.15)

From this inequality by using calculations similar to (3.11), we then obtain

∫θ

0
|v(t)|2dt > ρ2 − K

(
θ, x0, y0

)
a(θ)

, (3.16)

and hence

σ2(θ) = σ2 −
∫θ

0
|v(t)|2dt < σ2 − ρ2 +

K
(
θ, x0, y0

)
a(θ)

. (3.17)

This completes the proof of the lemma.

The last inequality can be interpreted as follows. Though x(θ)/=y(θ), the pursuer can
force to expend the evader’s energy more than ρ2 − (K(θ, x0, y0)/a(θ)). At the same time,
using the strategy (3.4), the pursuer will spend all his energy by a time τ

∫ τ

0
|u(t)|2dt = ρ2, 0 < τ < θ. (3.18)

Then, of course, the pursuer cannot move anymore and automatically u(t) ≡ 0, t ≥ τ .
(20) Fictitious pursuers (FP): We now prove the theorem. To this purpose, introduce

fictitious pursuers z1, . . . , zm by equations

żi = ϕ(t)wi, zi(0) = xi0, wi ∈ S
(
ρi
)
, i = 1, . . . , m, (3.19)

where wi is control parameter of the pursuer zi. FPs may go out of the set N. They move
without any state constraint in R

n. The aim of the FPs is to complete the pursuit as earlier as
possible. Set

wm(t) =
ϕ(t)
a2(θ1)

(
yk0 − xm0

)
+ vk(t), 0 ≤ t ≤ θ1, (3.20)

wi(t) ≡ 0, i = 1, . . . , m − 1, 0 ≤ t ≤ θ1, (3.21)
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where θ1 is any number satisfying inequalities

a2(θ1) ≥
∣∣yk0 − xm0

∣∣2
(
ρm − σk

)2 , (3.22)

ρ21 + ρ22 + · · · + ρ2m > σ2
1 + σ2

2 + · · · + σ2
k +

K
(
θ1, xm0, yk0

)
a(θ1)

. (3.23)

Since by the assumption a(t) → ∞ as t → ∞, it follows from (3.2) that such θ1 exists.
Equations (3.20), (3.21)mean that all FPs z1, . . . , zm−1 do not move on the time interval [0, θ1],
and only one FP zm moves according to (3.20).

We will now show that if (3.2) holds and the FPs use the strategies (3.20), (3.21), then
the pursuit problemwith the pursuers z1, . . . , zm and evaders y1, . . . , yk is reduced to a pursuit
problem with the pursuers z1, . . . , zp and evaders y1, . . . , yq, for which ρ21(θ1) + · · · + ρ2p(θ1) >
σ2
1(θ1)+ · · ·+σ2

q(θ1) and p+q < m+k. Hence, by the time θ1, the number of pursuers is reduced
to p + q.

Indeed, we consider two possible cases: (i) ρm ≤ σk; (ii) ρm > σk. In the former case,
that is, ρm ≤ σk, if the equality zm(θ1) = yk(θ1) holds, then we eliminate the pursuer zm and
the evader yk and then consider the pursuit problem with pursuers z1, . . . , zm−1 and evaders
y1, . . . , yk−1 under the condition

ρ21 + · · · + ρ2m−1 > σ2
1 + · · · + σ2

k−1
(
p = m − 1, q = k − 1

)
. (3.24)

In case of zm(θ1)/=yk(θ1), according to (3.8), we obtain that

σ2
k(θ1) ≤ σ2

k − ρ2m +
K
(
θ1, xm0, yk0

)
a(θ1)

. (3.25)

Then in view of (3.23) we obtain

ρ21 + · · · + ρ2m−1 > σ2
1 + · · · + σ2

k(θ1)
(
p = m − 1, q = k

)
, (3.26)

and at the time θ1 we consider the pursuit problemwith the pursuers z1, . . . , zm−1 and evaders
y1, . . . , yk.

We now turn to the case (ii), that is, ρm > σk. Then the pursuer zm certainly ensures
the equality zm(θ1) = yk(θ1) and according to Lemma 3.2 (see, (3.7))

ρ2m(θ1) ≥ ρ2m − σ2
k −

K
(
θ1, xm0, yk0

)
a(θ1)

. (3.27)

Then with the aid of (3.23) we obtain

ρ21 + · · · + ρ2m−1 + ρ2m(θ1) > σ2
1 + · · · + σ2

k−1
(
p = m, q = k − 1

)
, (3.28)
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and therefore at the time θ1 we arrive at the pursuit problem with the pursuers z1, . . . , zm and
evaders y1, . . . , yk−1.

Let now θ2 be an arbitrary fixed number satisfying inequalities

θ2 > θ1, a2(θ2 − θ1) ≥
∣∣yq(θ1) − zp(θ1)

∣∣2
(
ρp(θ1) − σq(θ1)

)2 ,

ρ21(θ1) + · · · + ρ2p(θ1) > σ2
1(θ1) + · · · + σ2

q(θ1) +
K
(
θ2 − θ1, yq(θ1), zq(θ1)

)
a(θ2 − θ1)

,

(3.29)

where p and q are the numbers of pursuers and evaders, respectively, which take part in the
pursuit problem at time θ1. Set

wp(t) =
ϕ(t)

a2(θ2 − θ1)
(
yq(θ1) − zp(θ1)

)
+ vq(t), θ1 < t ≤ θ2,

wi(t) ≡ 0, θ1 < t ≤ θ2, i ∈ {1, . . . , m} \ {p}.
(3.30)

Observe that according to (3.30) all pursuers except for zp will not move on the time
interval (θ1, θ2].

Let the pursuers use the strategies (3.30). Applying the same arguments above, we
arrive at the following conclusion.

(1) If ρp(θ1) ≤ σq(θ1) and zp(θ2) = yq(θ2), then starting from the time θ2 we consider
a pursuit problem with the pursuers z1, . . . , zp−1 and evaders y1, . . . , yq−1 under the
condition

ρ21(θ2) + · · · + ρ2p−1(θ2) > σ2
1(θ2) + · · · + σ2

q−1(θ2). (3.31)

(2) If ρp(θ1) ≤ σq(θ1) and zp(θ2)/=yq(θ2), then starting from the time θ2 we consider
the pursuit problem with the pursuers z1, . . . , zp−1 and evaders y1, . . . , yq under the
condition

ρ21(θ2) + · · · + ρ2p−1(θ2) > σ2
1(θ2) + · · · + σ2

q(θ2). (3.32)

(3) If ρp(θ1) > σq(θ1), then by Lemma 3.2 the equality zp(θ2) = yq(θ2) holds. In this
case, starting from the time θ2 the pursuit problem with the pursuers z1, . . . , zp and
evaders y1, . . . , yq−1 is considered under the condition

ρ21(θ2) + · · · + ρ2p(θ2) > σ2
1(θ2) + · · · + ρ2q−1(θ2). (3.33)

Repeated application of this procedure enables us to complete the pursuit for some
finite time T since the number of players is decreasing. Thus, we have proved that FPs can
complete the pursuit.
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(20) Completion of the proof of the Theorem: We will now show that the actual
pursuers also can complete the pursuit. Define the controls u1, . . . , um of the pursuers
x1, . . . , xm by the controls of the FPs w1, . . . , wm. We denote by FN(x) the projection of the
point x ∈ R

n on the set N, that is,

min
y∈N

∣∣x − y
∣∣ = |x − FN(x)|. (3.34)

Note that FN(x) = x if x ∈ N. It is familiar that for any point x ∈ R
n there exists a

unique point FN(x). Moreover, for any x, y ∈ R
n,

∣∣FN(x) − FN

(
y
)∣∣ ≤ ∣∣x − y

∣∣, (3.35)

and hence the operator FN(x) relates any absolute continuous function z(t), 0 ≤ t ≤ T , to an
absolute continuous function

x(t) = FN(z(t)), 0 ≤ t ≤ T, (3.36)

where T is the time in which pursuit can be completed by FPs. Define the control ui(t) to
satisfy

xi(t) = FN(zi(t)), 0 ≤ t ≤ T, i = 1, . . . , m. (3.37)

We first show admissibility of such defined control ui(t). Indeed, from (3.35),

ϕ(t)|ui(t)| = |ẋi(t)| = lim
h→ 0

|xi(t + h) − x(t)|
|h|

= lim
h→ 0

|FN(z(t + h)) − FN(z(t))|
|h|

≤ lim
h→ 0

|zi(t + h) − zi(t)|
|h| = |żi(t)| = ϕ(t)|wi(t)|.

(3.38)

Hence the inequality |ui(t)| ≤ |wi(t)| holds almost everywhere and therefore

∫T

0
|ui(t)|2dt ≤

∫T

0
|wi(t)|2dt ≤ ρ2i . (3.39)

Since for any evader yi, i ∈ {1, . . . , k}, the equality zni(ti) = yi(ti) holds for some ti ≤ T
and ni ∈ {1, . . . , m}, and the evader yi(t) is in N for any t ≥ 0; in particular, yi(ti) ∈ N, then
FP zni(ti) is also inN. Consequently,

xni(ti) = FN(zni(ti)) = zni(ti) = yi(ti). (3.40)
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This means differential game (2.1)–(2.4) can be completed for the time T . The proof of
the theorem is complete.

We give an illustrative example.

Example 3.3. We consider a differential game described by the following equations:

ẋi = λxi + ui, xi(0) = xi0, i = 1, . . . , m, λ ≤ 0,

ẏj = λyj + vj , yj(0) = yj0, j = 1, . . . , k,
(3.41)

It is assumed that xi0 /=yj0 for all i = 1, . . . , m, j = 1, . . . , k. The control functions satisfy
the integral constraints (2.3) and (2.4). Pursuit is said to be completed if for any numbers
j = 1, 2, . . . k the equality xi(tj) = yj(tj) holds for some i ∈ {1, . . . , k} at some time tj ≥ 0.
Players may not leave the half space N = {x | (x, l) ≥ 0, x ∈ R

n}, where l ∈ R
n is a nonzero

vector. Since

xi(t) = eλtxi(t), yi(t) = eλtyi(t), (3.42)

where

xi(t) = xi0 +
∫ t

0
e−λsui(s)ds, yi(t) = yj0 +

∫ t

0
e−λsvj(s)ds, (3.43)

then the equality xi(tj) = yj(tj) is equivalent to the one xi(tj) = yj(tj) and inclusions xi(t) ∈
N and yi(t) ∈ N are equivalent to ones xi(t) ∈ N and yi(t) ∈ N, respectively. Therefore,
differential game described by (3.41) is equivalent to the game described by the following
equations:

xi

(
tj
)
= e−λtui, xi(0) = xi0, i = 1, . . . , m, λ ≤ 0,

yj

(
tj
)
= e−λtvj , yj(0) = yj0, j = 1, . . . , k.

(3.44)

Denoting ϕ(t) = e−λt, we obtain a differential game of the form (2.1).

4. Conclusion

We have obtained a sufficient condition (3.2) to complete the pursuit in the differential
game of m pursuers and k evaders with integral and state constraints. We have constructed
strategies of the pursuers and showed that pursuit can be completed from any initial position
in N. In the case of N = R

n and k = 1 (one evader), the condition (3.2) of the theorem takes
the form ρ21 + ρ22 + · · · + ρ2m > σ2

1 . This condition is sharp since if ρ21 + ρ22 + · · · + ρ2m ≤ σ2
1 , then

evasion is possible [13].
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